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   Abstract—This  paper  investigates  the  prescribed-time  control
(PTC)  problem  for  a  class  of  strict-feedback  systems  subject  to
non-vanishing  uncertainties.  The  coexistence  of  mismatched
uncertainties  and  non-vanishing  disturbances  makes  PTC  syn-
thesis  nontrivial.  In  this  work,  a  control  method  that  does  not
involve infinite time-varying gain is proposed, leading to a practi-
cal  and  global  prescribed  time  tracking  control  solution  for  the
strict-feedback systems, in spite of both the mismatched and non-
vanishing uncertainties. Different from methods based on control
switching  to  avoid  the  issue  of  infinite  control  gain  that  involves
control discontinuity at the switching point, in our method a soft-
ening  unit  is  exclusively  included  to  ensure  the  continuity  of  the
control  action.  Furthermore,  in  contrast  to  most  existing  pre-
scribed-time control works where the control scheme is only valid
on  a  finite  time  interval,  in  this  work,  the  proposed  control
scheme is valid on the entire time interval. In addition, the prior
information  on  the  upper  or  lower  bound  of  is  not  in  need,
enlarging the applicability of the proposed method. Both the the-
oretical  analysis  and  numerical  simulation  confirm the  effective-
ness of the proposed control algorithm.
    Index Terms—Adaptive  control,  prescribed  time  control  (PTC),
strict-feedback systems, tracking control.
  

I.  Introduction

S INCE the original work on prescribed time control (PTC)
by Song et  al.  [1]  for  high order  nonlinear  systems,  PTC

has attracted considerable  attention from the control  commu-
nity during the past few years [2]–[16]. The salient feature of
PTC lies  in its  ability to achieve closed loop system stability
within finite  time that  is  independent  of  system initial  condi-
tions and thus can be pre-specified arbitrarily [1]. As the con-

vergence rate is one of the most important factors for any con-
trol system, PTC is of particular interest for time-critical sys-
tems,  e.g.,  emergency braking [17],  missile interception [18],
spaceship  docking  [19],  and  so  forth.  Compared  with  tradi-
tional  finite-time  control  [20]–[28]  and  fixed  time  control
[29]–[31] methods where the settling time is not at user’s dis-
posal, PTC has its superiority, and thus has motivated numer-
ous following up studies and extensions since its introduction,
including  cooperative  prescribed-time  control  for  networked
multi-agent systems under local communication condition [2],
[3],  prescribed-time  stabilization  for  strict  feedback-like  sys-
tems  with  mismatched  uncertainties  [4],  prescribed-time
tracking  control  for  nonlinear  multi-input  and  multi-output
(MIMO) systems [5], and the inverse prescribed-time optimal-
ity control for stochastic strict-feedback nonlinear systems [6],
etc.

The  prescribed-time  control  method  is  systematically  pro-
posed by Song et al. [1] upon using infinity time-varying gain
that  diverges  to  being  unbounded as  the  time approaches  the
user-defined  terminal  time.  Then,  this  methodology  is
extended  to  various  systems  or  control  problems  ([1],  [2],
[4]–[6]). However, numerical problems during the implemen-
tation of the controller may be encountered due to any distur-
bance/noise  that  is  amplified,  rendering  the  PTC  method
somewhat unpractical. Recently, there have been some efforts
devoted to bounded time-varying gain (BTG) based PTC con-
trol  methods,  such  as  [32]–[35].  Orlov et  al.  [32],  [33]  con-
structed  a  prescribed-time  robust  differentiator  and  observer
upon using BTG. In [34], a predefined-time method based on
BTG is proposed for arbitrary-order differentiators. However,
it  is  rather  difficult  to  extend  the  methods  [32]–[34]  to  more
general systems with unknown and time-varying control gain.
More recently, a novel approach based on BTG is proposed in
[35]  that  naturally  links  finite  time  control  with  prescribed
time control, avoiding the numerical implementation problem
associated  with  the  current  PTC  method.  Nevertheless,  the
transition time before the prescribed time still depends on the
systems’ initial states and parameters, which is the first moti-
vation  of  this  work  that  integrates  BTG  into  the  controller
design,  allowing  it  to  be  implemented  without  the  need  for
control switching.

Also,  it  is  worth  noting  that  most  existing  PTC  methods
based  on  state  or  time  transformation  are  invalid  beyond  the
prescribed  time interval.  Efforts  have  been  made  in  allowing
PTC to  be  functional  beyond  the  prescribed  time.  In  [7],  the
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prescribed-time  consensus  and  containment  control  problem
of multi-agent systems is addressed upon using piecewise con-
tinuous  time-varying  scaling  function.  This  idea  has  been
extended  to  consensus  tracking  control  of  nonlinear  multi-
agent systems satisfying the time-varying Lipschitz condition
in [8]. In addition, [9] addresses the prescribed-time coopera-
tive  guidance  control  problem  with  input  saturation.  In  the
aforementioned works [7]–[9], although the methods are valid
on  the  whole  time  interval,  the  switching  mechanism  is
involved. This is the second motivation of the work that estab-
lishes  a  new method allowing the  system to  continue operat-
ing beyond the prescribed time interval.

On the other hand, a precise system model is always hard to
obtain  under  unpredictable  internal/external  environment,
which also brings about unmatched uncertainties in the model.
Although  prescribed  time  control  methods  have  been  devel-
oped  for  strict-feedback  systems  with  unmatched  uncertain-
ties  [11],  [12],  those  methods  are  based  on  vanishing  uncer-
tainties/disturbances.  Given  the  presence  of  non-vanishing
uncertainties,  it  is  hard to ensure that  the states of the practi-
cal  system  converge  to  the  point  of  origin  after  a  prescribed
time [11],  [12].  In practice,  system uncertainties and external
disturbances  (which  are  possibly  non-vanishing)  are  inev-
itable,  and  it  is  highly  desirable  to  investigate  the  control
problem for such systems subject to non-vanishing uncertain-
ties with high control precision and fast convergence speed. In
fact,  there  have  been  a  lot  of  efforts  devoted  to  the  control
problem  for  systems  subject  to  the  non-vanishing  uncertain-
ties  [5],  [36]–[38].  However,  the  control  results  for  the  sys-
tems subject  to non-vanishing uncertainties with high control
accuracy are scare. Further, it is nontrivial to extend the afore-
mentioned  stabilization  methods  to  tracking  control  for  gen-
eral  nonlinear  systems  with  mismatched  yet  non-vanishing
uncertainties.  This  is  mainly  because  among  those  infinite
time-varying gain based system transformation methods,  it  is
not easy to ensure the boundedness of virtual  controllers that
involve  the  differential  product  of  infinite  time-varying  gain
function  and  non-vanishing  terms  through  the  backstepping
design  process.  This  is  the  third  motivation  in  the  work,
where,  instead  of  using  state  transformation,  we  introduce
BTG  directly  into  controller  design  and  Lyapunov  function
based analysis.

The  above  analysis  indicates  that  although  rich  results  on
PTC  have  been  reported  during  the  past  few  years,  at  least
three  major  issues  have  not  been  adequately  addressed:
1) practicality of PTC; 2) accommodation of gains and rejec-
tion  of  mismatched  yet  non-vanishing  uncertainties;  and
3)  operational  capability  beyond  the  settling  time.  In  this
paper,  we present  a  method aimed at  addressing  those  issues
simultaneously.  The  main  contributions  of  this  paper  can  be
summarized as follow:

1)  Different  from  current  PTC  which  normally  relies  on
time-varying  feedback  control  gain  growing  limitlessly  with
time  and  becoming  infinite  at  equilibrium,  the  proposed
method,  with  the  aid  of  a  time-varying  scaling  function  that
grows monotonically with time and maintains boundedness at
and beyond the settling time, does not involve infinite control
gain  anytime  during  system  operation  making  PTC  practical

and linking PTC with its practical version analytically;
2)  Without  using  any  prior  information  on  the  upper  or

lower  bound  of  system  control  gain,  the  proposed  control  is
able to settle the tracking error in the neighborhood of the ori-
gin within the prescribed time; and

3) The developed solution is truly global, allowing the sys-
tem to  operate  on  the  entire  time  interval,  yet  is  able  to  deal
with  non-vanishing  and  mismatched  uncertainties,  leading  to
practical  and global  prescribed time tracking control  solution
for a larger class of nonlinear systems. In addition, a compen-
sation  mechanism  based  on  a  computable  softening  unit  is
introduced  to  guarantee  the  continuity  of  the  control  action,
which solves the infinite control gain problem without involv-
ing discontinuity at the switching point.

t0
R L∞ := {χ(t)|χ : R+→ R,
supt∈R+ |χ(t)| < +∞} χ(i) χ

χi χ

Notations: Throughout this paper,  denotes the initial time;
 denotes  the  set  of  real  numbers; 

. We denote by  the ith derivative of ,
and by  the ith power of .  

