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   Dear Editor,

This letter proposes a multimodal data-driven reinforcement learn-
ing-based method for  operational  decision-making in  industrial  pro-
cesses.  Due  to  the  frequent  fluctuations  of  feedstock  properties  and
operating conditions in the industrial  processes,  existing data-driven
methods cannot effectively adjust  the operational variables.  In addi-
tion, multimodal data such as images, audio, and sensor data are still
not  fully  used  in  industrial  processes.  To  overcome  the  impact  of
feedstock  condition  fluctuations  and  effectively  utilize  operational
conditions based on the multimodal data, a new method named feed-
stock-guided  multimodal  actor-critic  (FGM-AC)  is  proposed.  This
letter incorporates the feedstock properties and multimodal data into
the state space to guide the decision-making process based on a rein-
forcement  learning  (RL)  framework  to  achieve  a  comprehensive
human perception. The effectiveness of the proposed method is veri-
fied  via  extensive  experiments  conducted  on  actual  industrial  data.
The results reinforce its potential to provide accurate and dependable
strategies for decision-making.

The process industry plays a crucial role in the economic growth of
modern society, encompassing steel, petroleum, chemicals, and other
fields [1]. In the production process of the process industry, the opti-
mal  decision-making  of  operating  variables  is  crucial  for  enhancing
product  quality  and  yield.  However,  the  decision-making  process  is
often  influenced  by  the  experience  levels  of  on-site  workers,  which
can significantly impact the achievement of overall production goals
[2],  [3].  Moreover,  due  to  the  existence  of  physical  and  chemical
reactions  in  the  production  process,  it  is  difficult  to  establish  com-
plex nonlinear relationship models between operational variables and
production metrics via mechanism analysis. Hence, optimizing oper-
ational  variables  remains  a  complex  and  daunting  problem  in  pro-
cess industries.

With the increasing availability of industrial data, data-driven deci-
sion-making  methods  that  generate  decision  values  for  operating
variables have become increasingly prevalent in industrial processes.
[4]  developed  a  supervised  monitoring  strategy  to  adjust  the  opera-
tional variables of the industrial grinding process based on changes in
boundary  conditions.  However,  the  multimodal  data  collected  from
industrial processes, such as images, audio, and sensor data, may be
incomplete  due  to  uncontrollable  factors.  Latent  factor  analysis  is
effective in extracting inherent latent features from incomplete data.
For  instance,  [5]  proposes  a  Kalman-filter-incorporated  model  for
performing representation learning to incomplete temporal data. Ref-
erence [6] proposes a highly-efficient model for performing represen-
tation learning to incomplete industrial data with temporal dynamics.
Reference  [7]  can  extract  essential  non-linear  features  from  incom-
plete temporal data with high computational efficiency.

In recent years, with the development of RL, the application of RL-
based  methods  to  industrial  decision-making  has  been  widely  stud-
ied [8], [9]. Hence, a model-free RL algorithm presents a promising
solution  for  industrial  processes.  RL  is  an  innovative  and  efficient
approach to obtaining optimal decision-making policies in industrial
processes by interacting with agents and situations approaching real-
world  complexity.  It  is  noteworthy  that  in  industrial  processes,  the
optimal  strategy  of  the  operational  variables  is  conventionally
designed  by  engineers  based  on  historical  data  and  experience,
resembling  an  expert  system  grounded  on  the  knowledge  of  opera-
tors.  Analogous  to  expert  systems,  RL has  the  potential  to  continu-
ously enhance operational decision-making policies based on reward
data that update the performance metrics function. This attribute ren-
ders  the  application  of  RL  algorithms  in  industrial  processes  more
reasonable.

The  motivation  of  this  letter  is  to  develop  an  intelligent  opera-
tional  decision-making  method  that  overcomes  feedstock  fluctua-
tions  and utilizes  multimodal  data  in  industrial  processes.  The main
contributions of this letter are summarized as follows:

1)  The  multimodal  data  of  the  industrial  process  is  utilized  to
enhance the adaptability of the operational decision-making strategy
by  fully  simulating  the  overall  perception  of  the  operators  at  the
industrial site.

