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   Abstract—In  this  paper,  we  study  the  supervisory  control
problem  of  discrete  event  systems  assuming  that  cyber-attacks
might  occur.  In  particular,  we  focus  on  the  problem  of  liveness
enforcement  and  consider  a  sensor-reading  modification  attack
(SM-attack) that may disguise the occurrence of an event as that
of another event by intruding sensor communication channels. To
solve the problem, we introduce non-deterministic supervisors in
the  paper,  which  associate  to  every  observed  sequence  a  set  of
possible  control  actions  offline  and  choose  a  control  action  from
the set randomly online to control the system. Specifically, given a
bounded  Petri  net  (PN)  as  the  reference  formalism and  an  SM-
attack,  an  algorithm  that  synthesizes  a  liveness-enforcing  non-
deterministic supervisor tolerant to the SM-attack is proposed for
the first time.
    Index Terms— Cyber-attacks,  cyber-physical  system  (CPS),  live-
ness, non-deterministic supervisors, Petri net (PN).
  

I.  Introduction

A cyber-physical  system  (CPS)  integrates  computing  and
communication  to  monitor  and  control  physical  pro-

cesses  [1].  The  use  of  communication  networks  not  only
endows  the  physical  components  of  CPS  with  information
processing and communication capabilities, but also increases
the vulnerability of CPS to cyber-attacks [2]. The supervisory
control  of  CPS  under  cyber-attacks  has  been  receiving  more
and  more  attentions,  especially  in  the  area  of  discrete  event
systems  (DESs).  By  modeling  a  CPS  as  a  DES,  the  existing
studies  dealing with  attack issues  can be  classified  into  three
categories,  namely,  attack  strategy  design  [3]−[5],  attack
detection and defense [6]−[10], and robust/tolerant supervisor
design [3],  [11]−[19]. In this work, we investigate the design
of robust/tolerant supervisors in the sense that a given control
specification can be satisfied by such a supervisor despite the
existence of attacks.

Much attention has been paid to the robust/tolerant supervi-
sor design in the literature. Wakaiki et al. [11] design a super-

visor robust against the so-called replacement-removal attacks
in the sensor channels. In more detail,  the attacker may erase
an event produced by the plant or replace it with another one
by tampering with sensor-readings in related sensor channels.
Essentially, their work is similar to the work dealing with the
supervisory  control  of  DES  with  nondeterministic  observa-
tions  [13]−[15].  The  conditions  under  which  a  supervisor
exists exactly enforcing a given control specification are pro-
vided  in  [13],  [14],  while  a  supervisor  synthesis  method  is
given in [15] using a model transformation technique.  Su [3]
considers sensor deception attacks as well but requires attacks
to  be  stealthy,  which  means  that  the  supervisor  cannot  be
aware  of  the  existence  of  attacks.  Specifically,  the  attacker
may replace an observable event generated by the plant with a
bounded  sequence  of  observable  events.  From  the  viewpoint
of  an  attacker,  the  supremal  stealthy  attack  strategy  is  com-
puted  first  and  then  a  supervisor  robust  against  the  attack  is
synthesized from the viewpoint  of  a  system defender.  Meira-
Góes et al. [12] investigate the synthesis of supervisors robust
to parameterized sensor deception attacks. In addition to sen-
sor deception attacks, actuator deception attacks are taken into
account in [16]−[18].

The above studies basically consider language or state spec-
ifications. In contrast, the liveness-enforcing control specifica-
tion  has  received  little  attention  in  the  presence  of  attacks.
Liveness  is  a  property  characterizing  a  specific  dynamic
behavior  of  a  system.  How  to  enforce  liveness  has  been
widely studied in different problem settings [20]−[23]. Never-
theless,  to our best  knowledge,  [19] is  the only work dealing
with the liveness-enforcing problem under attacks. In [19], the
problem is investigated based on bounded Petri net (PN) sys-
tems [24], [25] and sensor-reading modification attacks (SM-
attacks)  are  considered,  which  are  a  particular  class  of  the
replacement-removal  attacks  in  [11].  In  the  scenario  of  SM-
attacks,  an  intruder  has  the  ability  to  disguise  the  occurrence
of  some  transitions  as  that  of  other  transitions  by  modifying
sensor-readings  in  vulnerable  sensor  channels.  An  algorithm
that  synthesizes  a  liveness-enforcing  supervisor  tolerant  to
SM-attacks is  provided in [19].  Unfortunately,  the supervisor
is  not  guaranteed  to  be  maximally  permissive.  How  to  get  a
maximally  permissive  liveness-enforcing  supervisor  tolerant
to an SM-attack remains an open issue.

We note that the supervisor in [19] refers to a deterministic
supervisor,  which  means  that  the  supervisor  associates  every
observed sequence with a unique control action. In contrast to
deterministic supervisors, there are non-deterministic supervi-
sors.  In  simple  words,  a  non-deterministic  supervisor  asso-
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ciates every observed sequence with a set  of possible control
actions.  Which  one  is  chosen  to  control  the  system  is  deter-
mined  randomly  online.  Non-deterministic  supervisors  are
first proposed to tackle the standard supervisory control prob-
lem under partial observation [26], [27]. Compared with using
deterministic  supervisors,  the main advantages of  using them
include that 1) The complexity of synthesizing a supervisor is
reduced  from  being  exponential  to  polynomial;  and  2)  More
control  specifications  can  be  realized  such  as  temporal  logic
CTL* [28] and μ-calculus [29]. Moreover, in the setting of the
non-deterministic  plant  and non-deterministic  control  specifi-
cation, non-deterministic supervisors are capable of solving a
(bi)similarity  control  problem  [29]−[33].  Recently,  they  are
also used to solve an opacity enforcing problem [34].

