

Non-Deterministic Liveness-Enforcing Supervisor
Tolerant to Sensor-Reading Modification Attacks

Dan You , Member, IEEE, and Shouguang Wang , Senior Member, IEEE

 Abstract—In this paper, we study the supervisory control
problem of discrete event systems assuming that cyber-attacks
might occur. In particular, we focus on the problem of liveness
enforcement and consider a sensor-reading modification attack
(SM-attack) that may disguise the occurrence of an event as that
of another event by intruding sensor communication channels. To
solve the problem, we introduce non-deterministic supervisors in
the paper, which associate to every observed sequence a set of
possible control actions offline and choose a control action from
the set randomly online to control the system. Specifically, given a
bounded Petri net (PN) as the reference formalism and an SM-
attack, an algorithm that synthesizes a liveness-enforcing non-
deterministic supervisor tolerant to the SM-attack is proposed for
the first time.
 Index Terms— Cyber-attacks, cyber-physical system (CPS), live-
ness, non-deterministic supervisors, Petri net (PN).

I. Introduction

A cyber-physical system (CPS) integrates computing and
communication to monitor and control physical pro-

cesses [1]. The use of communication networks not only
endows the physical components of CPS with information
processing and communication capabilities, but also increases
the vulnerability of CPS to cyber-attacks [2]. The supervisory
control of CPS under cyber-attacks has been receiving more
and more attentions, especially in the area of discrete event
systems (DESs). By modeling a CPS as a DES, the existing
studies dealing with attack issues can be classified into three
categories, namely, attack strategy design [3]−[5], attack
detection and defense [6]−[10], and robust/tolerant supervisor
design [3], [11]−[19]. In this work, we investigate the design
of robust/tolerant supervisors in the sense that a given control
specification can be satisfied by such a supervisor despite the
existence of attacks.

Much attention has been paid to the robust/tolerant supervi-
sor design in the literature. Wakaiki et al. [11] design a super-

visor robust against the so-called replacement-removal attacks
in the sensor channels. In more detail, the attacker may erase
an event produced by the plant or replace it with another one
by tampering with sensor-readings in related sensor channels.
Essentially, their work is similar to the work dealing with the
supervisory control of DES with nondeterministic observa-
tions [13]−[15]. The conditions under which a supervisor
exists exactly enforcing a given control specification are pro-
vided in [13], [14], while a supervisor synthesis method is
given in [15] using a model transformation technique. Su [3]
considers sensor deception attacks as well but requires attacks
to be stealthy, which means that the supervisor cannot be
aware of the existence of attacks. Specifically, the attacker
may replace an observable event generated by the plant with a
bounded sequence of observable events. From the viewpoint
of an attacker, the supremal stealthy attack strategy is com-
puted first and then a supervisor robust against the attack is
synthesized from the viewpoint of a system defender. Meira-
Góes et al. [12] investigate the synthesis of supervisors robust
to parameterized sensor deception attacks. In addition to sen-
sor deception attacks, actuator deception attacks are taken into
account in [16]−[18].

The above studies basically consider language or state spec-
ifications. In contrast, the liveness-enforcing control specifica-
tion has received little attention in the presence of attacks.
Liveness is a property characterizing a specific dynamic
behavior of a system. How to enforce liveness has been
widely studied in different problem settings [20]−[23]. Never-
theless, to our best knowledge, [19] is the only work dealing
with the liveness-enforcing problem under attacks. In [19], the
problem is investigated based on bounded Petri net (PN) sys-
tems [24], [25] and sensor-reading modification attacks (SM-
attacks) are considered, which are a particular class of the
replacement-removal attacks in [11]. In the scenario of SM-
attacks, an intruder has the ability to disguise the occurrence
of some transitions as that of other transitions by modifying
sensor-readings in vulnerable sensor channels. An algorithm
that synthesizes a liveness-enforcing supervisor tolerant to
SM-attacks is provided in [19]. Unfortunately, the supervisor
is not guaranteed to be maximally permissive. How to get a
maximally permissive liveness-enforcing supervisor tolerant
to an SM-attack remains an open issue.

We note that the supervisor in [19] refers to a deterministic
supervisor, which means that the supervisor associates every
observed sequence with a unique control action. In contrast to
deterministic supervisors, there are non-deterministic supervi-
sors. In simple words, a non-deterministic supervisor asso-

Manuscript received February 1, 2023; revised April 6, 2023 and May 8,

2023; accepted May 24, 2023. This work was supported in part by the Public
Technology Research Plan of Zhejiang Province (LGJ21F030001), the
National Natural Science Foundation of China (62302448), and the Zhejiang
Provincial Key Laboratory of New Network Standards and Technologies (2013
E10012). Recommended by Associate Editor Jiacun Wang. (Corresponding
author: Shouguang Wang.)

Citation: D. You and S. Wang, “Non-deterministic liveness-enforcing
supervisor tolerant to sensor-reading modification attacks,” IEEE/CAA J.
Autom. Sinica, vol. 11, no. 1, pp. 240–248, Jan. 2024.

The authors are with the School of Information and Electronic Engineering,
Sussex Artificial Intelligence Institute, Zhejiang Gongshang University,
Hangzhou 310018, China (e-mail: youdan@zjgsu.edu.cn, wangshouguang@
zjgsu.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2023.123702

240 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 1, JANUARY 2024

http://orcid.org/0000-0001-9088-9672
http://orcid.org/0000-0002-8998-0433
http://ieeexplore.ieee.org
https://doi.org/10.1109/JAS.2023.123702

ciates every observed sequence with a set of possible control
actions. Which one is chosen to control the system is deter-
mined randomly online. Non-deterministic supervisors are
first proposed to tackle the standard supervisory control prob-
lem under partial observation [26], [27]. Compared with using
deterministic supervisors, the main advantages of using them
include that 1) The complexity of synthesizing a supervisor is
reduced from being exponential to polynomial; and 2) More
control specifications can be realized such as temporal logic
CTL* [28] and μ-calculus [29]. Moreover, in the setting of the
non-deterministic plant and non-deterministic control specifi-
cation, non-deterministic supervisors are capable of solving a
(bi)similarity control problem [29]−[33]. Recently, they are
also used to solve an opacity enforcing problem [34].

In this paper, we design non-deterministic supervisors to
enforce the property of liveness on DES under SM-attacks. As
far as we know, the liveness-enforcing problem under attacks
has never been solved by using non-deterministic supervisors.
Indeed, in the scenario of SM-attacks, it could happen that an
observation does not explicitly reflect real information. For
example, in the case that an SM-attack may disguise the fir-
ing of transition t1 as the firing of transition t2, when we
observe t2, we are not sure which transition fires producing the
observation t2 if t1 and t2 are both enabled. It is the vague
information that makes the liveness-enforcing problem under
SM-attacks very complex. The use of a non-deterministic
supervisor can exactly eliminate the vague situation and keep
more possible behavior of the controlled system. In the above
example, a non-deterministic supervisor may give two possi-
ble control actions, namely, disabling t1 or t2. No matter which
one is chosen online to control the system, we know with cer-
tainty which transition fires producing the observation t2. Fol-
lowing this basic idea, we develop an algorithm in the paper,
which synthesizes a liveness-enforcing non-deterministic
supervisor tolerant to an SM-attack. We may see that, com-
pared with the current methods that synthesize a deterministic
supervisor, the proposed method enjoys lower computational
complexity in synthesizing a non-deterministic one. Note that
as in [19] PNs are used as a modeling tool to solve the prob-
lem in this paper and only bounded PN systems are consid-
ered.