II.  Problem Formulation and Preliminaries
  

A.  Problem Formulation
In this paper, we consider a class of strict-feedback systems

with non-vanishing uncertainties, which is modeled by
 

ẋi(t) = gi(x̄i, t)xi+1(t)+ fi(x̄i, t)

i = 1, . . . ,n−1

ẋn(t) = gn(x̄n, t)u(t)+ fn(x̄n, t)
y = x1

(1)

xi(t) ∈ R x̄i = [x1, . . . , xi]T

u(t) ∈ R
fi(x̄i, t) ∈ R

gi ∈ R

where  denotes  the  state  with  being
the state vector,  denotes the control input and y is the
output,  denotes  the  lumped  uncertainty,  which  is
unknown  non-vanishing  smooth  function,  and  is  the
unknown  time-varying  control  gain.  The  planar  systems  (1)
are  generally  employed to  describe the dynamics  of  practical
systems  such  as  the “wing-rock” unstable  motion  of  some
high-performance  aircraft  [39],  electromechanical  system
[40], etc.

y(t)
xr(t) e(t) = y(t)− xr(t)

The  objective  here  is  to  develop  a  control  strategy  for  the
system  (1)  such  that  the  output  signal  closely  synchro-
nizes  with ,  i.e.,  the  tracking  error  con-
verges  to  a  small  residual  set  containing  origin  within  pre-
scribed time and maintains synchronization thereafter.

xr(t)
To this  end,  we  impose  the  following  assumptions  on  sys-

tem model (1) and the desired trajectory , respectively.
gi(t) (i = 1, . . . ,n)

g
i

gi 0 < g
i
≤ |gi(t)| ≤ gi < +∞

sgn
(
gi(t)

)
= 1

Assumption  1: The  control  gain  involved
in the systems dynamic model (1) is unknown and time-vary-
ing yet bounded away from zero, namely, there exist unknown
constants  and  such that  and the
control  direction  is  definite  (without  loss  of  generality,  we
assume that ).

gi (i = 1, . . . ,n)

Remark 1: With Assumption 1, the resultant control scheme
becomes more practical and more elegant because it does not
require the upper bound or lower bound of the virtual or actual
control  gain  ,  in  contrast  to  most  of  existing
schemes  that  normally  demand  certain  prior  bound  informa-
tion  on  the  virtual  and/or  the  actual  control  gains  ([1],  [16],
[37]).
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fi(x̄i, t) (i = 1, . . . , n) νi > 0
ϑi(x̄i)

Assumption  2: For  the  non-vanishing  uncertain  term
 ,  there  exists  an  unknown  constant 

and a known continuously differentiable scalar function 
such that
 

| fi(x̄i, t)| ≤ νiϑi(x̄i). (2)
ϑi(x̄i)

x̄i x̄i

In addition,  is either bounded unconditionally for any
 or bounded only if  is bounded.

ϑi(x̄i) (i = 1, . . . ,n)Remark  2: In  Assumption  2,   denotes  a
computable scalar function carrying “core” information of the
system that is independent of system parameters.

t ∈ [t0,+∞)
xr(t) ∈ R (p = 1, . . . ,n−1)

Assumption  3: For  all ,  the  desired  trajectory
 and  its pth  order  derivatives  are

known, bounded, and piecewise continuous.
Remark 3: Assumption 3 is a commonly required condition

in  addressing  the  tracking  control  problem  (see  [5],  [13],
[37]).  

B.  The Preliminaries
Inspired  by  [1],  we  put  forward  a  time-varying  function

defined on the whole time interval as follows:
 

µ(t) =



(
T ∗

T ∗+ t0− t

)q

, t ∈ [t0,T ∗+ t0− ϵ)(
T ∗

ϵ

)q

, t ∈ [T ∗+ t0− ϵ,+∞)

(3)

q ≥max{n,2} T ∗

ϵ 0 < ϵ < T ∗

t ∈ [t0,+∞) µ(t0) = 1 µ(t)→ ( T ∗
ϵ )q t→

(T ∗+ t0− ϵ)− µ(t) = ( T ∗
ϵ )q t ≥ T ∗+ t0− ϵ

where  is any user-defined real number,  is any
physically allowable finite time pre-specified by the designer,
and  is a small constant satisfying . It is noted that
μ so  defined  is  continuous,  monotonically  increasing,  and
bounded  for  with ,  as 

 and  for all .
ψ(t)

∥ψ∥[t0,t] = supτ∈[t0,t] |ψ(τ)| V(t) : [t0,+∞)→ R+∪{0}
Lemma  1: Let  be  an  unknown  bound  function  and

,  and  be  a
continuously differentiable function, then

1) if
 

V̇(t) ≤ −kµ(t)V − 2q
T ∗
µ(t)

1
q V +

ψ(t)
µ(t)

(4)

t ∈ [t0,T ∗+ t0− ϵ)for , it holds that
 

V(t) ≤ ζ1(t)
µ(t)2 V(t0)+

∥ψ∥[t0,t]
kµ(t)2 (5)

ζ1(t) =
exp

(
− kT ∗

q−1
(
( T ∗

T ∗+t0−t )
q−1−1

))
ζ1(t0) = 1 ζ1(t)→ 0 t→ (T ∗+ t0− ϵ)−

ϵ→ 0

where k is  a  finite  positive  constant, 
 is  a  monotonically  decreasing

function with  and  as  and
;

2) if
 

V̇(t) ≤ −k̄µV(t)− 2q
T ∗
µ

1
q V(t)+

ψ(t)
µ

(6)

t ∈ [T ∗+ t0− ϵ,+∞)for , it holds that
 

V(t) ≤ ζ2(t)ζ1(T ∗+ t0− ϵ)
µ2 V(t0)

+
ζ2(t)∥ψ∥[t0,T ∗+t0−ϵ)

kµ2 +
∥ψ(t)∥[T ∗+t0−ϵ,t]

kµ2
(7)

k̄ ζ2(t) = exp
(− k̄

(T ∗
ϵ

)q(t−
T ∗− t0+ ϵ)

)
ζ2(T ∗+ t0− ϵ) = 1 ζ2(t)→ 0 t→ +∞ ϵ→ 0

where  is  a  finite  positive  constant, 
 is  a  monotonically  decreasing  function  with

 and  as  and .
t ∈ [t0,T ∗+

t0− ϵ)
Proof: Solving the differential  inequality (4)  on 

 gives that
 

V(t) ≤ exp
(w t

t0

(− kµ(τ)− 2q
T ∗
µ(τ)

1
q
)
dτ

)
V(t0)

+
w t

t0
exp

(w t

τ

(− kµ(s)− 2q
T ∗
µ(τ)

1
q
)
ds

)
ψ(τ)
µ(τ)

dτ

≜ ϕ1(t)V(t0)+ϕ2(t) (8)

ϕ1(t) = exp
(r t

t0

(− kµ(τ)− 2q
T ∗ µ(τ)

1
q
)
dτ

)
, ϕ2(t) =r t

t0
exp

(r t
τ

(− kµ(s)− 2q
T ∗ µ(s)

1
q
)
ds

)ψ(τ)
µ(τ) dτ

where  and 
.

