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   Dear Editor,
This  letter  examines  the  fixed-time  stability  of  the  Nash  equilib-

rium (NE) in non-cooperative games. We propose a consensus-based
NE seeking algorithm for  situations  where  players  do not  have per-
fect  information  and  communicate  via  a  topology  graph.  The  pro-
posed algorithm can achieve NE in a fixed time that does not depend
on initial conditions and can be adjusted in advance. In this strategy,
players  use  their  estimates  of  other  players’ actions  to  update  their
own actions.  We present  sufficient  conditions  that  ensure  the  fixed-
time stability of the NE through rigorous Lyapunov stability analysis.
Finally,  we provide an example to verify the feasibility of  the theo-
retical result.

Game  theoretic  methods  have  become  prevalent  in  engineering
applications,  such  as  power  allocation  [1],  cooperative  control  [2],
[3], energy consumption control [4], and self-driving [5]. Once a spe-
cific  problem  has  been  modeled  as  a  game,  the  question  becomes
how to  find  the  NE.  In  a  game,  each  player  aims  to  find  a  strategy
that  minimizes  its  own cost  function.  The  NE of  a  game is  a  set  of
actions for which players can no longer decrease their cost functions
by  solely  changing  their  own actions.  In  [1],  the  zero-sum game of
two  networks  of  agents  was  investigated.  The  potential  game  and
aggregate  game  were  considered  in  [2]  and  [4],  respectively.  For
more generalized non-cooperative games,  an extreme seeking based
method  was  developed  in  [6],  but  it  required  global  information,
which  may  not  be  applicable  to  practical  problems.  To  tackle  this
issue, researchers have paid attention to studying NE seeking strate-
gies  under  imperfect  information.  In  [7],  a  gossip-based  algorithm
was  designed  for  discrete-time  NE seeking.  In  [8],  the  authors  pro-
posed  a  continuous-time  NE  seeking  algorithm  that  incorporates  a
consensus protocol [9]−[14]. A passivity-based approach was devel-
oped  in  [15]  for  nonlinear  and  heterogeneous  players.  The  papers
[16]−[18] studied NE seeking under disturbance,  control  input  satu-
ration, and switching topologies, respectively.

The convergence rate  is  an important  index for  evaluating system
performance. While the aforementioned results all achieved NE with
an asymptotic convergence rate, where the fastest rate is exponential,
the infinite convergence time usually does not meet the requirement
of  practical  systems.  To  acquire  NE  more  quickly,  Fang et  al.  [19]
proposed two finite-time NE seeking algorithms that employ signum
and  saturation  functions.  However,  the  convergence  time  of  the
finite-time  result  is  related  to  the  initial  conditions,  which  are  not
always  available  in  practice.  To  overcome  this  disadvantage,  the
authors of [20] proposed a fixed-time NE seeking algorithm based on
extreme  seeking.  The  prescribed-time  algorithms  were  developed
based on the motion-planning method in [21] and the time base gen-

erator in [22].
Inspired  by  the  fixed-time  leader-following  consensus  protocol  in

[13], a new algorithm for fixed-time NE seeking under a communica-
tion graph is proposed by integrating leader-following consensus and
gradient  play in  this  letter.  It  is  not  a  trivial  extension,  and difficul-
ties  arise  from two  aspects.  Firstly,  in  the  fixed-time  leader-follow-
ing  consensus  problem,  the  leader’s  input  is  commonly  assumed  to
be bounded. In the consensus-based NE seeking algorithm, the action
update  law  is  considered  the  leader’s  input.  However,  to  achieve
fixed-time  NE  seeking,  the  action  update  law  cannot  be  bounded.
Secondly, the traditional quadratic form of the Lyapunov function is
not  applicable.  The  nonlinearity  of  the  gradient  play  exists  in  the
action update law, making the stability analysis more difficult.

The  contributions  of  this  letter  are  summarized  as  follows.  First,
the  proposed  method  extends  the  asymptotic  consensus-based  NE
seeking strategies [8], [16], [18] to achieve a fixed-time convergence
result.  A  new  Lyapunov  function  is  designed  to  prove  fixed-time
convergence. Moreover, it is a distinct method from that presented in
[20].  The  explicit  form of  the  settling  time  is  given,  which  is  inde-
pendent of the initial conditions and only relies on the design param-
eters, allowing it to be predetermined prior to system operation. Sec-
ond,  in  contrast  to  the  NE  seeking  strategy  studied  in  [22],  which
steers  actions  to  a  neighborhood  of  the  NE  with  size  dependent  on
the initial conditions, the proposed algorithm in this letter attains the
exact NE.