In  this  paper,  we  design  non-deterministic  supervisors  to
enforce the property of liveness on DES under SM-attacks. As
far as we know, the liveness-enforcing problem under attacks
has never been solved by using non-deterministic supervisors.
Indeed, in the scenario of SM-attacks, it could happen that an
observation  does  not  explicitly  reflect  real  information.  For
example,  in  the  case  that  an  SM-attack  may  disguise  the  fir-
ing  of  transition t1 as  the  firing  of  transition t2,  when  we
observe t2, we are not sure which transition fires producing the
observation t2 if t1 and t2 are  both  enabled.  It  is  the  vague
information that  makes  the  liveness-enforcing problem under
SM-attacks  very  complex.  The  use  of  a  non-deterministic
supervisor can exactly eliminate the vague situation and keep
more possible behavior of the controlled system. In the above
example,  a  non-deterministic  supervisor  may give  two possi-
ble control actions, namely, disabling t1 or t2. No matter which
one is chosen online to control the system, we know with cer-
tainty which transition fires producing the observation t2. Fol-
lowing this basic idea, we develop an algorithm in the paper,
which  synthesizes  a  liveness-enforcing  non-deterministic
supervisor  tolerant  to  an  SM-attack.  We  may  see  that,  com-
pared with the current methods that synthesize a deterministic
supervisor,  the  proposed  method  enjoys  lower  computational
complexity in synthesizing a non-deterministic one. Note that
as in [19] PNs are used as a modeling tool to solve the prob-
lem  in  this  paper  and  only  bounded  PN  systems  are  consid-
ered.

The remainder of the paper is organized as follows. Section II
reviews  the  basic  notions  involved  in  the  paper.  Section  III
formulates the problem to be addressed in the paper.  How to
synthesize  a  non-deterministic  liveness-enforcing  supervisor
tolerant  to  SM-attacks  is  answered in  Section IV.  Discussion
on the proposed method is provided in Section V. Section VI
concludes this paper and indicates future work.  

II.  Preliminaries
  

A.  Petri Nets

Z+

A Petri net (PN) is a quadruple N = (P, T, F, W), where P is
the set of places, T is the set of transitions, F ⊆ (P × T)∪(T ×
P)  is  the  flow  relation  of  the  net,  and W: F→  assigns  to
each arc a weight. Given a node x ∈ P∪T, •x denotes the set of
inputs of x, i.e., •x = {x' ∈ P∪T |(x', x) ∈ F}, and x• denotes the
set of outputs of x, i.e., x• = {x' ∈ P∪T |(x, x') ∈ F}. A mark-
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ing of N is a mapping m: P→ . (N, m0) is called a PN system
with  initial  marking m0.  A  transition t ∈ T is  enabled  at  a
marking m, denoted as m[t , if m(p) ≥ W(p, t), ∀p ∈ •t. If the
firing of  the  enabled transition t at  marking m reaches  mark-
ing m',  it  is  written  as m[t m'.  A  sequence  of  transitions σ =
t1t2… tk ∈ T* is  enabled  at m,  denoted  as m[σ ,  if  there  exist
markings m1, m2 mk−1 such  that m[t1 m1[t2 m2[t3
mk−1[tk .  If  the  firing  of  the  enabled  transition  sequence σ at
marking m reaches marking m', it is written as m[σ m'. The set
of all reachable markings of (N, m0) is defined as R(N, m0) =
{m| ∃σ ∈ T*, s.t., m0[σ m}. A transition t is live at a marking m
if ∀m' ∈ R(N, m), ∃m'' ∈ R(N, m'), m''[t . A transition t is dead
at a marking m if ∀m' ∈ R(N, m), t is disabled at m'. A net sys-
tem (N, m0) is live if ∀t ∈ T, t is live at m0. The language of
(N, m0),  denoted  by L(N, m0),  is  defined  as  the  set  of  all
sequences that are enabled at the initial marking m0, i.e., L(N,
m0) = {σ ∈ T*|m0[σ }. A PN system (N, m0) is bounded if ∃B ∈

 = {1, 2,…}, s.t. ∀m ∈ R(N, m0), ∀p ∈ P, m(p) ≤ B. Other-
wise, it is unbounded.

⟩

A  reachability  graph  (RG)  of  a  PN  system  (N, m0)  is  a
directed  graph  describing  the  system  evolution.  Specifically,
each node of the RG corresponds to a reachable marking m ∈
R(N, m0) and each arc is labelled by a transition t ∈ T. Specifi-
cally,  there  exists  an  arc  labelled  by  transition t from a  node
representing marking m1 to a node representing marking m2 in
the RG if and only if it holds that m1[t m2.  

B.  Deterministic and Non-Deterministic Supervisors
Given a PN system (N, m0), we use Lo(N, m0) to denote the

set of all possible observed sequences of the system and use Δ =
2T to denote the set of all control actions, each of which refers
to  a  set  of  transitions  to  be  disabled,  or  equivalently,  whose
firing should be forbidden.

A  deterministic  supervisor  of  a  PN  system  (N, m0)  is μ:
Lo(N, m0)→Δ, associating to every observed sequence a con-
trol action. A non-deterministic supervisor of a PN system (N,
m0)  is μ: Lo(N, m0)→2Δ,  associating  to  every  observed
sequence a set of control actions. It  is worth noting that only
one control  action is  chosen among the set  to control  the PN
system during its evolution and it is chosen online non-deter-
ministically.