ϕ1(t)Firstly, by (3), the function  can be rewritten as
 

ϕ1(t) = exp
(− k

w t

t0
µ(τ)dτ− 2q

T ∗
w t

t0

T ∗ dτ
T ∗+ t0−τ

)
= exp

(− k
w t

t0
µ(τ)dτ

)
exp

(−2q
w t

t0

dτ
T ∗+ t0−τ

)
= exp

(− kT ∗

q−1
(
µ(t)1− 1

q −1
))(T ∗+ t0− t

T ∗
)2q

= µ(t)−2 exp
(− kT ∗

q−1
(
µ(t)1− 1

q −1
))

(9)

which is a monotonically decreasing function.
ϕ2(t)Next, the function  is computed as

 

ϕ2(t) =
w t

t0
exp

(− k
w t

τ
µ(s)ds

)
× exp

(−2q
w t

τ

ds
T ∗+ t0− s

)ψ(τ)
µ(τ)

dτ

=
w t

t0
exp

(− k
w t

t0
µ(s)ds+ k

w τ
t0
µ(s)ds

)
× ( T ∗+ t0− t

T ∗+ t0−τ
)2qψ(τ)
µ(τ)

dτ

≤
∥ψ∥[t0,t]
µ(t)2 exp

(− k
w t

t0
µ(s)ds

)
×

w t

t0
exp

(
k
w τ

t0
µ(s)ds

)
µ(τ)dτ

=
∥ψ∥[t0,t]
µ(t)2 exp

(− k
w t

t0
µ(s)ds

)
×

w t

t0
exp

(
k
w τ

t0
µ(s)ds

)
d
(w τ

t0
µ(s)ds

)
=
∥ψ∥[t0,t]
µ(t)2 exp

(− k
w t

t0
µ(s)ds

)
× 1

k
exp

(
k
w τ

t0
µ(s)ds

)∣∣∣t
t0

=
∥ψ∥[t0,t]
kµ(t)2

(
1− exp

(− kT ∗

q−1
(
(

T ∗

T ∗+ t0− t
)q−1−1

)))
≤
∥ψ∥[t0,t]
kµ(t)2 (10)

0 ≤ 1− exp
(− kT ∗

q−1
(
( T ∗

T ∗+t0−t )
q−1−where  the  relationship  that 
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1
))
< 1 has  been  used.  By  inserting  (9)  and  (10)  into  (8),  we

then can derive (5).
t ∈ [T ∗+ t0− ϵ,+∞)Now, we consider the case of .

V(T ∗+ t0− ϵ) = limt→(T ∗+t0−ϵ)− V(t) = 0
t ∈ [t0,T ∗+ t0− ϵ) ϵ→ 0 t ∈ [T ∗+ t0− ϵ,+∞)

µ =
(

T ∗
ϵ

)q

From (5), we get  on
 as .  When ,  it  is

noted that  is constant, and in this case,
 

V̇(t) ≤ −k̄µV − 2q
T ∗
µ

1
q V +

ψ(t)
µ
.

Obviously,
 

V(t) ≤ exp
((− k̄µ− 2q

T ∗
µ

1
q
)
(t−T ∗− t0+ ϵ)

)
V(T ∗+ t0− ϵ)

+
w t

T ∗+t0−ϵ
exp

((− k̄µ− 2q
T ∗
µ

1
q
)
(t−τ)

)ψ
µ

dτ

≤ exp
((− k̄µ− 2q

T ∗
µ

1
q
)
(t−T ∗− t0+ ϵ)

)
×V(T ∗+ t0− ϵ)+

∥ψ(t)∥[T ∗+t0−ϵ,t]

k̄µ2+
2q
T ∗ µ

1
q+1

×
(
1− exp

((− k̄µ− 2q
T ∗
µ

1
q
)
(t−T ∗− t0+ ϵ)

))
≤ ζ2(t)V(T ∗+ t0− ϵ)+

∥ψ(t)∥[T ∗+t0−ϵ,t]

k̄µ2
. (11)

By combining (11) with (5), we have
 

V(t) ≤ ζ2(t)
(ζ1(T ∗+ t0− ϵ)

µ2 V(t0)+
∥ψ∥[t0,t]

kµ2

)
+
∥ψ(t)∥[T ∗+t0−ϵ,t]

k̄µ2

=
ζ2(t)ζ1(T ∗+ t0− ϵ)

µ2 V(t0)

+
ζ2(t)∥ψ∥[t0,T ∗+t0−ϵ)

kµ2 +
∥ψ(t)∥[T ∗+t0−ϵ,t]

k̄µ2 (12)

ϵ→ 0
t→ T ∗+ t0− ϵ

lim
ϵ→0

t→(T ∗+t0−ϵ)−

V(t) = lim
ϵ→0

t→(T ∗+t0−ϵ)−

(
ζ1(t)
µ(t)2 V(t0)+

∥ψ∥[t0 ,t]
kµ(t)2

)
= 0

lim
ϵ→0

t→(T ∗+t0−ϵ)+

V(t) = lim
ϵ→0

t→(T ∗+t0−ϵ)+

(
ζ2(t)ζ1(T ∗+t0−ϵ)

µ2 V(t0)+

ζ2(t)∥ψ∥[t0 ,T∗+t0−ϵ)
kµ2 +

∥ψ(t)∥[T∗+t0−ϵ,t]
k̄µ2

)
= 0

lim
ϵ→0

t→+∞

V(t) = 0

which  is  consistent  with  (7).  By  noting  that  if  and
, μ tends to infinity. In such case we can derive

that  in

(5)  and 

 in  (7). In  addition,  it  fur-

ther implies (12) that . ■

Remark 4: Lemma 1 allows us  to  leverage prescribed time
control  to  its  practical  (executable)  version,  making  it  possi-
ble  to  address  the  tracking control  (not  just  regulation)  prob-
lem  for  strict  feedback  systems  with  unknown  time  varying
control gains and mismatched yet non-vanishing uncertainties.

ϕ(t)
∥ϕ∥[t0,t] = supτ∈[t0,t] |ϕ(τ)|
χ(t)

Lemma  2: Let  be  an  unknown  bound  function  and
. If a continuously differentiable func-

tion  satisfies
 

χ̇(t) ≤ −kµ(t)χ(t)+µ(t)ϕ(t) (13)
k > 0with , then

t ∈ [t0,T ∗+ t0− ϵ)1) For , 

χ(t) ≤ exp
(

kT ∗

q−1
(1−µ(t)1− 1

q )
)
χ(t0)+

∥ϕ∥[t0,t]
k
.

t ∈ [T ∗+ t0− ϵ,+∞)2) For ,
 

χ(t) ≤ exp
( kT ∗

q−1
(
1−µ(T ∗+ t0− ϵ)1− 1

q
))
χ(t0)

+
∥ϕ∥[t0,T ∗+t0−ϵ]

k
+
∥ϕ∥[T ∗+t0−ϵ,t]

kµ2 .

t ∈
[t0,T ∗+ t0− ϵ)

Proof: 1)  The  solution  of  the  differential  (13)  on 
 is derived as

 

χ(t) ≤ exp
(− k

w t

t0
µ(τ)dτ

)
χ(t0)

+
w t

t0
exp

(− k
w t

τ
µ(s)ds

)
µ(τ)|ϕ(τ)|dτ

≤ exp
(

kT ∗

q−1
(
1−µ(t)1− 1

q
))
χ(t0)

+ ∥ϕ∥[t0,t] exp
(− k

w t

t0
µ(s)ds

)
×

w t

t0
exp

(
k
w τ

t0
µ(s)ds

)
d
(w τ

t0
µ(s)ds

)
≤ exp

(
kT ∗

q−1
(
1−µ(t)1− 1

q
))
χ(t0)+

∥ϕ∥[t0,t]
k
. (14)

2) Upon using (13) and (3), we can obtain that
 

χ̇(t) ≤ −kµχ(t)+µϕ(t), t ∈ [T ∗+ t0− ϵ,+∞)
which yields
 

χ(t) ≤ exp
(w t

T ∗+t0−ϵ
−kµdτ

)
χ(T ∗+ t0− ϵ)