G = {V,E}
L = [li j] li j < 0 ( j, i) ∈ E li j = 0

i , j lii = −
∑N

j=1, j,i li j

Preliminaries: Suppose  a  network  of N players  exchanges  infor-
mation  via  an  undirected  graph .  The  corresponding
Laplacian matrix  is defined as  if ,  oth-
erwise for , and . A more detailed definition of
graph theory can be founded in [11]. The dynamic of each player is
 

ẋi(t) = ui(t) (1)
xi ui

Ji(x)
x = [x1, x2, ..., xN ]T

x−i = [x1, ..., xi−1, xi+1, ..., xN ]T

Ji(x) = Ji(xi, x−i)

x∗

where  and  are the action and control  input  of  player i,  respec-
tively. Each player has a cost function  that depends on its own
action and the actions of the other players, where 
is  the  action profile.  Denote ,  the  cost
function  for  player i can  be  expressed  as .  The
objective  of  the  players  in  the  game  is  to  minimize  their  own  cost
functions by adjusting their actions in response to the actions of other
players. However, they do not know the actions of other players and
only have immediate access to their neighboring players via a graph.
This letter aims to design a NE seeking strategy that steers x towards
the  NE ,  where  no  player  has  the  incentive  to  deviate,  within  a
fixed time.

G
Assumption 1: The players in the game communicate via an undi-

rected and connected graph .
Ji(x) ∈ C2Assumption 2: The cost function .

z1, z2 ∈ RN m > 0
(z1−z2)T (G(z1)−G(z2)) ≥ m||z1 − z2||2 G(z)= [ ∂J1(z)

∂x1
,

∂J2(z)
∂x2
, . . . , ∂JN (z)

∂xN
]T

Assumption  3:  For  any ,  there  exists  a  constant, 
such that  where 

.
H(x) = [hi j] hi j =

∂2 Ji(x)
∂xi∂x j

hi j x ∈ RN
Assumption 4: Define matrix  where . Each

element  is bounded for any .
H(x)+HT (x) ≥ 2mIN

z1, z2 ∈ RN | ∂Ji(z1)
∂xi
− ∂Ji(z2)
∂xi
| ≤

li||z1 − z2|| li

Remark  1:  Assumption  3  guarantees  that .
Assumption  4  ensures  that  for  any , 

, where  is the global Lipschitz constant.

G(x) = 0 x = x∗
Remark  2:  Assumptions  3  and  4  guarantee  the  existence  and

uniqueness of the NE, and  if and only if .

V(x(t)) : RN/{x∗} → R+, x∗→ 0 V̇(x(t)) ≤ −aVb

(x(t))− cVd(x(t)) a,c > 0, d > 1 0 < b < 1
Tmax =

1
a(1−b) +

1
c(d−1)

Lemma 1 [11]: Consider the system (1), if there exists a Lyapunov
function  such  that 

,  where ,  and ,  the  NE  is
fixed-time stable. The settling time is .

L
0

1N
B = diag{a11,a12, . . . ,a1N , . . . ,aN1, . . . ,aNN } Q =L⊗ IN +B

Lemma 2  [19]:  The  Laplacian  matrix  associated  with  an  undi-
rected  and  connected  graph  is  semi-positive  definite.  is  a  simple
eigenvalue  of  it,  and  is  the  corresponding  eigenvector.  Let

,  then  is
positive definite.

χ1,χ2, ...,χN ∈ R (
∑N

i=1 |χi|)b ≤∑N
i=1 |χi|b ≤

N1−b(
∑N

i=1 |χi|)b b ∈ (0,1] N1−d(
∑N

i=1 |χi|)d ≤∑N
i=1 |χi|d ≤

(
∑N

i=1 |χi|)d d ∈ (1,+∞)

Lemma  3  [9]:  For , 
 holds for ; and 

 holds for .
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ϕ1,ϕ2 ∈ R α1,α2 ∈ R+
|ϕ1|α1 |ϕ2|α2 ≤ α1