2)  To  overcome  the  frequent  fluctuations  of  feedstocks  in  the
industrial  processes,  the  feedstock  conditions  are  introduced  as  the
state space of the proposed algorithm to enhance its accuracy.

3)  The  unique  reward  function  and  state  representation  are
designed to better handle the complexity and specific characteristics
of multimodal data in the industrial process, which enhance the per-
formance of the proposed RL framework.

Problem statement: The flotation process plays a significant role
in  the  mineral  processing  of  the  process  industry,  which  entails  the
separation  of  minerals  from  raw  ores  through  physicochemical  sur-
face  properties.  The  objective  of  the  flotation  process  is  to  concen-
trate the valuable minerals from the raw ores by attaching the desired
mineral particles to air bubbles. These air bubbles then ascend to the
surface of the flotation cell and create a froth layer that contains the
mineral  concentrate.  Then,  the  froth  is  collected  and  further  pro-
cessed.

To achieve effective flotation in the industrial process, it is neces-
sary to adjust the operating variables in real time based on the work-
ing  condition  fluctuations.  These  operating  variables  include  the
slurry  level,  aeration,  flotation  agent,  and  agitation  rate.  In  the  cur-
rent  industrial  process,  the  values  of  these  operating  variables  are
determined  by  operators  based  on  their  experience,  with  the  aim of
achieving  the  desired  concentrate  yield  and  grade  within  the  target
range. However, due to frequent changes in feedstock and operating
conditions,  manual  selection  of  setpoints  by  operators  is  prone  to
errors resulting in significant fluctuations in both concentrate output
and concentrate grade. A potential solution to this issue involves cir-
cumventing  the  selection  of  setpoints  based  on  manual  experiential
knowledge and instead utilizing alternative intelligent decision-mak-
ing  strategies.  Effectively  implementing  such  strategies  has  the
potential to significantly enhance the utilization value of raw ore and
the overall efficiency of the mineral processing process.

Proposed operational decision-making method: In the industrial
flotation process, the formulation of a rational program and the defi-
nition of states, rewards, and actions are fundamental to achieving an
optimal global decision-making strategy. Inspired by the above anal-
ysis and RL algorithm, a new method called the FGM-AC algorithm
is proposed for effective operational decision-making in the flotation
process. This operational decision-making strategy aims to obtain rel-
atively  optimal  decision-making  values  of  the  operational  variables
to  ensure  that  the  concentration  and  grade  of  flotation  froth  remain
within the desired range. Fig. 1 further provides a visual framework
of its application in the flotation process, which mainly includes the
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operational decision-making system and the production environment
of  the  flotation  process.  As  shown  in Fig. 1,  the  multimodal  data
(green circle) derived from the industrial process and feedstock con-
ditions  (gray  circle)  are  input  into  the  operational  decision-making
system. Then, the corresponding product quality and yield (blue cir-
cle)  are  fed  back  to  the  system  to  calculate  the  resulting  rewards.
Finally, the decision values of the operational variables are obtained
using the proposed method.

s = [Q∗2, c, x]

Therefore,  based  on  industrial  process  mechanisms  and  prior
knowledge, the state space of the RL algorithm includes operational
conditions,  feedstock  conditions,  and  the  target  grade  of  flotation
froth.  It  is  denoted as .  In particular,  industrial  cameras
and microphones are used to collect flotation froth images and audio
from actual industrial sites to assist in operational decision-making.

To  achieve  this,  the  reward  function  of  the  proposed  FGM-AC
algorithm is defined as
 

r = Q1 +ρ
(
Q2
∣∣∣Q∗2 ) (1)

 

r
(
Q∗, a, c, x

)
= f1 (a |c, x )+ρ

(
f2 (a |c, x )

∣∣∣Q∗2 ) (2)

r f1 (a |c, x )
ρ( f2(a|c, x|)|Q∗2)

where  is a nonpositive scalar function,  represents the con-
centration of flotation froth,  is a penalty function.