+
w t

T ∗+t0−ϵ
exp

(w t

τ
−kµds

)
µ|ϕ(τ)|dτ

≤ exp
(− kµ · (t−T ∗− t0+ ϵ)

)
χ(T ∗+ t0− ϵ)

+µ∥ϕ∥[T ∗+t0−ϵ,t]
w t

T ∗+t0−ϵ
exp

(w t

τ
−kµds

)
dτ

≤ exp
(− kµ · (t−T ∗− t0+ ϵ)

)
× (

exp
( kT ∗

q−1
(
1−µ(T ∗+ t0− ϵ)1− 1

q
))
χ(t0)

+
∥ϕ∥[t0,T ∗−t0+ϵ]

k
)
+
∥ϕ∥[T ∗+t0−ϵ,t]

k
× (

1− exp
(− kµ · (t−T ∗− t0+ ϵ)

))
≤ exp

( kT ∗

q−1
(
1− (

T ∗

ϵ
)q−1))χ(t0)

+
1
k
(∥ϕ∥[t0,T ∗−t0+ϵ]+ ∥ϕ∥[T ∗−t0+ϵ,t]

)
. (15)

χ(t)It is noted that  is bounded from (15). ■
Lemma 3  [13]: Consider  the  following  one-order  differen-

tial equation:
 

χ̇1(t) = −aχ1(t)+bχ2(t) (16)
χ2(t) a > 0 b > 0

χ1(t0) ≥ 0
χ1(t) ≥ 0 ∀t ≥ t0

where  is a nonnegative function, , .  Then, for
any given positive initial state ,  the associated solu-
tion  holds for .
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η1, η2 ∈ RmLemma  4  [8]: For  any  given  vectors ,  the  fol-
lowing inequality (i.e., Young’s Inequality) holds:
 

∥η1∥∥η2∥ ≤
µγ∥η1∥2

2
+
∥η2∥2
2µγ

γ > 0where  μ  is  defined  as  in  (3)  and  is  a  user-design  con-
stant.

Remark 5: Lemma 2 is crucial in guaranteeing the bounded-
ness  of  the  updated  parameter  utilized  in  the  proposed  adap-
tive  control  scheme.  With  the  aid  of  Lemma 3,  such  an  esti-
mated parameter is also ensured to be non-negative. In devel-
oping Lemma 4, we purposely introduce the design variable μ
through Young’s inequality, which plays an important role in
our later stability analysis.  

III.  Main Result
  

A.  Controller Design
zi (i = 1, . . . ,n)The error surface  is introduced as

 

z1(t) = y(t)− xr(t) = x1(t)− xr(t)

zi(t) = xi(t)−αi−1(t), i = 2, . . . ,n (17)
αi−1(t) ∈ R T = T ∗+ t0− ϵ

t ∈ [t0,T )
t ∈ [T,+∞)

where  is  the  virtual  control.  Let .
The main procedure is divided into two stages:  and

.
t ∈ [t0,T )Stage 1: .

α1

Step 1: From the first equation of (1) and the expression of
 in (17), we can obtain that

 

ẋ1 = g1x2+ f1 = g1z2+g1α1+ f1. (18)
1

2g
1
z2

1Then, the time derivative of  along (17) is
 

1
g

1

z1ż1 =
1
g

1

z1(ẋ1− ẋr)

=
1
g

1

z1(g1z2+g1α1+ f1− ẋr). (19)

With the help of Lemma 4, it is not difficult to get that
 

1
g

1

z1g1z2 ≤
1
g

1

|z1||g1||z2| ≤
µz2

1z
2
2

2
+

g2
1

2g2
1
µ

(20)

 

1
g

1

z1 f1 ≤
1
g

1

|z1|ν1ϑ1 ≤
γ1µz2

1ν
2
1ϑ

2
1

2
+

1
2γ1g2

1
µ

(21)

 

− 1
g

1

z1 ẋr ≤
1
g

1

|z1||ẋr | ≤
r1µ|ẋr |2z2

1

2
+

1
2r1g2

1
µ

(22)

γ1 > 0 r1 > 0where  and  are constants.
By inserting (20)−(22) into (19), it follows that:

 

1
g

1

z1ż1 ≤
g1

g
1

z1α1+
ω1γ1ψ1µz2

1

2
+

r1µϕ1z2
1

2

+
g2

1

2g2
1
µ
+

1
2γ1g2

1
µ
+

1
2r1g2

1
µ
+
µz2

1z
2
2

2
(23)

ω1 =max{ν21} ψ1 = ϑ
2
1

ϕ1 = |ẋr |2
where  is the unknown virtual constant, 
and  are the computable bounded functions.

The Lyapunov function is chosen as 

V1 =
z2

1

2g
1

+
ω̃2

1

2µ2 (24)

ω̃1 = ω1− ω̂1 ω̂1
ω1

(24)

where  is the parameter estimation error,  is the
estimation  value  of  parameter  and μ is  defined  as  in  (3).
Upon using (23), the time derivative of  is
 

V̇1 =
1
g

1

z1ż1+
1
µ2 ω̃1 ˙̃ω1−

µ̇

µ3 ω̃
2
1

≤ g1

g
1

z1α1+
ω1γ1µz2

1ψ1

2
+

r1µϕ1z2
1

2
+

g2
1

2g2
1
µ
+
µz2

1z
2
2

2

+
1

2r1g2
1
µ
+

1
2γ1g2

1
µ
− 1
µ2 ω̃1 ˙̂ω1−2

q
T ∗
µ

1
q
ω̃2

1

2µ2 . (25)

α1The virtual control  is designed as
 

α1(x1, xr,µ, ω̂1)

= − (
k11+

γ1ω̂1ψ1

2
+

r1ϕ1

2
)
µz1−

k12q2

T ∗2
µ

1+ 2
q z3

1 (26)

with the adaptive law
 

˙̂ω1 = −kω1µω̂1+
γ1µ

3

2
ψ1z2

1, ω̂1(t0) > 0 (27)

k11 > 0 k12 ≥ 1
2 kω1 kω1 = kω1+

2 q
T ∗

(T ∗
ϵ

)1−q kω1 > 0
ω̂1 ≥ 0

where , ,  and  is  designed  as 
 with . From Lemma 3, it is confirmed that

.
− 1
µ2 ω̃1 ˙̂ω1 ˙̂ω1

ω̃1ω̂1 = ω̃1
(
ω1− ω̃1

)
= −ω̃2

1+ ω̃1ω1

Noting  the  term “ ” in  (25)  with  in  (27),  and
, it is derived that

 

− 1
µ2 ω̃1 ˙̂ω1 = −

1
µ2 ω̃1

(− kω1µω̂1+
γ1µ

3

2
ψ1z2

1
)

= −
kω1µ

µ2 ω̃
2
1+

kω1µ

µ2 ω̃1ω1−
1
2
µγ1ω̃1ψ1z2

1

≤ −
kω1µ

µ2 ω̃
2
1+

kω1µ

µ2

( ω̃2
1

2
+
ω2

1

2

)
− 1

2
µγ1ω̃1ψ1z2

1

= −
kω1µ

2µ2 ω̃
2
1+

kω1ω
2
1

2µ
− 1

2
µγ1ω̃1ψ1z2

1. (28)

− k12q2

T ∗2
g1
g

1
µ

1+ 2
q z4

1
k12
g2

1
µ

−(χ2
1+χ

2
2) ≤ −2χ1χ2

By  inserting  (26)  into  (25),  such  term  as 

would occur. Adding and subtracting  simultaneously, and

using  the  Young’s  inequality  in  the  opposite  direction,
namely, , it holds that
 

−k12q2

T ∗2
g1

g
1

µ
1+ 2

q z4
1 ≤ −

k12q2

T ∗2
µ

1+ 2
q z4

1

= −k12
( q2

T ∗2
µ

1+ 2
q z4

1+
1

g2
1
µ

)
+

k12

g2
1
µ

≤ −2k12
( q
T ∗
√
µµ

1
q z2

1
)× ( 1

g
1

√
µ

)
+

k12

g2
1
µ

= −4k12

2g
1

q
T ∗
µ

1
q z2

1+
k12

g2
1
µ
. (29)