Given  a  PN system (N, m0)  and  a  supervisor μ,  we  denote
the  system under  the  control  of μ as  (N, m0)|μ and  the  set  of
reachable markings of (N, m0)|μ as R(N, m0)|μ.

⟩
⟩

A supervisor μ is said to be liveness-enforcing for a PN sys-
tem  (N, m0)  if  the  controlled  system  (N, m0)|μ is  live,  i.e.,
∀t ∈ T, ∀m ∈ R(N, m0)|μ, ∃m' ∈ R(N, m)|μ, s.t. m' [μ t , where
m' [μ t  denotes that t can fire at marking m' under the control
of μ.  

C.  SM-Attacks
We define an SM-attack as a mapping O: T→2T.
The set O(t) enumerates all the possible observations when t

occurs due to the existence of the SM-attack.
Example 1: Consider a bounded PN (N, m0) with the set of

transitions T =  {t1, t2, t3} and an SM-attack O such that O =
[O(t1), O(t2), O(t3)]T = [{t1}, {t2, t3}, {t3}]T.  We can see that,
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due  to  the  existence  of  the  SM-attack,  the  occurrence  of t2
might  produce  the  observation t2 or t3.  In  other  words,  the
occurrence of t2 is possibly disguised as the occurrence of t3.
As for t1 and t3, their observations can never be changed.

∪
σ∈L(N,m0) O(σ)

We may generalize the notation O(·) to a sequence of transi-
tions σ = t1t2…tk ∈ T* such that O(σ) = O(t1)O(t2)…O(tk). Note
that  given two sets A and B,  it  is  defined that AB =  {ab| a ∈
A, b ∈ B}. Then, given a PN system (N, m0) and an SM-attack
O, we have Lo(N, m0) = .  

III.  Problem Statement

The problem that we plan to address in the paper is formu-
lated as follows.

Problem 1: Given a bounded PN system (N, m0) and an SM-
attack O, design a liveness-enforcing supervisor tolerant to O.

“Tolerant” means  that  the  supervisor  is  liveness-enforcing
even in the presence of an SM-attack.  The problem has been
investigated  in  [19],  where  the  solution  is  a  deterministic
supervisor that is not guaranteed to be maximally permissive.
In  this  work,  we  intend  to  solve  the  problem by  designing  a
supervisor that is allowed to be non-deterministic.  

IV.  Non-Deterministic Control

In  this  section,  we  first  introduce  a  so-called  supervisor
graph that represents a supervisor in this paper and then pro-
vide  an  algorithm that  synthesizes  a  non-deterministic  super-
visor for solving Problem 1.  

A.  Supervisor Graph
A structure called a supervisor graph is formally defined in

[19] to describe a deterministic supervisor intuitively. We still
use it in this paper but with some modification such that it can
describe  a  non-deterministic  supervisor  as  well.  In  simple
words,  a  supervisor  graph  is  now  a  directed  graph  where  a
node is assigned to be an initial node, each arc is labelled by a
transition  and  each  node  is  associated  with  a  set  of  control
actions. Note that we simply write μ(x) to represent the set of
control  actions  associated  with  a  node x.  Indeed,  for  all
observed sequences leading from the initial node to node x in
a  supervisor  graph,  they  are  associated  with  the  same  set  of
control actions, i.e., μ(x).

Example 2: Fig. 1 shows a  supervisor  graph with  an initial
node x0.  It  tells  that  1)  for  any  observed  sequence  leading
from  initial  node x0 to  node x1,  the  set  of  control  actions  is
{{t2},  {t3}},  which  means  that  it  is  chosen  non-deterministi-
cally  online  to  disable t2 or t3;  2)  for  any  observed  sequence
leading  from x0 to x3, t1 should  be  disabled;  and  3)  for  any
observed sequence leading from x0 to node x0 or x2, no transi-
tion  should  be  disabled.  To  be  intuitive,  nodes  with  a  non-
empty set of control actions are colored in grey.

In the remainder of the paper, we omit writing μ(x) = ∅ for
every  node x in  a  supervisor  graph  to  save  space.  Besides,  a
node  in  a  supervisor  graph  basically  corresponds  to  a  set  of
markings.  Thus,  for  the  sake  of  simplicity,  we  may  name  a
node by its  corresponding marking set  if  there is  no ambigu-
ity.

Example  3: Consider  a  PN system (N,  m0)  in Fig. 2(a).  Its

RG Gr shown in Fig. 2(b)can be viewed as a supervisor graph
of  (N,  m0).  It  tells  that  whatever  we  observe,  we  do  not  dis-
able  any  transition.  Also,  graph Gl in Fig. 3 is  a  supervisor
graph  of  (N,  m0).  It  indicates  that  1)  When  we  observe  a
sequence (e.g., t2) leading to node {m1}, we should disable t2;
2)  When  we  observe  a  sequence  (e.g., t2t3)  leading  to  node
{m3},  we  should  disable t4;  and  3)  When  we  observe  a
sequence  (e.g., t3)  leading  to  other  nodes,  we  do  not  disable
any transition. Trivially, Gl represents a deterministic supervi-
sor  since  no  node  is  associated  with  a  set  containing  two  or
more control actions.
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Fig. 2.     Case study. (a) PN system (N, m0) modelled for chemical reactions;
(b) Its RG Gr.
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Fig. 3.     Maximally permissive liveness-enforcing deterministic supervisor
Gl of the PN system (N, m0) in Fig. 2(a) under no attack.
 