The decision-making framework for  operational  variables,  as  pre-
sented  in  (2),  can  be  transferred  to  (3)  in  the  RL  algorithm  frame-
work, which is given as
 

J (π) = Es∼e,a∼π [r (st, at)] . (3)

T

It  is  worth noting that,  unlike other  sequential  decision processes,
the  decision-making  of  operational  variables  in  this  context  is  not
sequential  since they are  often interrelated and influenced by multi-
ple  factors.  Therefore,  the  step  size  is  selected  to  be  one  in  each
episode. The iterative approach is frequently employed to refine the
optimal decision-making policy, which can be characterized as a con-
tinuous process. Thus, the derivation of this policy is described as
 

πnew = argmax
π

Es∼e(s),a∼π(a|s ) [r (s, a)] (4)

π (a |s )where  is  assumed  as  a  conditional  distribution  belongs  to
Gaussian distribution.

πθ (a |s ) θ

Considering  the  high-dimensional  and  continuous  nature  of  the
state and action spaces involved in the optimal operational decision-
making  problem,  an  actor  network  is  employed  using  a  neural  net-
work implementation denoted as , where parameter  is used
to approximate the Gaussian distribution. The actor network utilizes
the state as input and produces the action as output.

Rφ (a |s ) φ
πθ (a |s )

In addition, the critic network  with parameter  is used to
estimate the reward generated by . The input of the critic net-

work consists of the state and action. During the training process, the
loss function of the critic network is defined as follows:
 

J (φ) =
1
2

[
Rφ (s, a)− r (s, a)

]2
(5)

r (s, a)
Rφ (s, a) r (s, a)

where  represents  the  actual  reward  of  the  production  data.
Then,  can be replaced by  when the training accuracy
is satisfied. Hence, the policy is updated as
 

πθnew = argmax
πθ

Es∼e(s),a∼πθ(a|s )
[
Rφ (s,a)

]
. (6)

Furthermore,  integrating  experience  replays  into  the  FGM-AC
algorithm  allows  for  repeated  learning  from  experiential  data  with
benefits  such  as  reduced  costs,  fewer  trials  and  errors,  and  faster
learning  speeds.  In  the  experience  replay  method,  a  set  of  experi-
ences consisting of the state, action, and immediate reward obtained
during the interaction between the FGM-AC algorithm and the flota-
tion production process is stored in the experience pool. By minimiz-
ing  the  loss  function  defined  based  on  the  criterion,  the  decision-
making policy can be improved as
 

πθnew = argmax
πθ

Es∼P,a∼πθ(a|s )
[
Rφ (s, a)

]
(7)

Pwhere  denotes the experience replay pool. It should be noted that a
batch  gradient  descent  method  is  used  to  train  the  critic  network.
Subsequently, the loss function is reformulated as shown below:
 

J (φ) =
1
2
E(s,a,r)

[
Rφ (s, a)− r (s, a)

]2
. (8)

Subsequently,  the  FGM-AC  algorithm  is  used  to  obtain  the  rela-
tively  optimal  decision-making  policy  based  on  the  realizations  of
actor and critic networks based on iteratively updating (7) and (8) in
an alternating manner. Finally, the optimal decision-making values of
the  operational  variables  are  obtained  from  the  actor  network,
denoted as
 

ã = argmax
a

Rφ (s, a) (9)

ãwhere  represents the optimal decision-making values of the opera-
tional variables.

Experiments  and  analysis: The  proposed  operational  decision-
making method based on FGM-AC is applied to an actual industrial
flotation  process.  All  experimental  data  sets  are  collected  from  the
largest  potassium  chloride  flotation  plant  of  a  mineral  processing
enterprise. A total of 223 data sets were collected, including the feed
ore conditions, operational conditions, operational variables, and per-
formance  metrics.  A detailed  description  of  these  variables  is  given
in Table 1.  The  first  180 data  sets  were  used for  training,  while  the
remaining 43 data sets were used for validation.
 

Table 1.  Discription of Data Sets in the Industrial Flotation Process
Tag Description

Feedstock condition Feedstock flow (x1), feedstock grade (x2)

Operational condition Stirring current (c1), froth image (c2), froth
audio (c3)

Operational variable Mixed mother liquid flow (a1), roughing flota-
tion pulp level (a2)

Performance metric Froth concentration (Q1), froth grade (Q2)
 
 

x
c Q∗2

In the RL framework of the proposed FGM-AC algorithm, the state
vector is composed of the feedstock conditions , operational condi-
tions ,  and  target  flotation  froth  grade .  The  action  vector  is
obtained  from  the  proposed  operational  decision-making  method
based on the FGM-AC algorithm. The production goal of the indus-
trial  floatation  process  is  to  maximize  the  flotation  froth  concentra-
tion while meeting the flotation froth grade specifications. Hence, the
reward function is designed as
 

r = r1 + r2 (10)
 

r1 = Q1, and r2 =

{−0.6, Q2 < Q∗2
0, Q2 ≥ Q∗2.