By combining (28) and (29), (25) can be rewritten as
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V̇1(t) ≤ − k11µz2
1−4k12

q
T ∗
µ

1
q
z2

1

2g
1

+
µz2

1z
2
2

2
− kω1µ

ω̃2
1

2µ2 −2
q

T ∗
µ

1
q
ω̃2

1

2µ2 +
Φ1

µ
(30)

Φ1 =
g2

1
2g2

1
+ 1

2γ1g2
1
+ 1

2r1g2
1
+

kω1ω
2
1

2 +
k12
g2

1
where  is  an  unknown
finite positive constant.

z2 = x2−α1Step 2: The time derivative of  is
 

ż2 = g2x2+ f2− α̇1

= f2+g2α2+g2z3− α̇1. (31)
The second Lyapunov function is chosen as

 

V2 = V1+
1

2g
2

z2
2+
ω̃2

2

2µ2 (32)

ω̃2 = ω2− ω̂2
V2

where  is  the  parameter  estimation  error.  The
derivative of  along (31) is then taken
 

V̇2 = V̇1+
1
g

2

(
z2 f2+g2z2z3+g2z2α2− z2α̇1

)
− 1
µ2 ω̃2 ˙̂ω2−2µ

1
q
ω̃2

2

2µ2 . (33)

Similar to the analysis procedures (20)−(22), we have
 

1
g

2

(
z2 f2+g2z2z3− z2α̇1

)
≤
µz2

2z
2
3

2
+

g2
2

2µg2
2

+
z2 f2
g

2

− z2

g
2

(∂α1

∂x1
(g1x2+ f1)

+

1∑
j=0

∂α1

∂x( j)
r

x( j+1)
r +

∂α1

∂µ

( q
T ∗
µ

1+ 1
q
)
+
∂α1

∂ω̂1

˙̂ω1
)

≤
µz2

2z
2
3

2
+

g2
2

2µg2
2

+
γ2ω2µz2

2ψ2

2

+
r2µϕ2z2

2

2
+

2
2γ2g2

2
µ
+

g2
1+4

2µr2g2
2

(34)

ω2 =max{ν21, ν22} ψ2 =
( ∂α1
∂x1
ϑ1

)2
+ϑ2

2 ϕ2 =
( ∂α1
∂x1

x2
)2
+( q

T ∗ µ
1+ 1

q ∂α1
∂µ

)2
+

( ∂α1
∂ω̂1

˙̂ω1
)2
+

∑1
j=0

( ∂α1

∂x( j)
r

x( j+1)
r

)2

α1

with ,  and 

 being  calcula-
ble variables, where Lemma 4 and the derivative of  defined
as in (26) has been used.

α2The virtual controller  is designed as
 

α2 = −
(
k21+

γ2ω̂2ψ2

2
+

r2ϕ2

2
)
µz2

− k22q2

T ∗2
µ

1+ 2
q z3

2−
µz2

1z2

2
(35)

with the adaptive law
 

˙̂ω2 = −kω2µω̂2+
1
2
γ2µ

3ψ2z2
2, ω̂2(t0) > 0 (36)

ω̂2 ω2 k21 > 0
γ2 > 0 r2 > 0 k22 ≥ 1

2 kω2 = kω2 +2 q
T ∗

(T ∗
ϵ

)1− 1
q kω2 > 0

where  is  the  estimation  value  of  parameter , ,
, , , , .

By inserting (35) in (33), we get that
 

−g2

g
2

z2α2 ≤ −
g2

g
2

(
k21µz2

2+
k22q2

T ∗2
µ

1+ 2
q z4

2

+
γ2µω̂2ψ2z2

2

2
+
µz2

1z
2
2

2
+

r2µϕ2

2
z2

2

)
≤ − k21µz2

2−
4k22

2g
2

q
T ∗
µ

1
q z2

2−
r2ϕ2

2
µz2

2

−
γ2µω̂2ψ2z2

2

2
−
µz2

1z
2
2

2
+

k22

g2
2
µ
. (37)

Substituting (34)−(37) into (33), we obtain
 

V̇2 ≤ −
2∑

j=1

(2k j1g
j
)µ

z2
j

2g
j

−
2∑

j=1

4k j2

2g
j

q
T ∗
µ

1
q z2

2+
µz2

2z
2
3

2

−
2∑

j=1

kω jµ
ω̃2

j

2µ2 −2
q

T ∗
µ

1
q

2∑
j=1

ω̃2
j

2µ2 +
Φ2

µ
(38)

Φ2 =
∑2

j=1

( g2
j

2g2
j
+

kω jω
2
j

2 +
k j2

g2
j
+

j
2γ jg2

j

)
+

(
1

2r1g2
1
+

g2
1+4

2r2g2
2

)
.where 

(i = 3, . . . ,n)Step i : The ith Lyapunov function is chosen as
 

Vi = Vi−1+
1

2g
i

z2
i +
ω̃i

2µ2 (39)

ω̃i = ωi− ω̂i

ωi =max1≤ j≤i{ν2j }
ω̂i αi i = 3, . . . ,n−1

αn αn = u

where  is  the  parameter  estimation  error  between
the ith  unknown  factor  and  its  estimation

.  The  virtual  controller  ( )  and  actual  con-
troller  ( ) can be obtained recursively as follows:
 

αi = − ki1µzi−
ki2q2

T ∗2
µ

1+ 2
q z3

i −
γiω̂iψi

2
µzi

−
µz2

i−1zi

2
− riϕi

2
µzi, i = 3, . . . ,n (40)

with the adaptive law
 

˙̂ωi = −kωiµω̂i+
1
2
γiµ

3ψiz2
i (41)

ψi =
∑i−1

j=1
( ∂αi−1
∂x j
ϑ j

)2
+ϑ2

i ϕi =
∑i−1

j=1

(( ∂αi−1
∂x j
× x j+1

)2
+( ∂αi−1

∂ω̂ j
˙̂ω j

)2
)
+

∑i−1
j=0

( ∂αi−1

∂x( j)
r

x( j+1)
r

)2
+

( q
T ∗ µ

1+ 1
q ∂αi−1
∂µ

)2 ki1 > ιi > 0

ki2 ≥ 1
2 γi > 0 ri > 0 kωi = kωi +2 q

T ∗ (
T ∗
ϵ )1−q kωi > 0

ω̂i(t0) > 0

where , 

 , ,
, , , , ,

.
By  inserting  the  virtual  and  actual  control  inputs  (40)  as

well  as  the  adaptive  law  (41)  into  the  derivative  of  the  Lya-
punov function, we then arrive at
 

V̇m ≤ −
m∑

j=1

(
2k j1g

j

)
µ
z2

j

2g
j

−
m∑

j=1

4k j2
q

T ∗
µ

1
q
z2

j

2g
j

+
µz2

mz2
m+1

2

−
m∑

j=1

kω jµ
ω̃2

j

2µ2 −2
q

T ∗
µ

1
q

m∑
j=1

ω̃2
j

2µ2 +
Φm

µ

m = 3, . . . ,n−1 Φm =
∑m

j=1

( g2
j

2g2
j
+

kω jω
2
j

2 +
k j2

g2
j
+

j
2γ jg2

j

)
+

(
1

2r1g2
1
+

∑m
j=2

∑m−1
k=1 g2

k+2· j
2r jg2

j

)
,

for ,  where 

 and
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V̇n ≤ −
n∑

j=1

(
2k j1g

j

)
µ
z2

j

2g
j

−
n∑

j=1

4k j2

2g
j

q
T ∗
µ

1
q z2

j

−
n∑

j=1

kω jµ
ω̃2

j

2µ2 −2
q

T ∗
µ

1
q

n∑
j=1

ω̃2
j

2µ2 +
Φn

µ
(42)

Φn =
∑n−1

j=1

( g2
j

2g2
j

)
+

∑n
j=1

( kω jω
2
j

2 +
k j2

g2
j
+

j
2γ jg2

j

)
+

(
1

2r1g2
1
+∑n

j=2

∑n−1
k=1 g2

k+2· j
2r jg2

j

)where 

.
t ∈ [T,+∞)Stage 2: 

Following  the  similar  design  procedure  as  in  Stage  1,  here
we only give the expression form of virtual/actual controllers
and adaptive laws.