α1+α2
ϵ |ϕ1|α1+α2 +

α2
α1+α2

ϵ
− α1
α2 |ϕ2|α1+α2 ϵ

Lemma  4  [12]:  For  any  and ,  one  has
, where  is a pos-

itive real number.
Main  results: The  following  NE  seeking  strategy  is  designed  to

achieve the NE in the fixed time:
 

ẋi = −η1sig2
(
∂Ji(yi)
∂xi

)
−η2sig

1
2

(
∂Ji(yi)
∂xi

)
(2)

 

ẏi j =− c1sig3(ξi j(t))− c2sign(ξi j(t))− c3ξi j(t)− c4sig2(ξi j(t))

− c5sig
1
2 (ξi j(t))− c6sig

1
3 (ξi j(t))− c7sig

5
3 (ξi j(t)) (3)

η1,η2,ci > 0 i ∈ {1,2, . . . ,7} yi j
ξi j(t) =

∑N
m=1 aim(yi j(t)− ym j(t))+ai j(yi j(t)−

x j(t)) yi = [yi1,yi2, . . . ,yiN ]T x
y = [yT

1 , y
T
2 , . . . , y

T
N ]T ei = yi − x e = y−1N ⊗ x = [e1,e2, . . . ,

eN ]T G(y) = [ ∂J1(y1)
∂x1
,
∂J2(y2)
∂x2
, . . . ,

∂JN (yN )
∂xN

]T ξ(t) = [ξ11, ξ12, . . . , ξ1N ,
ξ21, . . . , ξN1, . . . , ξNN ]T = Qe

where , .  denotes player i’s estimate on
player j’s  action,  and 

.  Let  represent  player i’s  estimate  on .
Define , , 

, , and 
.  Then,  the  seeking  strategy  (2)  and  (3)

can be rewritten as
 

ẋ = −η1sig2(G(y))−η2sig
1
2 (G(y)) (4)

 

ẏ =− c1sig3(ξ(t))− c2sign(ξ(t))− c3ξ(t)− c4sig2(ξ(t))

− c5sig
1
2 (ξ(t))− c6sig

1
3 (ξ(t))− c7sig

5
3 (ξ(t)). (5)

Remark  3:  The  first  five  terms  and  the  seventh  term in  (3)  or  (5)
are necessary to compensate for the positive terms in the time deriva-
tive of the Lyapunov function. The last two terms are needed to com-
plement the format given in Lemma 1.  More details  are included in
the proof of Theorem 1.

Before presenting Theorem 1, we introduce the following lemma.
|sig 1

2 (c)− sig 1
2 (d)| ≤

√
2

|c−d| 12 |sig2(c)− sig2(d)| ≤ |c−d|2 +2|d||c−d|
Lemma 5:  For  the  real  numbers c and d, 

 and .
Proof: Four cases should be considered.

c ≥ 0, d ≥ 0 |sig 1
2 (c)− sig 1

2 (d)| = ||c| 12 − |d| 12 | = ||c|−|d||
||c|

1
2 +|d|

1
2 |

≤ |c−d|
|c−d|

1
2
= |c−d| 12 |sig2(c)− sig2(d)| = |c2 −d2| = |c+d||c−d| =

|c−d+2d||c−d| ≤ |c−d|2 +2|d||c−d|

Case 1: , then 

 and 

.
c < 0, d < 0 |sig 1

2 (c)− sig 1
2 (d)| = | − |c| 12 + |d| 12 | ≤

|c−d| 12 |sig2(c)− sig2(d)| = | − c2 +d2| ≤ |c−d|2 +2|d||c−d|
Case  2: ,  then 

 and  fol-
lowing the same argument as in Case 1.

c ≥ 0, d < 0 |sig 1
2 (c)− sig 1

2 (d)| = ||c| 12 + |d| 12 | ≤
√

2(|c|+
|d|) 1

2 =
√

2|c−d| 12 |sig2(c)− sig2(d)| = |c2 +d2| ≤ |c−d|2
Case 3: , then 

 and  follow-
ing Lemma 3.

c < 0, d ≥ 0 |sig 1
2 (c)− sig 1

2 (d)| = | − |c| 12 − |d| 12 | ≤√
2|c−d| 12 |sig2(c)− sig2(d)| = | − c2 −d2| ≤ |c−d|2
Case  4: ,  then 

 and  following  the
same argument as in Case 3.