, . . . ,

x1
l1−→ x2

l2−→ ·· ·
ln−1−−−→ xn

We  conclude  this  subsection  by  introducing  some  struc-
tures  in  a  supervisor  graph.  Given  a  supervisor  graph G,  we
say α = x1l1x2l2… ln−1xn a  path  if ∀i ∈ {1,  2  n−1},  there
exists a directed arc with label li from node xi to node xi+1 in
G.  Alternatively,  we  may  write  the  path α = x1l1x2l2… ln−1xn
as . Given two nodes x1 and x2 in G, we
say x2 is accessible from x1 (or equivalently, x1 can access x2)
if there exists a path from x1 to x2. By default, a node is acces-
sible from itself via an empty path. A subgraph G' of G is said
to be a strongly connected component (SCC) if G' is strongly
connected  and  maximal.  We  use La(G')  to  denote  the  set  of
arc labels that appear in SCC G'. Given a node x and an SCC

 

x0 x1

x2x3

t1

t2t3

t4

t5
µ(x1) = {{t2},{t3}}

µ(x3) = {{t1}}

µ(x0) = 

µ(x2) = 

 
Fig. 1.     Supervisor graph.
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G' in G, we say that G' is accessible from x (or equivalently, x
can access G') if there exists a node x' in G' accessible from x.
Note that x and x' can be the same node and we can see that if
a node can access an SCC, the node can access every node in
this SCC. Moreover, given a node x in a supervisor graph, we
may  use • x to  denote  the  set  of  input  nodes  of x and x•  to
denote  the  set  of  output  nodes  of x.  A node x is  said  to  be  a
sink node if it  has no output node, i.e., x• = ∅.  An SCC G' is
said to be a sink SCC if no node outside G' is accessible from
a node in G'.  

B.  Proposed Algorithm
In  this  subsection,  we  propose  an  algorithm to  solve  Prob-

lem 1. To this end, we introduce the following concepts.
Definition 1: Given a set T' ⊆ T of  transitions and an SM-

attack O, we say that Π ⊆ 2T' is a feasible partition on T' w.r.t.
O if
∪π∈Ππ1)  = T';

2) ∀π ∈ Π, |π| ≥ 1; and
3) ∀π ∈ Π, (|π| = 1)∨(∀t1, t2 ∈ π, O(t1)∩O(t2) = ∅).
In Definition 1, condition 1) means that the union of all sets

in Π is equal to the set T'; condition 2) requires that every set
in  Π  contains  at  least  one  transition;  and  condition  3)  indi-
cates that for every set in Π, either it contains only one transi-
tion or no two transitions in it have the same observation.

1

Definition 2: Given a set T' ⊆ T of  transitions and an SM-
attack O,  a  feasible  partition Π ⊆ 2T' is  said  to  be  optimal  if
for any other feasible partition Π' ⊆ 2T', it holds that ∀π ∈ Π,
∀π' ∈ Π', π  π'.

In simple words, when we compute a feasible partition on a
set of transitions, we actually divide the set of transitions into
several groups such that any two transitions in a group do not
have the same observation. The optimality of a feasible parti-
tion  indicates  that  no  more  transition  can  be  added  to  any
group such that the partition remains to be feasible.

T̃ (t)
T̃ (t)

We  next  present  a  function  named OptimalFeasibleParti-
tion (i.e., Function 1), by which the optimal feasible partition
is derived. Note that, given a transition t ∈ T and an SM-attack
O,  we  denote  =  {t' ∈ T\{t}|O(t)∩O(t')  ≠ ∅},  namely,

consists  of  all  transitions who possibly produce the same
observation as t due to the SM-attack O.

Function 1 Π := OptimalFeasiblePartition (T', O)

Input: A set T' ⊆ T of transitions and an SM-attack O;
Output: Π ⊆ 2T'.
1) Π := {T'};
2) for t ∈ T' do
3) 　for π ∈ Π do

T̃ (t)4) 　　if t ∈ π ∧ ∩π ≠ ∅ then
T̃ (t)5) 　　　π1 := π\  and π2: = π\{t};

6) 　　　Π := Π\{π}∪{π1, π2};
7) 　　end if
8) 　end for
9) end for
10) output: Π.

Result 1: Given a set of transitions T' ⊆ T and an SM-attack

O
O,  Π := OptimalFeasiblePartition(T', O) is the optimal feasi-
ble partition on T' w.r.t. .

⊂
T̃ (t′)

T̃ (t′)

Proof: By  contradiction,  suppose  that  Π  is  not  the  optimal
feasible  partition.  It  means  that  there  exists  a  feasible  parti-
tion  Π'  such  that ∃π ∈ Π, ∃π' ∈ Π',  π  π'.  Let t ∈ π'\π.  By
function OptimalFeasiblePartition, ∃t' ∈ π, s.t. t ∈  since
otherwise t is a transition in π. Hence, we can see that ∃t, t' ∈
π',  s.t., t ∈ ,  which contradicts  that  Π'  is  a  feasible parti-
tion. As a result, Π is the optimal feasible partition on T' w.r.t.
O. ■

T̃ (t1)
T̃ (t1)

Example  4: Consider  a  PN  system  (N, m0)  with  the  set  of
transitions T = {t1−t7} and an SM-attack O = [O(t1), O(t2), O(t3),
O(t4), O(t5), O(t6), O(t7)]T = [{t1, t6, t7},{t2, t6},{t3, t7}, {t4, t3},
{t5}, {t6},{t7}]T. Consider a set of transitions T' = {t1−t5}. We
compute  the  optimal  feasible  partition  on T' by  calling Opti-
malFeasiblePartition (T', O).  First,  Π  is  initialized  as  {π},
where π = {t1−t5}. Then, we consider t1. Since  = {t2, t3,
t6, t7}, we have π1 = π\  = {t1, t4, t5} and π2 = π\{t1} = {t2,
t3, t4, t5}. Hence, Π is updated as {π1, π2}. Similarly, we con-
sider t2, t3, t4, and t5 one after another. Finally, we get the set
Π = {{t1, t4, t5},  {t2, t3, t5},  {t2, t4, t5}},  which is  the  optimal
feasible partition on T' w.r.t. O.