α1

ϕi(i = 2, . . . ,n)

The virtual controller  is consistent with (26) as in the first
step.  It  is  noted  that  in  the  conventional  design  of  the  back-
stepping method, repeated derivatives of the virtual controller
are involved. In such cases, the function μ defined in (3) is a
constant.  The  derivative  of μ is  zero  so  that  is
not uniform, which affects the design of virtual control strate-
gies.  Now,  we  introduce  the  following  calculable  control
action softening unit:
 

δi(T ) =
(γi(ω̂iψi− ω̂iψi)

2
µzi+

ri(ϕi−ϕi)
2

µzi
)∣∣∣∣

t=T
(43)

t = Tto  remedy  the  discontinuity  of  the  control  input  at .  To
this end, the virtual/actual controller laws are designed as
 

αi = − ki1µzi−
ki2q2

T ∗2
µ

1+ 2
q z3

i −
γiω̂iψi

2
µzi

−
µz2

i−1zi

2
− riϕi

2
µzi+δi(T ), i = 2, . . . ,n (44)

ψi =
∑i−1

j=1
( ∂αi−1
∂x j
ϑ j

)2
+ϑ2

i , ϕi =
∑i−1

j=1

(( ∂αi−1
∂x j
× x j+1

)2
+( ∂αi−1

∂ω̂ j
˙̂ω j

)2
)
+

∑i−1
j=0

(
∂αi−1

∂x( j)
r

x( j+1)
r

)2
, ki1 > ιi > 0 ki2 ≥ 1

2 γi > 0
ri > 0 αn u = αn

where  

 , , ,
, and the actual control input u is equal to , i.e., .

Correspondingly, the parameter update laws are designed as
 

˙̂ωi = −kωiµω̂i+
1
2
γiµ

3ψiz2
i , i = 1, . . . ,n (45)

kωi = kωi +2 q
T ∗ (

T ∗
ϵ )1−q kωi > 0 ω̂i > 0 ω̂i

ωi = max
1≤ j≤i
{ν2j }

where , , ,  and  is  the
estimation of .
  

B.  Theoretical Analysis
The main result is given in the following theorem.

αi ω̂i

Theorem 1: Consider system (1) under Assumptions 1−3. If
the  control  strategies ,  u  and  the  adaptive  laws  in  Sec-
tion  III-A  are  applied,  then  the  following  objectives  are
achieved.

T ∗ T ∗ > T ∗− ϵ
t ∈

[t0,T ∗+ t0− ϵ)

1) The tracking error is forced to be bounded within the pre-
scribed  time  ( ).  That  is,  practical  prescribed-
time  tracking  is  achieved.  More  significantly,  for  all 

,
 

|zi| ≤
1
µ

B1i (46)

B1i =

√
ζ1(t)

∑n
j=1

( g
i

g
j
z2

j (t0)+g
i
ω̃2

j (t0)
)
+

√
2g

i
Φ

kwhere  with

{ζ1(t) = exp
(− kT ∗

q−1
(
µ(t)1− 1

q −1
))

}.

T ∗ t ∈ [T ∗+ t0− ϵ,
+∞)

2) The tracking error is maintained with near-zero accuracy
after  the  prescribed  time .  Particularly,  for 

,
 

|zi| ≤
1
µ

B2i (47)

B2i =

√
ζ2(t)ζ1(T ∗+ t0− ϵ)

∑n
j=1

( g
i

g
j
z2

j (t0)+g
i
ω̃2

j (t0)
)
+√

2g
i
ζ2(t)Φ/k+

√
2g

i
Φ/k ζ2(t) = exp

(− k
(T ∗
ϵ

)q(t−T ∗−
t0+ ϵ)

)
T ∗+ t0− ϵ T ∗+ t0

where 

 with 
,  from  which  we  see  that  the  tracking  is  achieved  at

, which is less than  with near-zero accuracy
and is maintained after that time.

αi
zi

t ∈ [t0,+∞)

3)  All  the  internal  signals,  including  the  virtual  control ,
the  control  input  u  and  are  continuous  and  remain  uni-
formly bounded for all .

Proof:
t ∈ [t0,T )Stage 1: 

y(t)
xr(t)

T ∗

We  first  prove  that  the  output  signal  can  track  the
desired  reference  trajectory  within  the  prescribed  time

. The Lyapunov function is chosen as
 

V =
n∑

i=1

z2
i

2g
i

+

n∑
i=1

ω̃2
i

2µ2 (48)

whose time derivative along (30), (33), and (42) is
 

V̇ ≤ −
n∑

i=1

2ki1g
i
µ
z2

i

2g
i

−
n∑

i=1

4ki2
q

T ∗
µ

1
q
z2

i

2g
i

−
n∑

i=1

kωiµ
ω̃2

i

2µ2 −2
q

T ∗
µ

1
q

n∑
i=1

ω̃2
i

2µ2 +
Φ

µ

≤ − kµV −2
q

T ∗
µ

1
q V +

Φ

µ
(49)

k =min1≤i≤n{2ki1g
i
,kωi } ki1 > 0 ki2 ≥ 1

2 kωi = kωi+

2 q
T ∗ (

T ∗
ϵ )1−q kωi > 0 Φ =

∑n−1
j=1

( g2
j

2g2
j

)
+

∑n
j=1

( kω jω
2
j

2 +
k j2

g2
j
+

j
2γ jg2

j

)
+

( 1
2r1g2

1
+

∑n
j=2

∑n−1
k=1 g2

k+2· j
2r jg2

j

)
where , , , 

,  and 

.

According to Lemma 1, we derive from (49) that
 

V(t) ≤ ζ1

µ(t)2 V(t0)+
Φ

kµ(t)2

=
ζ1

µ(t)2

( n∑
j=1

z2
j (t0)

2g
j

+

n∑
j=1

ω2
j (t0)

2

)
+
Φ

kµ(t)2 . (50)

In light of (48), we can obtain that
 

|zi| ≤
√

2g
i
V(t), (i = 1, . . . ,n) (51)

and
 

|ω̃i| ≤
√

2µ2V(t), (i = 1, . . . ,n). (52)

|ω̃i| ≤√
ζ1(t)

∑n
j=1

(
z2

j (t0)/g
j
+ω2

j (t0)
)
+
√

2Φ/k,
zi ω̃i

By  (50)−(52),  it  is  not  difficult  to  derive  (46)  and 
 both  of  which  guar-

antees the boundedness of  and .
ψ1 = ϑ

2
1 ∈ L∞ ϕ1 =Under  Assumptions  2  and  3,  we  have , 
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|ẋr |2 ∈ L∞
[t0,+∞)

µz1 [t0,+∞)
ω̂1 ∈ L∞

.  By  recalling  that  the  function μ in  (3)  is  bounded
on  the  whole  time  interval ,  it  can  be  seen  that  the
term “ ” in  (46)  is  bounded  on .  Using  Lemma  2,
we can conclude that  is ensured to be bounded.

0 < µ
2
q−2 ≤ 1 q ≥max{n,2}

0 < ζ1(t) ≤ 1
By  recalling  that  ( ),  (46),  and

, we have
 

|α1(x1, xr,µ, ω̂1)|

≤ (
k11+

γ1ω̂1ψ1

2
+

r1ϕ1

2
)
µ|z1|+

k12q2

T ∗2
µ

2
q−2(µ|z1|)3

≤ (
k11+

γ1ω̂1ψ1

2
+

r1ϕ1

2
)
B11+

k12q2

T ∗2
B3

11 ∈ L∞.