The remainder of the paper is organized as follows. Section II
reviews the basic notions involved in the paper. Section III
formulates the problem to be addressed in the paper. How to
synthesize a non-deterministic liveness-enforcing supervisor
tolerant to SM-attacks is answered in Section IV. Discussion
on the proposed method is provided in Section V. Section VI
concludes this paper and indicates future work.

II. Preliminaries

A. Petri Nets

Z+

A Petri net (PN) is a quadruple N = (P, T, F, W), where P is
the set of places, T is the set of transitions, F ⊆ (P × T)∪(T ×
P) is the flow relation of the net, and W: F→ assigns to
each arc a weight. Given a node x ∈ P∪T, •x denotes the set of
inputs of x, i.e., •x = {x' ∈ P∪T |(x', x) ∈ F}, and x• denotes the
set of outputs of x, i.e., x• = {x' ∈ P∪T |(x, x') ∈ F}. A mark-

N

⟩

⟩
⟩

, . . . , ⟩ ⟩ ⟩ . . .
⟩

⟩

⟩
⟩

⟩
N+

ing of N is a mapping m: P→ . (N, m0) is called a PN system
with initial marking m0. A transition t ∈ T is enabled at a
marking m, denoted as m[t , if m(p) ≥ W(p, t), ∀p ∈ •t. If the
firing of the enabled transition t at marking m reaches mark-
ing m', it is written as m[t m'. A sequence of transitions σ =
t1t2… tk ∈ T* is enabled at m, denoted as m[σ , if there exist
markings m1, m2 mk−1 such that m[t1 m1[t2 m2[t3
mk−1[tk . If the firing of the enabled transition sequence σ at
marking m reaches marking m', it is written as m[σ m'. The set
of all reachable markings of (N, m0) is defined as R(N, m0) =
{m| ∃σ ∈ T*, s.t., m0[σ m}. A transition t is live at a marking m
if ∀m' ∈ R(N, m), ∃m'' ∈ R(N, m'), m''[t . A transition t is dead
at a marking m if ∀m' ∈ R(N, m), t is disabled at m'. A net sys-
tem (N, m0) is live if ∀t ∈ T, t is live at m0. The language of
(N, m0), denoted by L(N, m0), is defined as the set of all
sequences that are enabled at the initial marking m0, i.e., L(N,
m0) = {σ ∈ T*|m0[σ }. A PN system (N, m0) is bounded if ∃B ∈

 = {1, 2,…}, s.t. ∀m ∈ R(N, m0), ∀p ∈ P, m(p) ≤ B. Other-
wise, it is unbounded.

⟩

A reachability graph (RG) of a PN system (N, m0) is a
directed graph describing the system evolution. Specifically,
each node of the RG corresponds to a reachable marking m ∈
R(N, m0) and each arc is labelled by a transition t ∈ T. Specifi-
cally, there exists an arc labelled by transition t from a node
representing marking m1 to a node representing marking m2 in
the RG if and only if it holds that m1[t m2.

B. Deterministic and Non-Deterministic Supervisors
Given a PN system (N, m0), we use Lo(N, m0) to denote the

set of all possible observed sequences of the system and use Δ =
2T to denote the set of all control actions, each of which refers
to a set of transitions to be disabled, or equivalently, whose
firing should be forbidden.

A deterministic supervisor of a PN system (N, m0) is μ:
Lo(N, m0)→Δ, associating to every observed sequence a con-
trol action. A non-deterministic supervisor of a PN system (N,
m0) is μ: Lo(N, m0)→2Δ, associating to every observed
sequence a set of control actions. It is worth noting that only
one control action is chosen among the set to control the PN
system during its evolution and it is chosen online non-deter-
ministically.

Given a PN system (N, m0) and a supervisor μ, we denote
the system under the control of μ as (N, m0)|μ and the set of
reachable markings of (N, m0)|μ as R(N, m0)|μ.

⟩
⟩

A supervisor μ is said to be liveness-enforcing for a PN sys-
tem (N, m0) if the controlled system (N, m0)|μ is live, i.e.,
∀t ∈ T, ∀m ∈ R(N, m0)|μ, ∃m' ∈ R(N, m)|μ, s.t. m' [μ t , where
m' [μ t denotes that t can fire at marking m' under the control
of μ.

C. SM-Attacks
We define an SM-attack as a mapping O: T→2T.
The set O(t) enumerates all the possible observations when t

occurs due to the existence of the SM-attack.
Example 1: Consider a bounded PN (N, m0) with the set of

transitions T = {t1, t2, t3} and an SM-attack O such that O =
[O(t1), O(t2), O(t3)]T = [{t1}, {t2, t3}, {t3}]T. We can see that,

YOU AND WANG: NON-DETERMINISTIC LIVENESS-ENFORCING SUPERVISOR TOLERANT TO SM ATTACKS 241

due to the existence of the SM-attack, the occurrence of t2
might produce the observation t2 or t3. In other words, the
occurrence of t2 is possibly disguised as the occurrence of t3.
As for t1 and t3, their observations can never be changed.

∪
σ∈L(N,m0) O(σ)

We may generalize the notation O(·) to a sequence of transi-
tions σ = t1t2…tk ∈ T* such that O(σ) = O(t1)O(t2)…O(tk). Note
that given two sets A and B, it is defined that AB = {ab| a ∈
A, b ∈ B}. Then, given a PN system (N, m0) and an SM-attack
O, we have Lo(N, m0) = .

III. Problem Statement

The problem that we plan to address in the paper is formu-
lated as follows.

Problem 1: Given a bounded PN system (N, m0) and an SM-
attack O, design a liveness-enforcing supervisor tolerant to O.

“Tolerant” means that the supervisor is liveness-enforcing
even in the presence of an SM-attack. The problem has been
investigated in [19], where the solution is a deterministic
supervisor that is not guaranteed to be maximally permissive.
In this work, we intend to solve the problem by designing a
supervisor that is allowed to be non-deterministic.

IV. Non-Deterministic Control

In this section, we first introduce a so-called supervisor
graph that represents a supervisor in this paper and then pro-
vide an algorithm that synthesizes a non-deterministic super-
visor for solving Problem 1.