TG
out(x)

TG
out(x)

Now,  we  are  ready  to  introduce  Algorithm  1.  Note  that,
given  a  node x in  a  supervisor  graph G,  we  use  to
denote the set of transitions labelling the output arcs of x in G.
Moreover, node x is said to be a confusing node w.r.t. an SM-
attack O if ∃t1, t2 ∈ , s.t. O(t1)∩O(t2) ≠ ∅. Also, we may
call a supervisor graph as a supervisor for the sake of simplic-
ity in the following discussions.

Algorithm 1 Supervisor Synthesizer

Input: A bounded PN system (N, m0) and an SM-attack O.
Output: A supervisor graph G#.

    1) Gl := MaxLiveEnforceSupervisor (N, m0);  /*See  Function  2.
MaxLiveEnforceSupervisor returns a maximally permissive live-
ness-enforcing  deterministic  supervisor  of  (N, m0)  under  no
attack [19] */

2) for each node x in Gl do
3) 　if x is a confusing node w.r.t. O then

TGl
out(x)4) 　　Π := OptimalFeasiblePartition ( , O);

µ(x) :=
∪
π∈Π {(T

Gl
out(x)\π)∪µ(x)}5) 　　 ;

6) 　end if
TGl

out(x)7) 　for each t ∈  do
8) 　　for t' ∈ O(t)\{t} do
9) 　　　add an arc labelled by t'|t from x to x', where x' is a node

reached from node x via an arc labelled by t;
10) 　　end for
11) 　end for
12) end for
13) denote the final graph as G#;
14) output: G#.

Function 2 Gl = MaxLiveEnforceSupervisor (N, m0)

Input: A bounded PN system (N, m0) with N = (P, T, F);
Output: A maximally permissive liveness-enforcing deterministic

supervisor Gl.
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1) compute the RG Gr of (N, m0);
    2) Φ  := Tarjan(Gr);  /*Tarjan  [35]  here  returns  the  set  of  SCCs

excluding those that are exactly a single node in Gr */
13) Φ# := {α ∈ Φ| T  La(α)};

4) Gl := Gr;
5) while there exists a sink node x or a sink SCC α ∈ Φ# in Gl do
6) 　if there exists a sink node x in Gl then
7) 　for each x' ∈ •x do
8) 　　μ(x')  := μ(x')∪T',  where T' denotes  the  set  of  transitions

labeling the arcs from x' to x;
9) 　end for
10) 　 update Gl by deleting x and its related arcs;
11) 　end if
12) 　if there exists a sink SCC α ∈ Φ# in Gl then
13) 　for each x' ∈ •xα, where xα is a node in α and x' is a node out-

side α do
14) 　　μ(x'):  = μ(x')∪T',  where T' denotes  the  set  of  transitions

labeling the arcs from x' to xα;
15) 　end for
16) 　 update Gl by deleting α and its related arcs;
17) 　end if
18) end while
19) output: Gl.

TGl
out(x)

TGl
out(x)

TGl
out(x) TGl

out(x)

TGl
out(x)

TGl
out(x)

We  explain  Algorithm  1  as  follows.  First,  we  compute  a
maximally  permissive  liveness-enforcing deterministic  super-
visor for the input PN system under no attack. The supervisor
can  be  computed  by  calling Gl = MaxLiveEnforceSupervisor
(N, m0), which is adapted from [19]. Next, for every node x in
Gl,  we determine if it  is a confusing node, i.e.,  if  there are at
least two transitions in  who possibly produce the same
observation  due  to  the  attack O.  If  so,  we  update  the  set  of
control actions at the node. Specifically, we first compute the
optimal feasible partition Π on  w.r.t. O by Step 4 and
then  get  a  set  of  control  actions  (i.e., μ(x))  based  on  Π  by
Step  5.  The  purpose  of  computing  a  feasible  partition  on

 w.r.t. O is  to  divide  transitions  in  into  several
groups  such  that  any  two  transitions  in  a  group  cannot  have
the same observation under the attack. In this way, if we per-
mit  the firing of  transitions in one group,  we know with cer-
tainty which transition actually fires when getting an observa-
tion. Note that, when computing a feasible partition on ,
we  consider  the  control  in  terms  of  permitting  the  firing  of
some transitions, while a control action defined in the paper is
to forbid the firing of some transitions. Thus, we do the equiv-
alent  transformation  as  shown  in  Step  5  to  determine μ(x).
Specifically,  for  each group π ∈ Π, \π is  accordingly a
set  of  transitions  to  be  disabled.  Also,  the  set  of  transitions
disabled  originally  at  node x should  be  taken  into  considera-
tion  for  computing  each  control  action.  Moreover,  we  note
that  the computation of  the optimal  feasible  partition aims to
improve the  permissiveness  of  each control  action.  Then,  we
add some output arcs to node x (no matter if it is a confusing
node)  such  that  all  the  possible  observations  under  attack O
are included, which is shown in Steps 7−11. This indeed leads
to  the  resulting  supervisor  with  two  kinds  of  arc  labels.  We

note that a label with two transitions, e.g., t'|t, denotes that t' is
observed but what actually occurred is t,  while a label with a
single  transition,  e.g., t,  indicates  that t is  observed and what
actually  occurred  is  also t.  The  final  supervisor  graph  output
by Algorithm 1 is denoted as G#.