(11)

Comparative  experiments  are  designed  to  assess  the  effectiveness
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Fig. 1. Operational  decision-making  framework  based  on  feedstock-guided
multimodal actor-critic RL method.
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of  the  proposed  method.  Manual  operations  collected  at  industrial
sites were used as a baseline for comparison. In addition, operational
decision frameworks based on the deep Q-network (DQN) [10]  and
the  standard  actor  critic  (AC)  [11]  are  used  as  additional  compar-
isons.  For  unbiased  and  impartial  experimentation,  all  actor  net-
works  use  three-layer  neural  networks  comprising  64  hidden-layer
neurons and are trained using a learning rate of 0.01.

The experimental results of the flotation froth performance metrics
under four comparison methods are presented in Table 2 and Fig. 2.
Table 2 gives the minimum, maximum, and average values (in paren-
theses) of the performance metrics. Fig. 2 intuitively depicts the tra-
jectories of two performance metrics. It can be seen from Table 2 that
the  proficiency  of  on-site  operators  lies  primarily  in  regulating  the
froth grade, while their control of froth concentration has no signifi-
cant  advantages.  However,  other  methods  based  on  the  RL  frame-
work,  including  DQN,  AC,  and  FGM-AC,  have  significantly
improved  froth  concentration,  which  indirectly  guarantees  an
increase  in  yield.  Specifically,  the  proposed  FGM-AC-based  opera-
tional  decision-making  method  increases  the  froth  concentration  by
8.51% and the froth grade by 1.43% compared to manual operation.
However,  improving  froth  concentration  while  maintaining  froth
grade in actual industrial processes is usually difficult. Hence, it also
demonstrates its effectiveness in optimizing industrial processes.
 

Table 2.  Comparision Results of Four Methods

Method Concentrate (%) Grade (%)
Manual operation 36.36−44.37 (40.64) 27.07−31.81 (29.40)

DQN 40.85−46.49 (43.50) 28.05−30.93 (29.33)
AC 38.96−46.79 (43.64) 26.66−31.51 (29.46)

FGM-AC 40.24−46.88 (44.10) 27.12−31.54 (29.82)
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Fig. 2. Comparision results of froth concentrate and grade.
 

Moreover,  the  trajectories  of  two  operational  variables  are  shown
in Fig. 3. It is evident that the mixed mother liquor flow is set higher
in  the  three  operational  decision-making  methods  based  on  the  RL
framework. This is done by increasing the mixed mother liquor flow
rate to boost the concentration of flotation froth, indirectly leading to
an increase in froth production,  which is  consistent  with the knowl-
edge and experience of experts. Furthermore, the flotation pulp flow
is  maintained  relatively  low  compared  to  manual  operation  to  pre-
vent the loss of flotation froth.

Conclusion: This  letter  proposes  a  multimodal  data-driven  RL-
based decision-making method for operational variables in industrial
processes,  which aims to mitigate the effect  of  feedstock conditions
and exploit underutilized multimodal data. Specifically, a new FGM-
AC  algorithm  is  proposed  to  convert  the  operational  variable  deci-
sion-making problem into an RL problem. Compared to the existing
algorithms,  the  proposed  FGM-AC  algorithm  makes  full  use  of  the
multimodal  data  of  the  industrial  sites  and  has  a  more  comprehen-

sive perception ability. Finally, the experimental results using actual
data  of  the  industrial  flotation  process  demonstrate  the  favorable
potential  for  guiding  the  production  of  industrial  processes.  The
future work will focus on enhancing the security of online RL algo-
rithms  in  industrial  applications  and  extending  our  work  to  other
industrial processes where multimodal data are available.
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Fig. 3. Optimal operational variables of foud methods.
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