These conclude the lemma. ■
λ1(·) λN (·)

· l̄ =maxi{li} H̄ = supx∈RN ||H(x)||
Let  and  denote the smallest  and largest  eigenvalues of

“ ”, respectively. Define  and .

ν1, ν2, ν3, ν4,
ν5, ϵ1, ϵ2 > 0 α1,α2,α3,α4,α5,b3 ≥ 0 α7,b1 > 0
α1 =

4
λ2

N (Q)
( c1

N2 λ
4
1(Q)− η1 l̄2H̄

2ν1 −
η1 l̄H̄
2ν3ν4 ) α2 = ( 2

λN (Q) )
1
2 (c2λ1(Q)− 1

2ν2

(2
√

Nl̄)
1
2 η2H̄) α3 =

2
λN (Q) (c3λ

2
1(Q)− 1

2ϵ1

√
NλN (Q)) α4 = ( 2

λN (Q) )
3
2

( c4
N λ

3
1(Q)−η1

√
NλN (Q)l̄2) α5 = ( 2

λN (Q) )
3
4 (c5λ

3
2
1 (Q)− (2N

3
2 l̄)

1
2 η2λN

(Q)) α7 = ( 2
λN (Q) )

4
3 ( c7

N
2
3
λ

8
3
1 (Q)− 3

2 ϵ
− 1

3
2 η1

√
NλN (Q)l̄) b1 =

η2
1ν5m
N − ϵ22

η1
√

NλN (Q)l̄− ν42ν3 η1 l̄H̄ b3 = (1− ν5)m− ϵ12
√

NλN (Q)− ν12 η1

l̄2H̄− ν22 (2
√

Nl̄)
1
2 η2H̄− ν3η1 l̄H̄

Theorem 1: Under Assumptions 1−4, the players achieve the NE in
a fixed time by utilizing (2) and (3) if there exists suitable 

 such that  and ,  where
, 

, , 
, 

, , 

, and 

.
V = V1 +V2

V1 =
∑N

i=1

r ∂Ji (x)
∂xi

0 (η1sig2(τ)+η2sig
1
2 (τ))dτ V2 =

1
2 eT Qe

V1

V1 =
η1
3

∑N
i=1 |

∂Ji(x)
∂xi
|3 + 2

3η2
∑N

i=1 |
∂Ji(x)
∂xi
| 32 ≤ η1

3 (
∑N

i=1 |
∂Ji(x)
∂xi
|2)

3
2 + 2

3η2N
1
4

(
∑N

i=1 |
∂Ji(x)
∂xi
|2)

3
4 =

η1
3 ||G(x)||3 + 2

3η2N
1
4 ||G(x)|| 32

||G(x)||2 = (||G(x)|| 43 )1(||G(x)|| 13 )2 ≤ 1
3 ||G(x)||4 + 2

3 ||G(x)||

Proof:  Design  the  Lyapunov  function  as  where

 and . It can be
easily  checked  that V is  positive  definite  and  radially  unbounded.
Solve  for  the  integral  in  by  applying  Lemma  3  results  in

. Using Lemma 4, one
has . Together

N−
1
3 V

4
3

1 +V
2
3

1 ≤ ( η1
3 )

4
3 ||G(x)||4 + [( 2

3η2N
1
4 )

4
3 + ( η1

3 )
2
3 ]

||G(x)||2+( 2
3η2N

1
4 )