A. Supervisor Graph
A structure called a supervisor graph is formally defined in

[19] to describe a deterministic supervisor intuitively. We still
use it in this paper but with some modification such that it can
describe a non-deterministic supervisor as well. In simple
words, a supervisor graph is now a directed graph where a
node is assigned to be an initial node, each arc is labelled by a
transition and each node is associated with a set of control
actions. Note that we simply write μ(x) to represent the set of
control actions associated with a node x. Indeed, for all
observed sequences leading from the initial node to node x in
a supervisor graph, they are associated with the same set of
control actions, i.e., μ(x).

Example 2: Fig. 1 shows a supervisor graph with an initial
node x0. It tells that 1) for any observed sequence leading
from initial node x0 to node x1, the set of control actions is
{{t2}, {t3}}, which means that it is chosen non-deterministi-
cally online to disable t2 or t3; 2) for any observed sequence
leading from x0 to x3, t1 should be disabled; and 3) for any
observed sequence leading from x0 to node x0 or x2, no transi-
tion should be disabled. To be intuitive, nodes with a non-
empty set of control actions are colored in grey.

In the remainder of the paper, we omit writing μ(x) = ∅ for
every node x in a supervisor graph to save space. Besides, a
node in a supervisor graph basically corresponds to a set of
markings. Thus, for the sake of simplicity, we may name a
node by its corresponding marking set if there is no ambigu-
ity.

Example 3: Consider a PN system (N, m0) in Fig. 2(a). Its

RG Gr shown in Fig. 2(b)can be viewed as a supervisor graph
of (N, m0). It tells that whatever we observe, we do not dis-
able any transition. Also, graph Gl in Fig. 3 is a supervisor
graph of (N, m0). It indicates that 1) When we observe a
sequence (e.g., t2) leading to node {m1}, we should disable t2;
2) When we observe a sequence (e.g., t2t3) leading to node
{m3}, we should disable t4; and 3) When we observe a
sequence (e.g., t3) leading to other nodes, we do not disable
any transition. Trivially, Gl represents a deterministic supervi-
sor since no node is associated with a set containing two or
more control actions.

t1

t2 t3

t4

2

p3p2

p1

t5

NaHCO3

Na2CO3 CO2

NaOH

HCl HNO3

2NaOH

H2O

{m0}

m0 = (2, 0, 0)T

m1 = (1, 1, 0)T

m2 = (1, 0, 1)T

m3 = (0, 1, 1)T

m4 = (0, 0, 2)T

m5 = (0, 2, 0)T

{m1} {m2}

{m4}{m3}

{m5}
(a) (b)

t1

t 2

t 2

t 2

t3

t 3 t3

t5

t5 t5

t4

t4

t 4

Fig. 2. Case study. (a) PN system (N, m0) modelled for chemical reactions;
(b) Its RG Gr.

{m0}

{m1}
{m2}

{m4}{m3}

μ ({m1}) = {{t2}}
μ ({m3}) = {{t4}}t1

t 2

t 2

t3

t 3 t3

t5

t5
t5

t4

t4

Fig. 3. Maximally permissive liveness-enforcing deterministic supervisor
Gl of the PN system (N, m0) in Fig. 2(a) under no attack.

, . . . ,

x1
l1−→ x2

l2−→ ·· ·
ln−1−−−→ xn

We conclude this subsection by introducing some struc-
tures in a supervisor graph. Given a supervisor graph G, we
say α = x1l1x2l2… ln−1xn a path if ∀i ∈ {1, 2 n−1}, there
exists a directed arc with label li from node xi to node xi+1 in
G. Alternatively, we may write the path α = x1l1x2l2… ln−1xn
as . Given two nodes x1 and x2 in G, we
say x2 is accessible from x1 (or equivalently, x1 can access x2)
if there exists a path from x1 to x2. By default, a node is acces-
sible from itself via an empty path. A subgraph G' of G is said
to be a strongly connected component (SCC) if G' is strongly
connected and maximal. We use La(G') to denote the set of
arc labels that appear in SCC G'. Given a node x and an SCC

x0 x1

x2x3

t1

t2t3

t4

t5
µ(x1) = {{t2},{t3}}

µ(x3) = {{t1}}

µ(x0) =

µ(x2) =

Fig. 1. Supervisor graph.

 242 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 1, JANUARY 2024

G' in G, we say that G' is accessible from x (or equivalently, x
can access G') if there exists a node x' in G' accessible from x.
Note that x and x' can be the same node and we can see that if
a node can access an SCC, the node can access every node in
this SCC. Moreover, given a node x in a supervisor graph, we
may use • x to denote the set of input nodes of x and x• to
denote the set of output nodes of x. A node x is said to be a
sink node if it has no output node, i.e., x• = ∅. An SCC G' is
said to be a sink SCC if no node outside G' is accessible from
a node in G'.

B. Proposed Algorithm
In this subsection, we propose an algorithm to solve Prob-

lem 1. To this end, we introduce the following concepts.
Definition 1: Given a set T' ⊆ T of transitions and an SM-

attack O, we say that Π ⊆ 2T' is a feasible partition on T' w.r.t.
O if
∪π∈Ππ1) = T';

2) ∀π ∈ Π, |π| ≥ 1; and
3) ∀π ∈ Π, (|π| = 1)∨(∀t1, t2 ∈ π, O(t1)∩O(t2) = ∅).
In Definition 1, condition 1) means that the union of all sets

in Π is equal to the set T'; condition 2) requires that every set
in Π contains at least one transition; and condition 3) indi-
cates that for every set in Π, either it contains only one transi-
tion or no two transitions in it have the same observation.

1

Definition 2: Given a set T' ⊆ T of transitions and an SM-
attack O, a feasible partition Π ⊆ 2T' is said to be optimal if
for any other feasible partition Π' ⊆ 2T', it holds that ∀π ∈ Π,
∀π' ∈ Π', π π'.

In simple words, when we compute a feasible partition on a
set of transitions, we actually divide the set of transitions into
several groups such that any two transitions in a group do not
have the same observation. The optimality of a feasible parti-
tion indicates that no more transition can be added to any
group such that the partition remains to be feasible.

T̃ (t)
T̃ (t)

We next present a function named OptimalFeasibleParti-
tion (i.e., Function 1), by which the optimal feasible partition
is derived. Note that, given a transition t ∈ T and an SM-attack
O, we denote = {t' ∈ T\{t}|O(t)∩O(t') ≠ ∅}, namely,

consists of all transitions who possibly produce the same
observation as t due to the SM-attack O.

Function 1 Π := OptimalFeasiblePartition (T', O)

Input: A set T' ⊆ T of transitions and an SM-attack O;
Output: Π ⊆ 2T'.
1) Π := {T'};
2) for t ∈ T' do
3) 　for π ∈ Π do

T̃ (t)4) 　　if t ∈ π ∧ ∩π ≠ ∅ then
T̃ (t)5) 　　　π1 := π\ and π2: = π\{t};

6) 　　　Π := Π\{π}∪{π1, π2};
7) 　　end if
8) 　end for
9) end for
10) output: Π.