How G# works  online  to  control  the  PN  system  (N, m0)
under attack O is shown exhaustively in Procedure 1. In Pro-
cedure 1, we use xcur to denote the current node reached in the
supervisor G# during  the  system  evolution  and  the  current
control  action  on  the  PN  system  is  chosen  non-deterministi-
cally among μ(xcur). At the beginning, xcur is initialized as the
initial node x0 of G# and thereby we choose non-deterministi-
cally  among μ(x0)  a  set Tdis of  transitions  to  disable.  Then,
every time we observe a transition in the PN system, we first
determine  which  node  is  reached  accordingly  in  the  supervi-
sor G#, i.e., update xcur, and then choose non-deterministically
among μ(xcur) a set Tdis of transitions to disable.

Procedure 1 Online Execution of Supervisor G#

Input: A bounded PN system (N, m0)  under  an  SM-attack O and
the supervisor G#computed by Algorithm 1

1) xcur := x0; /* x0 -is the initial node of G# */
   2) choose non-deterministically among μ(xcur) a set of transitions to

disable, denoted as Tdis;
3) while a transition t is observed do
4) 　find an output arc of xcur with a label l such that 1) l = t ∧ t ∉

Tdis; or 2) l = t|t' ∧ t' ∉ Tdis;
5) 　xcur := Reach(xcur, l);  /* Reach(xcur, l) returns a node reached

from node xcur via an output arc with label l */
6) 　choose  non-deterministically  among μ(xcur)  a  set  of  transi-

tions to disable, denoted as Tdis;
7) end while

TGl
out(x)

TGl
out(x)

Example  5: Continue  to  consider  Example  4.  Suppose  that
the  maximally  permissive  liveness-enforcing  deterministic
supervisor Gl of  the  PN  system  (N, m0)  under  no  attack  is
computed and there is a node x in Gl such that  = T' =
{t1−t5} and μ(x) = {{t6}}. To be intuitive, we consider a case
as  depicted  in Fig. 4(a)  where  only  the  subgraph  of Gl that
consists  of  node x together  with  its  output  arcs  and  nodes  is
shown. Clearly, x is  a  confusing node.  Let  us see how Algo-
rithm 1 works regarding x. First, we compute the optimal fea-
sible partition Π on  w.r.t. O, which has been derived in
Example 4. Next, it is computed that μ(x) = {{t2, t3, t6}, {t1, t4,
t6}, {t1, t3, t6}}. Finally,  we add output arcs to node x,  which
results in the subgraph in Fig. 4(b). This subgraph tells that a
control action at node x is chosen non-deterministically among
{t2, t3, t6},  {t1, t4, t6} and {t1, t3, t6}.  Consider  as  an  example
that  {t2, t3, t6}  is  chosen  as  the  control  action  and  then t6 is
observed. By Procedure 1, we should select the arc with label
t6|t1,  which  means  that  it  is  the  firing  of t1 that  produces  the
observation t6,  and  thus  we  reach  node x1 to  determine  the
next control action.

Given a bounded PN system (N, m0), an SM-attack O, and a
supervisor G#computed by Algorithm 1,  we have the follow-
ing result.
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Lemma 1: Let x and x' be two nodes in G# corresponding to
markings m and m', respectively. It holds that m' ∈ R(N, m)|G#
if there exists a path from node x to node x' in G#.

Proof: Without  loss  of  generality,  we assume that  the  path
from node x to node x' in G# is
 

x1
l1−→ x2

l2−→ x3
l3−→ ·· ·

ln−2−−−→ xn−1
ln−1−−−→ xn

, . . . ,

, . . . ,

, . . . ,

TGl
out(x) , . . . ,

where xi (i = 1, 2  n) is a node with x1 = x and xn = x' and li
(i = 1, 2  n−1) is the arc label. Moreover, let m1, m2, …, mn
be  the  markings  associated  with  nodes x1, x2  xn in G#,
respectively. Note that m1 = m and mn = m'. We observe that,
for  every node x in G#, μ(x)  is  computed based on a  feasible
partition  on .  It  thus  holds  that,  for i =  1,  2  n,
∃Tdis(i) ∈ μ(xi) such that 1) li = t ∧ t ∉ Tdis(i); or 2) li = t'|t ∧ t ∉
Tdis(i). In either case, mi+1 is reachable from mi in the case that
a  control  action  is  appropriately  chosen  among μ(xi).  Conse-
quently, we have mn ∈ R(N, m1)|G#, i.e., m' ∈ R(N, m)|G#. ■

Theorem  1: Given  a  bounded  PN  system  (N, m0)  and  an
SM-attack O, G#computed  by  Algorithm  1  is  a  liveness-
enforcing supervisor tolerant to O if G# ≠ ∅.

Proof: The  proof  consists  of  two  parts,  namely,  1) G# is  a
feasible  supervisor  under  attack O in  the  sense  that G# asso-
ciates every observed sequence a set of control actions; and 2)
G# is liveness-enforcing.