ϕi ψi (i = 2, . . . ,n)

γi ri

ω̂i 0 < µ−2 ≤ 1

It  is  noted  that  and   associated  with μ in
Stage 1 of Section III-A may be large yet bounded and com-
putable. In the controller design, tunable parameters  and 
are  added  to  allow  the  computation  to  develop  on  schedule.
According to Lemma 2,  is bounded. Note that ,
we then have
 

|αi| ≤
(
ki1+

γiω̂iψi

2
+

riϕi

2

+
1
2
z2

i−1
)
(µ|zi|)+

ki2q2

T ∗2
µ

2
q−2(µzi)3

≤ (
ki1+

γiω̂iψi

2
+

riϕi

2
+

1
2

B2
1 i−1

)
B1i+

ki2q2

T ∗2
B3

1i ∈ L∞

αi ∈ L∞ (i = 2, . . . ,n)from which  we see  that ,  after  which  the
control input u is bounded.

t ∈ [T,+∞Stage 2: )
We prove that the output error remains bounded beyond the

finite time T.
t = T

δi(T )

The control strategies are proved to be continuous at .
In  light  of  the  definition  of  the  control  action  softening  unit

 in (43), we see that
 

αi(T ) = − ki1µ(T )zi(T )− ki2q2

T ∗2
µ(T )1+ 2

q zi(T )3

− γiω̂i(T )ψi(T )
2

µ(T )zi(T )

−
µ(T )z2

i−1(T )zi(T )
2

− riϕi(T )
2
µ(T )zi(T )

+
γiω̂i(T )

(
ψi(T )−ψi(T )

)
2

µ(T )zi(T )

+
ri

2
(
ϕi(T )−ϕi(T )

)
µ(T )zi(T )

= − ki1µ(T )zi(T )− ki2q2

T ∗2
µ(T )1+ 2

q zi(T )3

− γiω̂i(T )ψi(T )
2

µ(T )zi(T )−
µ(T )z2

i−1(T )zi(T )
2

− ri

2
ϕi(T )µ(T )zi(T )

= lim
t→T−
αi(t). (53)

αi(i = 1, . . . ,n−1)
t = T

At  the  same  time,  and u can  also  be
ensured  to  be  continuous  at  the  breakpoint .  It  is  easily

δi(T )
αi

i+1

concluded  that  the  control  action  softening  unit  is  a
finite constant. Adding such a term to the virtual control  to
ensure the continuity of the control action does not impact the
subsequent  time  derivative  of  the  virtual  control  in  step 
because this term is a constant value.

[T,+∞)
In  the  following,  we  analyze  the  system  convergence  on

.

g j
g

j
z jδ j(T ) g j

g
j
z jδ j(T ) ≤ g j

g
j

|z j||δ j(T )| ≤
ι jµz2j

2 +
g2

jδ
2
j

2ι jµg2
j

ι j( j = 2, . . . ,n)

The Lyapunov function for  the overall  system is  chosen as
in  (48).  The  controller  strategies  are  given  as  in  Stage  2  of
Section  III-A.  By  taking  similar  analysis  progresses  as  in
Stage 1 of Section III-A, here we only need to handle the term

.  By  Young’s  inequality,  we  have 

,  where  is  an  any  given
positive constant. The derivative of V is computed as
 

V̇ ≤ −
n∑

j=1

2(k j1− ι j)g j
µ
z2

j

2g
j

−
n∑

j=1

4k j2
q

T ∗
µ

1
q
z2

j

2g
j

−
n∑

i=1

kω jµ
ω̃2

j

2µ2 −2
q

T ∗
µ

1
q

n∑
j=1

ω̃2
j

2µ2 +
Φ

µ

≤ − kµV −2
q

T ∗
µ

1
q V +

Φ

µ
(54)

k =min{2(k j1− ι j)g j
,kω j } k j1 > ι j > 0 k j2 ≥ 1

2 ( j =

1, . . . ,n) Φ =
∑n−1

j=1

( g2
j

2g2
j

)
+

∑n
j=1

( kω jϖ
2
j

2 +
k j2

g2
j
+

j
2γ jg2

j

)
+∑n

j=2

(∑n−1
k=1 g2

k+2· j−1
2r jg2

j
+

g2
jδ

2
j

2ι jg2
j

)
+ 1

2r1g2
1

where , , 

, 

.

On the basis of Lemma 1, we have
 

V(t) ≤ ζ2(t)ζ1(T )
µ2 V(t0)+

ζ2(t)Φ
kµ2 +

Φ

kµ2

|ω̃i| ≤√
ζ2(t)

(
ζ1(T ∗+ t0− ϵ)

∑n
i=1

(
z2

i (t0)/g
i
+ ω̃2

i (t0)
))
+

√
2ζ2(t)Φ/k +√

2Φ/k. zi ∈ L∞ ω̂i ∈ L∞
zi→ 0 t→ +∞ ϵ→ 0

µ|zi| ≤ B2i

ψ1 ϕ1
α1 ∈ L∞ αi

(i = 2, . . . ,n−1)

from  which  we  derive  (47)  and 

 Therefore,  and  for  any  initial  condi-
tions.  Especially,  as  and .  From (47),  it
is  straightforward  that “ ” is  bounded,  which  pro-
vides  strong  assurance  for  the  boundedness  analysis  of  con-
trollers. Note that  and  are bounded, it follows from (26)
and  Assumption  3  that .  The  boundedness  of 

 and u are  also  able  to  be  established  by  fol-
lowing a similar procedure to the above analysis. ■

αi i = 1, ...,n−1

µ(t)

gi i = 1, . . . ,n

Remark  6: In  both  virtual  controller  ( )  and
the  actual  controller u in  Section  III-A,  only  the  finite  time-
varying gain  and finite constant gain are involved. Thus,
the proposed control scheme does not involve infinite control
gain. However, the control gain  ( ) involved in the
system  dynamic  model  (1)  is  supposed  to  be  bounded  in
Assumption  1  to  ensure  the  controllability  of  the  system,
which is commonly needed in any controllable system.

(αi, i = 1, . . . ,n)
T = T ∗+ t0− ϵ (

δi(T ), i = 1, . . . ,n
)

Remark  7: The  virtual  and  actual  controllers  as  given  in
Section  III-A  are  continuous  everywhere
including “ ” because it depends on the calcula-
ble control action softening unit .  The idea
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t = T ∗+ t0− ϵ

of  adding  such  a  softening  unit  originates  from  [41]  and  is
verified in (53). This is based on the fact that the derivative of
time-varying  function  (3)  is  piecewise  continuous.  With  this
compensation, the potential discontinuity of the control at the
time instance  is avoided gracefully.

[t0,T ∗)
[t0,+∞)

f

gi (i = 1, . . . ,
n)

T ∗

Remark 8: Three salient features of the proposed method are
worth  mentioning:  1)  The  control  scheme  is  valid  on  the
whole  time  interval,  making  it  different  from  existing  PTC
results  (such  as  [1],  [4]–[6],  [15])  where  the  control  gains
grow  unbounded  as  time  approaches  the  terminal  time  and,
consequently,  the  control  schemes  are  only  valid  on 
rather than on .  Although the work by [11] addresses
the PTC problem on the whole time interval, it only considers
regulation rather than tracking, and furthermore, the nonlinear
function “ ” is  assumed  to  be  known  and  vanishing;  2)  The
control scheme does not need either the upper or lower bound
information  of  the  virtual  or  actual  control  gain 

, while most existing PTC works ([1], [16], [37]) depend on
availability  of  the  bound  of  gains;  and  3)  different  from  the
existing  PTC  works  ([11],  [13],  [15])  where  the  control
scheme  is  discontinuous  at  the  prescribed  time ,  the  pro-
posed  scheme  remains  continuous  and  bounded  throughout
the whole time interval.

Remark 9: It  is  noted that  although most  PTC methods are
robust  against  model  uncertainties,  [11]  is  the  first  adaptive
PTC  for  state  regulation  of  strict  feedback  systems  with
known  (unit)  control  gains  and  vanishing  uncertainties,
wherein  control  is  switched  off  and  the  corresponding  adap-
tive  law  stops  updating  at  and  beyond  the  terminal  time.
Whereas the proposed method is a practical robust and adap-
tive  solution capable  of  dealing with  output  tracking for  sys-
tems  with  unknown  time  varying  gains  and  mismatched  yet
nonvanishing uncertainties. It is interesting to note that no pri-
ori information on virtual and actual control gains is required
in building the control scheme and the feedback gain remains
bounded anywhere during system operation without  the  need
to switch off the control action.  