2
3 ||G(x)|| ≤ d1||G(x)||4+d2||G(x)|| d1= ( η1

3 )
4
3+

1
2 ( 2

3 )
7
3 η

4
3
2 N

1
3 + ( 1

3 )
5
3 η

2
3
1 d2 = ( 2

3 )
7
3 η

4
3
2 N

1
3 +2( 1

3 )
5
3 η

2
3
1 + ( 2

3 )
2
3 η

2
3
2 N

1
6

with  Lemma  3, 
, where 

 and .
P(x) = η1sig2(G(x))+η2sig

1
2 (G(x)) P(y) = η1sig2(G(y))+

η2sig
1
2 (G(y)) ||P(x)||2 =∑N

i=1(η1sig2( ∂Ji(x)
∂xi

)+η2sig
1
2 ( ∂Ji(x)
∂xi

))2 ≥∑N
i=1(η2

1|
∂Ji(x)
∂xi
|4 +η2

2|
∂Ji(x)
∂xi
|) ≥ η2

1N−1

||G(x)||4 +η2
2||G(x)||

Let  and 
.  Following  Lemma  3,  it  is  easy  to  obtain 

.
V1 V̇1 = −P(x)T H(x)×

[P(x)+η1(sig2(G(y))− sig2(G(x)))+η2(sig
1
2 (G(y))− sig 1

2 (G(x)))]
Differentiate  with  respect  to  time  yields 

.
|sig 1

2 ( ∂Ji(yi)
∂xi

)− sig 1
2

( ∂Ji(x)
∂xi

)| ≤ (2l̄)
1
2 ||ei||

1
2 |sig2( ∂Ji(yi)

∂xi
)− sig2( ∂Ji(x)

∂xi
)| ≤ l̄2||ei||2 +2l̄×

| ∂Ji(x)
∂xi
|||ei||

Following  Lemma  5  and  Remark  1,  one  has 
 and 

. Further, the stacked vector forms satisfy
 

||sig 1
2 (G(y))− sig 1

2 (G(x))|| ≤ (2
√

Nl̄)
1
2 ||e|| 12 (6)

 

||sig2(G(y))− sig2(G(x))|| ≤ l̄2||e||2 +2l̄||G(x)||||e||. (7)
V̇1Substitute them into ,

 

V̇1 ≤−m||P(x)||2 +2η1 l̄H̄||P(x)||||G(x)||||e||
+η1 l̄2H̄||P(x)||||e||2 + (2

√
Nl̄)

1
2 η2H̄||P(x)||||e|| 12

≤− ν5m(η2
1N−1||G(x)||4 +η2

2||G(x)||)

− (1− ν5)m||P(x)||2 + 1
2
η1 l̄2H̄(ν1||P(x)||2 + 1

ν1
||e||4)

+

√
2

2
(
√

Nl̄)
1
2 η2H̄(ν2||P(x)||2 + 1

ν2
||e||)

+ ν3η1 l̄H̄||P(x)||2 + 1
2ν3
η1 l̄H̄(ν4||G(x)||4 + 1

ν4
||e||4).

V2

The second inequality  above is  derived using Lemma 4.  Take the
time derivative of  yields
 

V̇2 = eTQė ≤
N∑

i=1

N∑
j=1

ξi jẏi j +
√

NλN (Q)||e||||P(y)||

≤− c1

N2 (
N∑

i=1

N∑
j=1

ξ2i j)
2 − c2(

N∑
i=1

N∑
j=1

ξ2i j)
1
2 − c3

N∑
i=1

N∑
j=1

ξ2i j

− c4

N
(

N∑
i=1

N∑
j=1

ξ2i j)
3
2 − c5(

N∑
i=1

N∑
j=1

ξ2i j)
3
4 − c6(

N∑
i=1

N∑
j=1

ξ2i j)
2
3

− c7

N
2
3

(
N∑

i=1

N∑
j=1

ξ2i j)
4
3 +

1
2

√
NλN (Q)(ϵ1||P(x)||2 + 1

ϵ1
||e||2)

+η1
√

NλN (Q)l̄2||e||3 + (2N
3
2 l̄)

1
2 η2λN (Q)||e|| 32

+2η1
√

NλN (Q)l̄||G(x)||||e||2

≤− c1

N2 λ
4
1(Q)||e||4 − c2λ1(Q)||e|| − c3λ

2
1(Q)||e||2

− c4

N
λ3

1(Q)||e||3 − c5λ
3
2
1 (Q)||e|| 32 − c6λ

4
3
1 (Q)||e|| 43

− c7

N2/3 λ
8
3
1 (Q)||e|| 83 + 1

2

√
NλN (Q)(ϵ1||P(x)||2 + 1

ϵ1
||e||2)

+η1
√

NλN (Q)l̄2||e||3 + (2N
3
2 l̄)