Result 1: Given a set of transitions T' ⊆ T and an SM-attack

O
O, Π := OptimalFeasiblePartition(T', O) is the optimal feasi-
ble partition on T' w.r.t. .

⊂
T̃ (t′)

T̃ (t′)

Proof: By contradiction, suppose that Π is not the optimal
feasible partition. It means that there exists a feasible parti-
tion Π' such that ∃π ∈ Π, ∃π' ∈ Π', π π'. Let t ∈ π'\π. By
function OptimalFeasiblePartition, ∃t' ∈ π, s.t. t ∈ since
otherwise t is a transition in π. Hence, we can see that ∃t, t' ∈
π', s.t., t ∈ , which contradicts that Π' is a feasible parti-
tion. As a result, Π is the optimal feasible partition on T' w.r.t.
O. ■

T̃ (t1)
T̃ (t1)

Example 4: Consider a PN system (N, m0) with the set of
transitions T = {t1−t7} and an SM-attack O = [O(t1), O(t2), O(t3),
O(t4), O(t5), O(t6), O(t7)]T = [{t1, t6, t7},{t2, t6},{t3, t7}, {t4, t3},
{t5}, {t6},{t7}]T. Consider a set of transitions T' = {t1−t5}. We
compute the optimal feasible partition on T' by calling Opti-
malFeasiblePartition (T', O). First, Π is initialized as {π},
where π = {t1−t5}. Then, we consider t1. Since = {t2, t3,
t6, t7}, we have π1 = π\ = {t1, t4, t5} and π2 = π\{t1} = {t2,
t3, t4, t5}. Hence, Π is updated as {π1, π2}. Similarly, we con-
sider t2, t3, t4, and t5 one after another. Finally, we get the set
Π = {{t1, t4, t5}, {t2, t3, t5}, {t2, t4, t5}}, which is the optimal
feasible partition on T' w.r.t. O.

TG
out(x)

TG
out(x)

Now, we are ready to introduce Algorithm 1. Note that,
given a node x in a supervisor graph G, we use to
denote the set of transitions labelling the output arcs of x in G.
Moreover, node x is said to be a confusing node w.r.t. an SM-
attack O if ∃t1, t2 ∈ , s.t. O(t1)∩O(t2) ≠ ∅. Also, we may
call a supervisor graph as a supervisor for the sake of simplic-
ity in the following discussions.

Algorithm 1 Supervisor Synthesizer

Input: A bounded PN system (N, m0) and an SM-attack O.
Output: A supervisor graph G#.

 1) Gl := MaxLiveEnforceSupervisor (N, m0); /*See Function 2.
MaxLiveEnforceSupervisor returns a maximally permissive live-
ness-enforcing deterministic supervisor of (N, m0) under no
attack [19] */

2) for each node x in Gl do
3) 　if x is a confusing node w.r.t. O then

TGl
out(x)4) 　　Π := OptimalFeasiblePartition (, O);

µ(x) :=
∪
π∈Π {(T

Gl
out(x)\π)∪µ(x)}5) 　　 ;

6) 　end if
TGl

out(x)7) 　for each t ∈ do
8) 　　for t' ∈ O(t)\{t} do
9) 　　　add an arc labelled by t'|t from x to x', where x' is a node

reached from node x via an arc labelled by t;
10) 　　end for
11) 　end for
12) end for
13) denote the final graph as G#;
14) output: G#.

Function 2 Gl = MaxLiveEnforceSupervisor (N, m0)

Input: A bounded PN system (N, m0) with N = (P, T, F);
Output: A maximally permissive liveness-enforcing deterministic

supervisor Gl.

YOU AND WANG: NON-DETERMINISTIC LIVENESS-ENFORCING SUPERVISOR TOLERANT TO SM ATTACKS 243

1) compute the RG Gr of (N, m0);
 2) Φ := Tarjan(Gr); /*Tarjan [35] here returns the set of SCCs

excluding those that are exactly a single node in Gr */
13) Φ# := {α ∈ Φ| T La(α)};

4) Gl := Gr;
5) while there exists a sink node x or a sink SCC α ∈ Φ# in Gl do
6) 　if there exists a sink node x in Gl then
7) 　for each x' ∈ •x do
8) 　　μ(x') := μ(x')∪T', where T' denotes the set of transitions

labeling the arcs from x' to x;
9) 　end for
10) 　 update Gl by deleting x and its related arcs;
11) 　end if
12) 　if there exists a sink SCC α ∈ Φ# in Gl then
13) 　for each x' ∈ •xα, where xα is a node in α and x' is a node out-

side α do
14) 　　μ(x'): = μ(x')∪T', where T' denotes the set of transitions

labeling the arcs from x' to xα;
15) 　end for
16) 　 update Gl by deleting α and its related arcs;
17) 　end if
18) end while
19) output: Gl.

TGl
out(x)

TGl
out(x)

TGl
out(x) TGl

out(x)

TGl
out(x)

TGl
out(x)

We explain Algorithm 1 as follows. First, we compute a
maximally permissive liveness-enforcing deterministic super-
visor for the input PN system under no attack. The supervisor
can be computed by calling Gl = MaxLiveEnforceSupervisor
(N, m0), which is adapted from [19]. Next, for every node x in
Gl, we determine if it is a confusing node, i.e., if there are at
least two transitions in who possibly produce the same
observation due to the attack O. If so, we update the set of
control actions at the node. Specifically, we first compute the
optimal feasible partition Π on w.r.t. O by Step 4 and
then get a set of control actions (i.e., μ(x)) based on Π by
Step 5. The purpose of computing a feasible partition on

 w.r.t. O is to divide transitions in into several
groups such that any two transitions in a group cannot have
the same observation under the attack. In this way, if we per-
mit the firing of transitions in one group, we know with cer-
tainty which transition actually fires when getting an observa-
tion. Note that, when computing a feasible partition on ,
we consider the control in terms of permitting the firing of
some transitions, while a control action defined in the paper is
to forbid the firing of some transitions. Thus, we do the equiv-
alent transformation as shown in Step 5 to determine μ(x).
Specifically, for each group π ∈ Π, \π is accordingly a
set of transitions to be disabled. Also, the set of transitions
disabled originally at node x should be taken into considera-
tion for computing each control action. Moreover, we note
that the computation of the optimal feasible partition aims to
improve the permissiveness of each control action. Then, we
add some output arcs to node x (no matter if it is a confusing
node) such that all the possible observations under attack O
are included, which is shown in Steps 7−11. This indeed leads
to the resulting supervisor with two kinds of arc labels. We

note that a label with two transitions, e.g., t'|t, denotes that t' is
observed but what actually occurred is t, while a label with a
single transition, e.g., t, indicates that t is observed and what
actually occurred is also t. The final supervisor graph output
by Algorithm 1 is denoted as G#.