IV.  Numerical Simulation

To verify the effectiveness of the proposed control method,
two simulation examples are given.  

A.  Example 1 (Application Example)
To compare  the  performance of  the  proposed control  strat-

egy with that  developed by [37],  we employ the same model
as that in [37] for the numerical simulation
 

ẋ1 = x2

ẋ2 = g(·)u+ f (·)
y = x1

(55)

f (·) = 1+ cos(t)x1+2sin(2t)x2+2|x1|x2 +

3|x2|x2+ x3
1 g(·) = 2+0.4sin(t)

xr(t) = sin(2t) g(t) f (t) xr(t)
| f (·)| ≤ νϑ(x1,

which represents the “wing-rock” unstable motion of some hi-
gh-performance  aircraft  [39].  As  in  [37],  for  simulation  pur-
pose, we still consider 

 and .  The  desired  trajectory  is
. Obviously, , , and  satisfy Assump-

tions 1−3, respectively. It is straightforward that 

x2) ϑ(x1, x2) = 1+ |x1|+ |x2|+ |x1x2| +x2
2 + |x1|3 with  , which sat-

isfies Assumption 2.

k11 = 1 k12 = 0.5 k21 = 0.5 k22 = 0.5 kω2 = 0.1 q = 4 γ2 =

0.2 r1 = 0.00001 r2 = 0.0001 t0 = 0,T ∗ = 1.2 s, ϵ = 0.3, tend =

1.5 s T ∗+ t0− ϵ = 0.9 s kω2 = kω2 +2 q
T ∗

(T ∗
ϵ

)1−q
=

0.2042
[x1(0), x2(0)] = [−0.6,−0.3], [0.3,0.1],

[0.6,0.4]
ω̂(0) = 0.1

The control scheme is directly taken from Section III-A, wh-
ere , , , , , , 

, , ,  
.  Then  and 

. The initial conditions of the system are given by three
different  conditions 

,  and the initial value of the adaptive law is taken as
.

0.9s
T ∗ = 1.2 s

T ∗

ω̂

The simulation results  are  shown in Fig. 1.  From Fig. 1(a),
we can see that the system states can track the desired trajec-
tory  within  the  finite  time  point  which  is  less  than  the
prescribed time  under different initial condition. In
addition,  precise  tracking  can  be  maintained  after  the  pre-
scribed-time and the system can remain operating beyond ,
distinguishing itself from the method in [1]. From Fig. 2, it is
observed  that  the  control  signal  is  continuous  throughout  the
time interval. From Fig. 3, it is shown that the parameter esti-
mate  is also bounded for any initial state.
 

0 0.5 1.0 1.5
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8
1.0
1.2 (0.9, 0.97385)
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−0.4
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0
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0.6

x 1
(t)

Time (s)
(a) State x1

(b) Error: y(t) − xr(t)

0 0.5 1.0 1.5
Time (s)

(x1(0), x2(0)) = (−0.6, −0.3)
(x1(0), x2(0)) = (0.3, 0.1)
(x1(0), x2(0)) = (0.6, 0.4)
xr = 2sin(t) the desired trajectory

y 
− 

x r

(x1(0), x2(0)) = (−0.6, −0.3)
(x1(0), x2(0)) = (0.3, 0.1)
(x1(0), x2(0)) = (0.6, 0.4)
Zero level

 
Fig. 1.     The performances of state x under different initial conditions.
 

x1(t)
x1 xr
T ∗ = 0.8 s x1

xr x2 ẋr

T ∗

The  simulation  results  compared  with  that  in  [37]  (all
parameters  are  consistent)  are  shown  in Figs. 4 and 5.  The
performance  of  is  shown  in Fig. 4,  from which  we  can
see that the output  can track the desired trajectory  within
the prescribed time . The error between state  and

 is  shown  in Fig. 5(a)  and  the  error  between  and  is
shown in Fig. 5(b).  This  is  the  same as  that  in  [37],  and fur-
ther,  the  precise  tracking  can  be  maintained  after  the  pre-
scribed time . From the simulation results in Fig. 5, we can
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t = 0.6 s
T ∗

see  that  an  excellent  tracking  control  performance  is  guaran-
teed  under  the  proposed  control  scheme,  where  the  tracking
error is on the verge of zero at  before prescribed time

, distinguishing itself from that in [37].
  

B.  Example 2 (Numerical Example)
We conduct the simulation on the following strict-feedback

nonlinear systems from [42] under Assumptions 1 and 2:
 

ẋ1 = g1(x1)x2+ f1(x1)

ẋ2 = g2(x2)u+ f2(x2)
y = x1

(56)

g1(x1) = 2+0.5sin(x1) g2(x2) = 3+0.2cos(x1x2)
f1(·) = x2

1 +0.1cos(0.5x1) f2(·) = 0.1x1x2 + x1 exp(−|x2|) +
0.05sin(x1x2) g1 g2 f1 f2

in  which , ,
, 

.  Although  these  items  ( , , ,  and )  are

ϑ1 = x2
1 +1 ϑ2 = |x1x2|+ |x1|+1

xr = 2sin(t)
t0 = 0

ϵ = 0.8 T ∗ = 2.8 s tend = 5 T ∗+ t0− ϵ = 2 q = 3 k11 = 2
k12 = 0.5 γ1 = 0.5 r1 = 0.0001 kω1 = 0.5 kω1 = 0.6749 k21 =

0.5 k22 = 0.5 γ2 = 0.2 r2 = 0.001 kω2 = 0.25 kω2 = 0.4292
[x1(0), x2(0)] = [−1,−0.5], [0,0], [1,0.5]

x1

x1

xr

2 s
2.8 s T ∗

given  explicitly,  they  are  not  used  in  the  controller  design.
Obviously,  and .  The  desired
signal  is  chosen  as ,  which  meets  Assumption  3.
Meanwhile,  the  design  parameters  are  selected  as: ,

, ,  s,  s, , ,
, , , , , 

, , , , , ,
 .  The  simulation  res-

ults are depicted in Figs. 6−9. The state  under different ini-
tial  conditions  is  given  in Fig. 6 and  the  tracking  error  is
shown in Fig. 7, from which we see that the system  is capa-
ble of tracking the desired trajectory  within the finite time

 and  precise  tracking  can  be  maintained  after  the  pre-
scribed time . Obviously, the prescribed time  is inde-
pendent of the initial state and other design parameters of sys-
tems.  The  control  signal  is  shown  in Fig. 8,  from  which  we
see that the control input signal u is continuous under the pro-
posed  control  method.  The  evolution  of  the  adaptive  law  is
presented  in Fig. 9,  from  which  we  see  that  the  adaptive
parameters are bounded.  

V.  Conclusion

In  this  paper,  a  practical  prescribed  time  tracking  control
method is proposed for a class of strict-feedback systems with
mismatched yet non-vanishing uncertainties. The method pro-
posed here, by means of BTG, avoids the numerical problem
during  the  implementation  of  the  controller,  which  makes
PTC practical and bridges PTC and its executable version ana-
lytically. It is shown that, without the need for any prior con-
trol gain information of system, the tracking error between the
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Fig. 2.     The practical control input signal of u under different initial condi-
tions.
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Fig. 5.     The tracking error e under different control schemes.
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output  of  systems  and  desired  trajectory  settles  in  the  neigh-
borhood  of  origin  within  the  pre-assigned  time  regardless  of
the initial  condition and other design parameters and particu-
larly,  and  the  neighborhood  of  origin  can  be  pre-given  arbi-
trarily  by  simply  adjusting  the  control  parameters  if  the
bounds of g are known. The developed solution is truly practi-
cal and global, allowing the systems to operate throughout the
whole  time  interval  and  the  states  to  be  started  at  any  initial
state. The extension of the proposed PTC method to coopera-
tive control of multi-agent systems under directed topology or
to  the  consensus  tracking  control  of  heterogeneous  multi-
agent  systems  represents  two  interesting  topics  for  future
research.
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