TGl
out(x)

TGl
out(x)

1)  Algorithm  1  first  computes  a  liveness-enforcing  deter-
ministic supervisor Gl under no attack. It means that Gl asso-
ciates  to  every  observed  sequence,  which  is  also  the  really
occurred sequence, a control action. Structurally, G# is a resul-
tant graph by adding more arcs to Gl. Since arcs are added in
detail  as Steps 7−11 of Algorithm 1 for every node in Gl,  all
the possible observations and their  corresponding really fired
transitions  in  the  presence  of  attack O are  provided  in G#.
Moreover,  at  every  confusing  node x in Gl (i.e., ∃t1, t2 ∈

,  s.t. O(t1)∩O(t2)  ≠ ∅),  we  update μ(x),  the  set  of  con-
trol actions. Since μ(x) is computed based on the optimal fea-
sible  partition  on  w.r.t. O,  whatever  control  action  is
chosen  from μ(x),  we  know  with  certainty  which  transition
actually  fires  when  getting  an  observation.  In  other  words,
when we observe a  transition at x,  we can find one and only
one  arc  that  leads  from  the  node  to  the  next  node  by  Proce-
dure  1. Thus,  for  every  observed  sequence,  it  corresponds  to
one and only one set of control actions in G#. As a result, G# is
a feasible supervisor under attack O.

2)  For  the  sake  of  simplicity,  we  say  that  an  SCC G' in  a
supervisor  graph is  complete if  its  arc labels  cover all  transi-
tions of the considered PN, i.e., T ⊆ La(G'). Now, we start the
proof as follows.

⟩

Since Gl is  a  liveness-enforcing  deterministic  supervisor
under  no  attack,  we  have ∀t ∈ T, ∀m ∈ R(N, m0)|Gl, ∃m' ∈
R(N, m)|Gl, s.t. m'[Gl t . Moreover, every node in Gl can access
a  complete  SCC  since  (N, m0)  is  a  bounded  system.  Struc-
turally,  every  node  in G# can  also  access  a  complete  SCC
since G# is a resultant graph by adding more arcs to Gl.

Let x be  a  node  in G# corresponding  to  a  marking m.
Clearly, there exists a path in G# from the initial node x0 to x.
Thus, we have m ∈ R(N, m0)|G# due to Lemma 1. Also, x can
access  a  complete  SCC. Hence,  for  each t ∈ T,  there exists  a
node x' with a marking m' in the complete SCC such that m' ∈
R(N, m)|G# and ∃Tdis ∈ μ(x'),  s.t. t∉Tdis,  i.e., t can  fire  at m'.
Trivially, all the markings in G# constitute the set R(N, m0)|G#.
As a result, we can see that
 

∀t ∈ T, ∀m ∈ R (N,m0)|G#, ∃m′ ∈ R(N,m)
∣∣∣
G# , s.t. m′ [G#t⟩ .

Therefore, G#is liveness-enforcing. ■  

C.  Case Study
In  this  subsection,  we  provide  a  case  study  where  the  pro-

posed  method  is  applied.  This  case  study  is  originally  pre-
sented in [19].

An automatic control system is designed for playing a game
on chemical reactions, where chemical (1)−(5) are involved.
 

Na2CO3+CO2+H2O = 2NaHCO3 (1)
 

NaHCO3+NaOH = Na2CO3+H2O (2)
 

NaHCO3+HCl = NaCl+CO2 ↑ +H2O (3)
 

CO2+2NaOH = Na2CO3+H2O (4)
 

NaHCO3+HNO3 = NaNO3+CO2 ↑ +H2O (5)
Suppose  that  NaOH,  HCl,  HNO3 and  H2O  are  sufficiently

provided  and  the  chemical  transformation  among  Na2CO3,
CO2, and NaHCO3 is the focus of the game. Consequently, the
chemical  reactions  can  be  modelled  by  the  PN  system  in
Fig. 2(a),  where p1−p3 represent  NaHCO3,  Na2CO3 and CO2,
respectively,  and t1−t5 represent  the  chemical  reactions
(1)−(5),  respectively.  To  be  intuitive,  the  meanings  of  places
and the needed substances triggering chemical transformation
are annotated. Place p1 contains two tokens in the initial mark-
ing,  which  models  the  initial  condition  that  two  copies  of
NaHCO3 are  provided.  The  control  specification  on  the  sys-
tem requires that any of the five chemical (1)−(5) can always
be  performed  after  finite  times  of  other  chemical  reactions.
This corresponds to the liveness specification on the PN sys-
tem in Fig. 2(a).

The  supervisor  in  the  closed-loop  control  system  observes
the occurrence of chemical reactions by receiving signals from
sensors  and gives  control  actions  based on observations.  The
supervisor  communicates  with  sensors/actuators  via  commu-
nication  networks,  which  makes  the  system  possibly  suffer
from the intrusion of malicious agents. Suppose that we have
the  prior  knowledge  that  the  sensor  signals  produced  by  the
chemical  (2)  are  prone  to  be  disguised  as  the  sensor  signals
produced  by  the  chemical  (3)  in  related  sensor  communica-
tion channels by an intruder. Then, we can see that the system

 

(a) (b)

t 1 t 2 t3 t4 t 1 t 2 t3 t4
t5

t5

 
Fig. 4.     Illustrative  example:  (a)  A  subgraph  of Gl-;  (b)  A  subgraph  of
G#computed by Algorithm 1.
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is  vulnerable to the SM-attack O = [O(t1), O(t2), O(t3), O(t4),
O(t5)]T =  [{t1},{t2, t3},{t3},  {t4},  {t5}]T.  In  other  words,  the
SM-attack  may  disguise  the  occurrence  of t2 as  the  occur-
rence of t3.