How G# works online to control the PN system (N, m0)
under attack O is shown exhaustively in Procedure 1. In Pro-
cedure 1, we use xcur to denote the current node reached in the
supervisor G# during the system evolution and the current
control action on the PN system is chosen non-deterministi-
cally among μ(xcur). At the beginning, xcur is initialized as the
initial node x0 of G# and thereby we choose non-deterministi-
cally among μ(x0) a set Tdis of transitions to disable. Then,
every time we observe a transition in the PN system, we first
determine which node is reached accordingly in the supervi-
sor G#, i.e., update xcur, and then choose non-deterministically
among μ(xcur) a set Tdis of transitions to disable.

Procedure 1 Online Execution of Supervisor G#

Input: A bounded PN system (N, m0) under an SM-attack O and
the supervisor G#computed by Algorithm 1

1) xcur := x0; /* x0 -is the initial node of G# */
 2) choose non-deterministically among μ(xcur) a set of transitions to

disable, denoted as Tdis;
3) while a transition t is observed do
4) 　find an output arc of xcur with a label l such that 1) l = t ∧ t ∉

Tdis; or 2) l = t|t' ∧ t' ∉ Tdis;
5) 　xcur := Reach(xcur, l); /* Reach(xcur, l) returns a node reached

from node xcur via an output arc with label l */
6) 　choose non-deterministically among μ(xcur) a set of transi-

tions to disable, denoted as Tdis;
7) end while

TGl
out(x)

TGl
out(x)

Example 5: Continue to consider Example 4. Suppose that
the maximally permissive liveness-enforcing deterministic
supervisor Gl of the PN system (N, m0) under no attack is
computed and there is a node x in Gl such that = T' =
{t1−t5} and μ(x) = {{t6}}. To be intuitive, we consider a case
as depicted in Fig. 4(a) where only the subgraph of Gl that
consists of node x together with its output arcs and nodes is
shown. Clearly, x is a confusing node. Let us see how Algo-
rithm 1 works regarding x. First, we compute the optimal fea-
sible partition Π on w.r.t. O, which has been derived in
Example 4. Next, it is computed that μ(x) = {{t2, t3, t6}, {t1, t4,
t6}, {t1, t3, t6}}. Finally, we add output arcs to node x, which
results in the subgraph in Fig. 4(b). This subgraph tells that a
control action at node x is chosen non-deterministically among
{t2, t3, t6}, {t1, t4, t6} and {t1, t3, t6}. Consider as an example
that {t2, t3, t6} is chosen as the control action and then t6 is
observed. By Procedure 1, we should select the arc with label
t6|t1, which means that it is the firing of t1 that produces the
observation t6, and thus we reach node x1 to determine the
next control action.

Given a bounded PN system (N, m0), an SM-attack O, and a
supervisor G#computed by Algorithm 1, we have the follow-
ing result.

 244 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 1, JANUARY 2024

Lemma 1: Let x and x' be two nodes in G# corresponding to
markings m and m', respectively. It holds that m' ∈ R(N, m)|G#
if there exists a path from node x to node x' in G#.

Proof: Without loss of generality, we assume that the path
from node x to node x' in G# is

x1
l1−→ x2

l2−→ x3
l3−→ ·· ·

ln−2−−−→ xn−1
ln−1−−−→ xn

, . . . ,

, . . . ,

, . . . ,

TGl
out(x) , . . . ,

where xi (i = 1, 2 n) is a node with x1 = x and xn = x' and li
(i = 1, 2 n−1) is the arc label. Moreover, let m1, m2, …, mn
be the markings associated with nodes x1, x2 xn in G#,
respectively. Note that m1 = m and mn = m'. We observe that,
for every node x in G#, μ(x) is computed based on a feasible
partition on . It thus holds that, for i = 1, 2 n,
∃Tdis(i) ∈ μ(xi) such that 1) li = t ∧ t ∉ Tdis(i); or 2) li = t'|t ∧ t ∉
Tdis(i). In either case, mi+1 is reachable from mi in the case that
a control action is appropriately chosen among μ(xi). Conse-
quently, we have mn ∈ R(N, m1)|G#, i.e., m' ∈ R(N, m)|G#. ■

Theorem 1: Given a bounded PN system (N, m0) and an
SM-attack O, G#computed by Algorithm 1 is a liveness-
enforcing supervisor tolerant to O if G# ≠ ∅.

Proof: The proof consists of two parts, namely, 1) G# is a
feasible supervisor under attack O in the sense that G# asso-
ciates every observed sequence a set of control actions; and 2)
G# is liveness-enforcing.

TGl
out(x)

TGl
out(x)

1) Algorithm 1 first computes a liveness-enforcing deter-
ministic supervisor Gl under no attack. It means that Gl asso-
ciates to every observed sequence, which is also the really
occurred sequence, a control action. Structurally, G# is a resul-
tant graph by adding more arcs to Gl. Since arcs are added in
detail as Steps 7−11 of Algorithm 1 for every node in Gl, all
the possible observations and their corresponding really fired
transitions in the presence of attack O are provided in G#.
Moreover, at every confusing node x in Gl (i.e., ∃t1, t2 ∈

, s.t. O(t1)∩O(t2) ≠ ∅), we update μ(x), the set of con-
trol actions. Since μ(x) is computed based on the optimal fea-
sible partition on w.r.t. O, whatever control action is
chosen from μ(x), we know with certainty which transition
actually fires when getting an observation. In other words,
when we observe a transition at x, we can find one and only
one arc that leads from the node to the next node by Proce-
dure 1. Thus, for every observed sequence, it corresponds to
one and only one set of control actions in G#. As a result, G# is
a feasible supervisor under attack O.

2) For the sake of simplicity, we say that an SCC G' in a
supervisor graph is complete if its arc labels cover all transi-
tions of the considered PN, i.e., T ⊆ La(G'). Now, we start the
proof as follows.

⟩

Since Gl is a liveness-enforcing deterministic supervisor
under no attack, we have ∀t ∈ T, ∀m ∈ R(N, m0)|Gl, ∃m' ∈
R(N, m)|Gl, s.t. m'[Gl t . Moreover, every node in Gl can access
a complete SCC since (N, m0) is a bounded system. Struc-
turally, every node in G# can also access a complete SCC
since G# is a resultant graph by adding more arcs to Gl.

Let x be a node in G# corresponding to a marking m.
Clearly, there exists a path in G# from the initial node x0 to x.
Thus, we have m ∈ R(N, m0)|G# due to Lemma 1. Also, x can
access a complete SCC. Hence, for each t ∈ T, there exists a
node x' with a marking m' in the complete SCC such that m' ∈
R(N, m)|G# and ∃Tdis ∈ μ(x'), s.t. t∉Tdis, i.e., t can fire at m'.
Trivially, all the markings in G# constitute the set R(N, m0)|G#.
As a result, we can see that

∀t ∈ T, ∀m ∈ R (N,m0)|G#, ∃m′ ∈ R(N,m)
∣∣∣
G# , s.t. m′ [G#t⟩ .