1
2 η2λN (Q)||e|| 32

+
ϵ2
2
η1
√

NλN (Q)l̄||G(x)||4 + 3
2
ϵ
− 1

3
2 η1

√
NλN (Q)l̄||e|| 83

||G(x)||||e||2 = ||G(x)||(||e|| 23 )3 ≤ 1
4 ϵ2||G(x)||4 + 3

4

ϵ
− 1

3
2 ||e||

8
3

||e|| ≥
√

2V1
λN (Q) V̇ ≤

−α1V2
2 −α2V

1
2

2 −α3V2 −α4V
3
2

2 −α5V
3
4

2 −α6V
2
3

2 −α7V
4
3

2 − b1||G(x)||4 −
b2||G(x)|| −b3||P(x)||2≤−β1(N−

1
3 V

4
3

1 +V
2
3

1 )−α6V
2
3

2 −α7V
4
3

2 ≤ −min{α6,β1}×

V
2
3 −2−

1
3 min{α7,

β1

N
1
3
}V 4

3 α6 = ( 2
λN (Q) )

2
3 c6λ

4
3
1 (Q) b2 = η

2
2ν5m

β1 =min{ b1
d1
, b2

d2
}

by  observing  that 
 following Lemma 4. The second inequality is  derived from

Lemmas 3 and 4, along with (6) and (7). As , one has 

,  where , ,

and .  By  Lemma 1, the  upper  bound  of  the  settling
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Tmax =
3

min{α6,β1} +
3×21/3

min{α7,
β1

N1/3 }
time is . ■

Remark 4: The convergence rate of estimates is faster than that of
actions in this letter, so accurate estimated values are used to update
actions  after  some  time.  In  [21],  actions  and  estimates  converge
almost simultaneously.

Ji(x) = ri(xi−
x̃i)2 + (k1

∑N
j=1 x j + k0)xi i ∈ {1,2,3} ri,k1,k0 x̃i

k1 = 0.001 USD/kWh2

k0 = 0.2 x̃1 = 15 x̃2 = 20 x̃3 = 30
ri = 0.1 x∗ = [13.63,18.60,28.55]T

m = 0.2010 l̄ = 0.2020 H̄ = 0.2040

Simulation  results: Consider  a  network  of  three  players,  whose
communication  topology  is  shown  in Fig. 1.  They  are  playing  an
energy consumption game of heating ventilation and air conditioning
system  (HVAC)  [4].  Each  player  has  a  cost  function 

 for , where , and  are the
thermal  coefficient,  the  elasticity  of  the  electricity  rate,  the  basic
electricity rate, and the minimum energy that player i needs to main-
tain  the  desired  temperature,  respectively.  The  cost  function  is  an
aggregate  of  the  load  curtailment  cost  (first  term)  and  the  payment
for  energy  consumption  (second  term).  Let  ,

 USD/kWh,  kWh,  kWh,  kWh,  and
.  The  unique  NE  is  kWh.  Mean-

while, , , and .
 

1 2

3
 
Fig. 1. Communication topology between the three players.
 

x(0) = [6,25,16]T

y1(0) = [3,20,20]T y2(0) = [10,22,13]T

y3(0) = [9,28,18]T c1 = 3700 c2 = 1000
c3 = 4600 c4 = 400 c5 = 100 c6 = 30 c7 = 2000 η1 = 2
η2 = 1.5

ν1 = 1 v2 = 0.0005 ν3 = 1 ν4 = 0.02 ν5 = 0.387
ϵ1 = 0.01 ϵ1 = 0.003

Assume the initial action profile is  kWh and the
initial estimates are  kWh,  kWh,
and  kWh.  The  gains  are , ,

, , , , , ,  and
. This set of parameters satisfies the conditions given in The-

orem  1  when , , , , ,
, and .

Fig. 2 displays the evolution of the players’ actions under the pro-
posed fixed-time NE seeking algorithm, which obtains the NE in 7 s.
Fig. 3 illustrates  the  players’ estimates  of  the  actions,  with  the  esti-

mated values rapidly converging to the actual actions.
Conclusion: This letter  investigates the fixed-time stability of the

NE in networked games and provides an upper bound for the settling
time. Future work can extend the proposed NE seeking algorithm to
achieve  prescribed-time  convergence,  realize  fully  distributed  con-
trol,  incorporate  an  event-triggered  mechanism,  or  tackle  practical
situations  such  as  switching  topologies,  external  disturbances,  and
players  with  higher-order  dynamics.  It  can  also  be  adapted  to  solve
different types of games, such as aggregative games and multi-clus-
ter games.
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Fig. 2. Plot of the actions of players.
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Fig. 3. Plot of the players’ estimates on actions.
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