TGl
out({m0})

Now,  we  compute  a  liveness-enforcing  supervisor  tolerant
to the SM-attack for the PN system in Fig. 2(a) by Algorithm 1.
First,  we compute a maximally permissive liveness-enforcing
deterministic supervisor Gl of (N, m0) under no attack, which
is shown in Fig. 3. Next, we update the set of control actions
at every confusing node in Gl and add more arcs to Gl. There
are two confusing nodes,  i.e.,  {m0} and {m2}.  Consider node
{m0}.  The  optimal  feasible  partition  on  w.r.t. O is
Π = {{t2, t5},{t3, t5}} and thus we have μ({m0}) = {{t3}, {t2}}.
Then, we add an arc labelled by t3|t2 from node {m0} to node
{m1}.  Similarly,  for  node  {m2},  we  have μ({m2})  =  {{t3},
{t2}} and add an arc labelled by t3|t2 from node {m2} to node
{m3}. Since no more arcs should be added, we obtain the final
supervisor G# as  shown  in Fig. 5.  It  is  a  liveness-enforcing
non-deterministic  supervisor  for  the  PN  system  in
Fig. 2(a) tolerant to O.
 

{m0}

{m1}
{m2}

{m4}{m3}

μ ({m0}) = {{t2}, {t3}}
μ ({m1}) = {{t2}}
μ ({m2}) = {{t2}, {t3}}
μ ({m3}) = {{t4}}t3|t2

t3|t2

t1

t 2

t 2

t3

t 3 t3

t5

t5 t5

t4

t4

 
Fig. 5.     Supervisor G# computed by Algorithm 1 in the case study.
   

V.  Discussion

We can see that a non-deterministic supervisor,  if  associat-
ing  to  every  observed  sequence  a  set  with  only  one  control
action, is essentially a deterministic supervisor; while in other
cases,  a  non-deterministic  supervisor  can  be  viewed  as  the
combination of multiple or even countless deterministic super-
visors. The online execution of a non-deterministic supervisor
is  indeed  also  a  procedure  of  determining  a  deterministic
supervisor  that  is  used  to  control  the  system  since  a  control
action is fixed online every time a sequence is observed.

Consider  the  non-deterministic  supervisor  in Fig. 5.  It  can
be  viewed  as  the  combination  of  countless  deterministic
supervisors. In particular, there are two choices at node {m0}
and  {m2},  namely,  disabling t2 or t3.  In  the  case  that  we
always disable t2 at node {m0} and disable t3 at node {m2}, we
may  extract  a  deterministic  supervisor,  as  shown  in Fig. 6,
from the non-deterministic supervisor. The supervisor in Fig. 6
is  indeed  a  maximally  permissive  liveness-enforcing  deter-
ministic  supervisor  tolerant  to  the  SM-attack O in  the  case
study. Note that  a liveness-enforcing deterministic supervisor
is  also  computed  by  the  method  in  [19]  for  the  case  study,
which  is  shown  in Fig. 7.  We  can  see  that  the  supervisor  in
Fig. 7 is  more  restrictive  than  the  one  in Fig. 6,  i.e.,  it  is  not
maximally  permissive.  For  example,  sequence t3t5 is  allowed

to  fire  by  the  supervisor  in Fig. 6,  while  it  is  not  allowed  to
fire  by  the  supervisor  in Fig. 7.  On  the  contrary,  sequences
that  are  allowed  to  fire  by  the  supervisor  in Fig. 7 are  all
allowed to fire by the supervisor in Fig. 6.

We  finally  compare  the  computational  complexity  of  the
proposed method and the one in [19] in finding a solution to
Problem  1.  We  observe  that  both  methods  start  from  con-
structing a maximally permissive liveness-enforcing determin-
istic  supervisor Gl under  no  attack.  This  step  determines  the
exponential  complexity  of  both  methods  with  respect  to  the
size of the considered PN system since the RG has to be com-
puted. We then focus on their remaining steps for comparison
in what  follows.  Consider  the proposed method.  In the worst
case, it updates once the set of control actions at every node of
Gl and handles every arc of Gl once. Suppose that Gl contains
a nodes  and  arcs  in  total.  Then,  the  complexity  of  the  pro-
posed method is O(a) in getting a solution. In other words, the
proposed method is of polynomial complexity with respect to
the  net  size  of Gl.  Consider  the  method  in  [19].  It  has  to
repeatedly  compute  a  so-called  basic  supervisor,  which  is  of
exponential complexity with respect to the net size of Gl [19].
Consequently, we may conclude that the proposed method has
lower  computational  complexity  than  the  method  in  [19]  in
synthesizing  a  supervisor.  In  particular,  when  a  maximally
permissive  liveness-enforcing  deterministic  supervisor Gl
under no attack is given, the complexity of getting a solution
is reduced from the exponential one to the polynomial one by
using the  proposed method.  We note  that  the  only  additional
cost of using non-deterministic supervisors lies in choosing a
control  action  randomly  online.  Fortunately,  such  computa-
tion is actually negligible.  

VI.  Conclusions and Future Work

In this paper, we consider the use of non-deterministic con-
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Fig. 6.     Maximally  permissive  liveness-enforcing  deterministic  supervisor
tolerant to the SM-attack O in the case study.
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Fig. 7.     Liveness-enforcing  deterministic  supervisor  tolerant  to  the  SM-
attack O in the case study computed by the method in [19].
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trol  mechanisms  to  solve  the  liveness-enforcing  problem  in
the presence of cyber-attacks. Specifically, for a bounded Petri
net system vulnerable to a sensor-reading modification attack
(SM-attack), an algorithm is proposed that synthesizes an SM-
attack-tolerant liveness-enforcing supervisor that is allowed to
be non-deterministic. Compared with the method in [19] syn-
thesizing  a  liveness-enforcing  deterministic  supervisor  toler-
ant to an SM-attack, the proposed method is simpler in com-
putational  complexity.  In  our  future  work,  we  may  consider
the improvement of the proposed method so that the resulting
supervisor  is  more  permissive.  Its  extension  to  unbounded
Petri nets [36]−[38] remains open.
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