Therefore, G#is liveness-enforcing. ■

C. Case Study
In this subsection, we provide a case study where the pro-

posed method is applied. This case study is originally pre-
sented in [19].

An automatic control system is designed for playing a game
on chemical reactions, where chemical (1)−(5) are involved.

Na2CO3+CO2+H2O = 2NaHCO3 (1)

NaHCO3+NaOH = Na2CO3+H2O (2)

NaHCO3+HCl = NaCl+CO2 ↑ +H2O (3)

CO2+2NaOH = Na2CO3+H2O (4)

NaHCO3+HNO3 = NaNO3+CO2 ↑ +H2O (5)
Suppose that NaOH, HCl, HNO3 and H2O are sufficiently

provided and the chemical transformation among Na2CO3,
CO2, and NaHCO3 is the focus of the game. Consequently, the
chemical reactions can be modelled by the PN system in
Fig. 2(a), where p1−p3 represent NaHCO3, Na2CO3 and CO2,
respectively, and t1−t5 represent the chemical reactions
(1)−(5), respectively. To be intuitive, the meanings of places
and the needed substances triggering chemical transformation
are annotated. Place p1 contains two tokens in the initial mark-
ing, which models the initial condition that two copies of
NaHCO3 are provided. The control specification on the sys-
tem requires that any of the five chemical (1)−(5) can always
be performed after finite times of other chemical reactions.
This corresponds to the liveness specification on the PN sys-
tem in Fig. 2(a).

The supervisor in the closed-loop control system observes
the occurrence of chemical reactions by receiving signals from
sensors and gives control actions based on observations. The
supervisor communicates with sensors/actuators via commu-
nication networks, which makes the system possibly suffer
from the intrusion of malicious agents. Suppose that we have
the prior knowledge that the sensor signals produced by the
chemical (2) are prone to be disguised as the sensor signals
produced by the chemical (3) in related sensor communica-
tion channels by an intruder. Then, we can see that the system

(a) (b)

t 1 t 2 t3 t4 t 1 t 2 t3 t4
t5

t5

Fig. 4. Illustrative example: (a) A subgraph of Gl-; (b) A subgraph of
G#computed by Algorithm 1.

YOU AND WANG: NON-DETERMINISTIC LIVENESS-ENFORCING SUPERVISOR TOLERANT TO SM ATTACKS 245

is vulnerable to the SM-attack O = [O(t1), O(t2), O(t3), O(t4),
O(t5)]T = [{t1},{t2, t3},{t3}, {t4}, {t5}]T. In other words, the
SM-attack may disguise the occurrence of t2 as the occur-
rence of t3.

TGl
out({m0})

Now, we compute a liveness-enforcing supervisor tolerant
to the SM-attack for the PN system in Fig. 2(a) by Algorithm 1.
First, we compute a maximally permissive liveness-enforcing
deterministic supervisor Gl of (N, m0) under no attack, which
is shown in Fig. 3. Next, we update the set of control actions
at every confusing node in Gl and add more arcs to Gl. There
are two confusing nodes, i.e., {m0} and {m2}. Consider node
{m0}. The optimal feasible partition on w.r.t. O is
Π = {{t2, t5},{t3, t5}} and thus we have μ({m0}) = {{t3}, {t2}}.
Then, we add an arc labelled by t3|t2 from node {m0} to node
{m1}. Similarly, for node {m2}, we have μ({m2}) = {{t3},
{t2}} and add an arc labelled by t3|t2 from node {m2} to node
{m3}. Since no more arcs should be added, we obtain the final
supervisor G# as shown in Fig. 5. It is a liveness-enforcing
non-deterministic supervisor for the PN system in
Fig. 2(a) tolerant to O.

{m0}

{m1}
{m2}

{m4}{m3}

μ ({m0}) = {{t2}, {t3}}
μ ({m1}) = {{t2}}
μ ({m2}) = {{t2}, {t3}}
μ ({m3}) = {{t4}}t3|t2

t3|t2

t1

t 2

t 2

t3

t 3 t3

t5

t5 t5

t4

t4

Fig. 5. Supervisor G# computed by Algorithm 1 in the case study.

V. Discussion

We can see that a non-deterministic supervisor, if associat-
ing to every observed sequence a set with only one control
action, is essentially a deterministic supervisor; while in other
cases, a non-deterministic supervisor can be viewed as the
combination of multiple or even countless deterministic super-
visors. The online execution of a non-deterministic supervisor
is indeed also a procedure of determining a deterministic
supervisor that is used to control the system since a control
action is fixed online every time a sequence is observed.

Consider the non-deterministic supervisor in Fig. 5. It can
be viewed as the combination of countless deterministic
supervisors. In particular, there are two choices at node {m0}
and {m2}, namely, disabling t2 or t3. In the case that we
always disable t2 at node {m0} and disable t3 at node {m2}, we
may extract a deterministic supervisor, as shown in Fig. 6,
from the non-deterministic supervisor. The supervisor in Fig. 6
is indeed a maximally permissive liveness-enforcing deter-
ministic supervisor tolerant to the SM-attack O in the case
study. Note that a liveness-enforcing deterministic supervisor
is also computed by the method in [19] for the case study,
which is shown in Fig. 7. We can see that the supervisor in
Fig. 7 is more restrictive than the one in Fig. 6, i.e., it is not
maximally permissive. For example, sequence t3t5 is allowed

to fire by the supervisor in Fig. 6, while it is not allowed to
fire by the supervisor in Fig. 7. On the contrary, sequences
that are allowed to fire by the supervisor in Fig. 7 are all
allowed to fire by the supervisor in Fig. 6.

We finally compare the computational complexity of the
proposed method and the one in [19] in finding a solution to
Problem 1. We observe that both methods start from con-
structing a maximally permissive liveness-enforcing determin-
istic supervisor Gl under no attack. This step determines the
exponential complexity of both methods with respect to the
size of the considered PN system since the RG has to be com-
puted. We then focus on their remaining steps for comparison
in what follows. Consider the proposed method. In the worst
case, it updates once the set of control actions at every node of
Gl and handles every arc of Gl once. Suppose that Gl contains
a nodes and arcs in total. Then, the complexity of the pro-
posed method is O(a) in getting a solution. In other words, the
proposed method is of polynomial complexity with respect to
the net size of Gl. Consider the method in [19]. It has to
repeatedly compute a so-called basic supervisor, which is of
exponential complexity with respect to the net size of Gl [19].
Consequently, we may conclude that the proposed method has
lower computational complexity than the method in [19] in
synthesizing a supervisor. In particular, when a maximally
permissive liveness-enforcing deterministic supervisor Gl
under no attack is given, the complexity of getting a solution
is reduced from the exponential one to the polynomial one by
using the proposed method. We note that the only additional
cost of using non-deterministic supervisors lies in choosing a
control action randomly online. Fortunately, such computa-
tion is actually negligible.

VI. Conclusions and Future Work

In this paper, we consider the use of non-deterministic con-

{m0}

{m1}
{m2}

{m4}{m3}

μ ({m1}) = {{t2}}

μ ({m3}) = {{t4}}

μ ({m0}) = {{t2}}

μ ({m2}) = {{t3}}t1

t2

t3

t 3

t 3

t5

t5 t5

t4

t4

Fig. 6. Maximally permissive liveness-enforcing deterministic supervisor
tolerant to the SM-attack O in the case study.

{m0}

{m1}

{m4}{m3}

μ ({m1}) = {{t2}}

μ ({m3}) = {{t4}}

μ ({m0}) = {{t2}}

μ ({m2
1}) = {{t2, t3, t5}}t4

{m2
1}

{m2
2}

μ ({m2
2}) = {{t3}}t1

t 2t 3

t3

t5

t5 t5

t4

t4

t3

Fig. 7. Liveness-enforcing deterministic supervisor tolerant to the SM-
attack O in the case study computed by the method in [19].

 246 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 1, JANUARY 2024

trol mechanisms to solve the liveness-enforcing problem in
the presence of cyber-attacks. Specifically, for a bounded Petri
net system vulnerable to a sensor-reading modification attack
(SM-attack), an algorithm is proposed that synthesizes an SM-
attack-tolerant liveness-enforcing supervisor that is allowed to
be non-deterministic. Compared with the method in [19] syn-
thesizing a liveness-enforcing deterministic supervisor toler-
ant to an SM-attack, the proposed method is simpler in com-
putational complexity. In our future work, we may consider
the improvement of the proposed method so that the resulting
supervisor is more permissive. Its extension to unbounded
Petri nets [36]−[38] remains open.

References

 R. Baheti and H. Gill, “Cyber-physical systems,” The Impact of Control
Technology, vol. 12, no. 1, pp. 161–166, 2011.

[1]

 J. Zhang, L. Pan, Q.-L. Han, C. Chen, S. Wen, and Y. Xiang, “Deep
learning based attack detection for cyber-physical system cybersecurity:
A survey,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 377–391, 2021.

[2]

 R. Su, “Supervisor synthesis to thwart cyber attack with bounded sensor
reading alterations,” Automatica, vol. 94, pp. 35–44, 2018.

[3]

 R. Meira-Góes, E. Kang, R. H. Kwong, and S. Lafortune, “Synthesis of
sensor deception attacks at the supervisory layer of cyber–physical
systems,” Automatica, vol. 121, p. 109172, 2020.

[4]

 L. Lin and R. Su, “Synthesis of covert actuator and sensor attackers,”
Automatica, vol. 130, p. 109714, 2021.

[5]

 D. Thorsley and D. Teneketzis, “Intrusion detection in controlled
discrete event systems,” in Proc. 45th IEEE Conf. Decision and
Control, 2006, pp. 6047–6054.

[6]

 L. K. Carvalho, Y.-C. Wu, R. Kwong, and S. Lafortune, “Detection and
mitigation of classes of attacks in supervisory control systems,”
Automatica, vol. 97, pp. 121–133, 2018.

[7]

 P. M. Lima, M. V. S. Alves, L. K. Carvalho, and M. V. Moreira,
“Security against communication network attacks of cyber-physical
systems,” J. Control, Automation and Electrical Systems, vol. 30, no. 1,
pp. 125–135, 2019.

[8]

 M. Agarwal, S. Purwar, S. Biswas, and S. Nandi, “Intrusion detection
system for PS-Poll DoS attack in 802.11 networks using real time
discrete event system,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 4,
pp. 792–808, 2017.

[9]

 M. Agarwal, S. Biswas, and S. Nandi, “Discrete event system
framework for fault diagnosis with measurement inconsistency: Case
study of rogue DHCP attack,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3,
pp. 789–806, 2019.

[10]

 M. Wakaiki, P. Tabuada, and J. P. Hespanha, “Supervisory control of
discrete-event systems under attacks,” Dynamic Games and
Applications, vol. 9, pp. 965–983, 2019.

[11]

 R. Meira-Góes, S. Lafortune, and H. Marchand, “Synthesis of
supervisors robust against sensor deception attacks,” IEEE Trans.
Automatic Control, vol. 66, no. 10, pp. 4990–4997, Oct. 2021.

[12]

 T. Ushio and S. Takai, “Nonblocking supervisory control of discrete
event systems modeled by mealy automata with nondeterministic output
functions,” IEEE Trans. Autom. Control, vol. 61, no. 3, pp. 799–804,
2016.

[13]

 S. Xu and R. Kumar, “Discrete event control under nondeterministic
partial observation,” in Proc. IEEE Int. Conf. Automation Science and
Engineering, 2009, pp. 127–132.

[14]

 X. Yin, “Supervisor synthesis for mealy automata with output functions:
A model transformation approach,” IEEE Trans. Autom. Control,
vol. 62, no. 5, pp. 2576–2581, 2017.

[15]

 L. Lin, Y. Zhu, and R. Su, “Towards bounded synthesis of resilient[16]

supervisors,” in Proc. IEEE 58th Conf. Decision and Control, 2019, pp.
7659–7664.

 Y. Wang and M. Pajic, “Attack-resilient supervisory control with
intermittently secure communication,” in Proc. IEEE 58th Conf.
Decision and Control, 2019, pp. 2015–2020.

[17]

 R. Meira-Góes, H. Marchand, and S. Lafortune, “Dealing with sensor
and actuator deception attacks in supervisory control,” Automatica,
vol. 147, p. 110736, 2023.

[18]

 D. You, S. Wang, and C. Seatzu, “A liveness-enforcing supervisor
tolerant to sensor-reading modification attacks,” IEEE Trans. Systems,
Man, and Cyber.: Syst., vol. 52, no. 4, pp. 2398–2411, 2022.

[19]

 C. Chen and H. Hu, “Liveness-enforcing supervision in AMS-oriented
hamgs: An approach based on new characterization of siphons using
Petri nets,” IEEE Trans. Autom. Control, vol. 63, no. 7, pp. 1987–2002,
2017.

[20]

 Y. Chen and Z. Li, “Design of a maximally permissive liveness-
enforcing supervisor with a compressed supervisory structure for
flexible manufacturing systems,” Automatica, vol. 47, no. 5, pp. 1028–
1034, 2011.

[21]

 B. Huang, M. Zhou, Y. Huang, and Y. Yang, “Supervisor synthesis for
fms based on critical activity places,” IEEE Trans. Syst., Man, and
Cyber.: Syst., vol. 49, no. 5, pp. 881–890, 2019.

[22]

ξ
 D. You, S. Wang, and M. Zhou, “Synthesis of monitor-based liveness-
enforcing supervisors for S3PR with -resources,” IEEE Trans. Syst.,
Man, and Cyber.: Syst., vol. 45, no. 6, pp. 967–975, 2015.

[23]

 G. Liu, Petri Nets: Theoretical Models and Analysis Methods for
Concurrent Systems. Singapore: Springer 2022.

[24]

 L. He and G. Liu, “Prioritized time-point-interval Petri nets modelling
multi-processor real-time systems and TCTLx,” IEEE Trans. Industrial
Informatics, vol. 19, no. 8, pp. 8784 –8794, 2023.

[25]

 K. Inan, “Nondeterministic supervision under partial observations,” in
Proc. 11th Int. Conf. Analysis and Optimization of Syst. Discrete Event
Syst., 1994, pp. 39–48.

[26]

 R. Kumar, S. Jiang, C. Zhou, and W. Qiu, “Polynomial synthesis of
supervisor for partially observed discrete-event systems by allowing
nondeterminism in control,” IEEE Trans. Autom. Control, vol. 50, no. 4,
pp. 463–475, 2005.

[27]

 S. Jiang and R. Kumar, “Supervisory control of discrete event systems
with CTL* temporal logic specifications,” SIAM J. Control and
Optimization, vol. 44, no. 6, pp. 2079–2103, 2006.

[28]

 S. Basu and R. Kumar, “Control of non-deterministic systems with
calculus specifications using quotienting,” IEEE/CAA J. Autom. Sinica,
vol. 8, no. 5, pp. 953–970, 2021.

[29]

 M. Fabian and B. Lennartson, “On non-deterministic supervisory
control,” in Proc. 35th IEEE Conf. Decision and Control, 1996, vol. 2,
pp. 2213–2218.

[30]

 H. Farhat, “Control of nondeterministic systems for bisimulation
equivalence under partial information,” IEEE Trans. Autom. Control,
vol. 65, no. 12, pp. 5437–5443, 2020.

[31]

 C. Zhou, R. Kumar, and S. Jiang, “Control of nondeterministic discrete-
event systems for bisimulation equivalence,” IEEE Trans. Autom.
Control, vol. 51, no. 5, pp. 754–765, 2006.

[32]

 S. Takai, “Synthesis of maximally permissive supervisors for
nondeterministic discrete event systems with nondeterministic
specifications,” IEEE Trans. Autom. Control, vol. 66, no. 7, pp. 3197–
3204, 2021.

[33]

 Y. Xie, X. Yin, and S. Li, “Opacity enforcing supervisory control using
non-deterministic supervisors,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 1763–1769, 2020.

[34]

 R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM J.
Computing, vol. 1, no. 2, pp. 146–160, 1972.

[35]

 J. Li, X. Yu, and M. Zhou, “Analysis of unbounded Petri net with lean
reachability trees,” IEEE Trans. Syst., Man, and Cybern.: Syste., vol. 50,
no. 6, pp. 2007–2016, 2020.

[36]

YOU AND WANG: NON-DETERMINISTIC LIVENESS-ENFORCING SUPERVISOR TOLERANT TO SM ATTACKS 247

http://dx.doi.org/10.1016/j.automatica.2018.04.006
http://dx.doi.org/10.1016/j.automatica.2020.109172
http://dx.doi.org/10.1016/j.automatica.2021.109714
http://dx.doi.org/10.1016/j.automatica.2018.07.017
http://dx.doi.org/10.1109/JAS.2016.7510178
http://dx.doi.org/10.1109/JAS.2017.7510379
http://dx.doi.org/10.1109/TAC.2021.3051459
http://dx.doi.org/10.1109/TAC.2021.3051459
http://dx.doi.org/10.1109/TAC.2015.2449051
http://dx.doi.org/10.1109/TAC.2016.2601118
http://dx.doi.org/10.1016/j.automatica.2022.110736
http://dx.doi.org/10.1016/j.automatica.2011.01.070
http://dx.doi.org/10.1109/TII.2022.3222342
http://dx.doi.org/10.1109/TII.2022.3222342
http://dx.doi.org/10.1109/TAC.2005.844725
http://dx.doi.org/10.1137/S0363012902409982
http://dx.doi.org/10.1137/S0363012902409982
http://dx.doi.org/10.1109/JAS.2021.1003964
http://dx.doi.org/10.1109/TAC.2020.2970148
http://dx.doi.org/10.1109/TAC.2006.875036
http://dx.doi.org/10.1109/TAC.2006.875036
http://dx.doi.org/10.1109/TAC.2020.3015453
http://dx.doi.org/10.1016/j.ifacol.2020.12.2315
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1137/0201010

 F. Lu, Q. Zeng, M. Zhou, Y. Bao, and H. Duan, “Complex reachability
trees and their application to deadlock detection for unbounded Petri
nets,” IEEE Trans. Syst., Man, and Cyber.: Syst., vol. 49, no. 6, pp. 1164–
1174, 2019.

[37]

 S. Wang, M. Gan, M. Zhou, and D. You, “A reduced reachability tree
for a class of unbounded Petri nets,” IEEE/CAA J. Autom. Sinica, vol. 2,
no. 4, pp. 345–352, 2015.

[38]

Dan You (Member, IEEE) received the B.S. degree
in electronic and information engineering and the
M.S. degree in information and communication engi-
neering from the School of Information and Elec-
tronic Engineering, Zhejiang Gongshang University
in 2014 and 2017, respectively, and the Ph.D. degree
in electronic and computer engineering from the
Department of Electrical and Electronic Engineering,
the University of Cagliari, Italy in 2021. She is cur-
rently a Member of the Discrete-Event System

Group, the School of Information and Electronic Engineering, Zhejiang
Gongshang University. Her research interests include supervisory control of

discrete event systems, fault prediction, and deadlock control and siphon com-
putation in Petri nets.

Shouguang Wang (Senior Member, IEEE) received
the B.S. degree in computer science from the Chang-
sha University of Science and Technology in 2000,
and the Ph.D. degree in electrical engineering from
Zhejiang University in 2005. He joined Zhejiang
Gongshang University in 2005, where he is cur-
rently a Professor with the School of Information and
Electronic Engineering, the Director of the Discrete-
Event Systems Group, and the Dean of System mod-
eling and Control Research Institute, Zhejiang Gong-

shang University. He was a Visiting Professor with the Department of Electri-
cal and Computer Engineering, New Jersey Institute of Technology, USA,
from 2011 to 2012. He is a Visiting Professor with the Electrical and Elec-
tronic Engineering Department, University of Cagliari, Italy, from 2014 to
2015. He was the Dean of the Department of Measuring and Control Technol-
ogy and Instrument from 2011 to 2014. His research interests include supervi-
sory control of discrete event systems and siphon computation in Petri nets.
He is currently an Associate Editor of the IEEE/CAA Journal of Automatica
Sinica.

 248 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 1, JANUARY 2024

http://dx.doi.org/10.1109/JAS.2015.7296528

	I Introduction
	II Preliminaries
	A Petri Nets
	B Deterministic and Non-Deterministic Supervisors
	C SM-Attacks

	III Problem Statement
	IV Non-Deterministic Control
	A Supervisor Graph
	B Proposed Algorithm
	C Case Study

	V Discussion
	VI Conclusions and Future Work
	References

