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   Dear Editor,

This  letter  deals  with  the  problem  of  algorithm  recommendation
for  online  fault  detection  of  spacecraft.  By  transforming  the  time
series  data  into  distributions  and  introducing  a  distribution-aware
measure,  a  principal  method  is  designed  for  quantifying  the
detectabilities  of  fault  detection  algorithms  over  special  datasets.
Based on a sublinear time filtering method, an efficient algorithm for
evaluating  the  detectabilities  is  designed.  By  combining  the  above
techniques,  RecAD  is  proposed  for  the  recommendation  of  fault
detection algorithms. Experimental results over typical datasets show
that  RecAD  can  select  the  detecting  algorithm  with  better  perfor-
mance efficiently and the cost of the recommendation is rather small.

As a typical kind of autonomous intelligent system, spacecrafts are
usually  composed  of  many  complex  components,  and  each  compo-
nent  is  typically  equipped  with  a  certain  number  of  sensors  which
will  produce  many  kinds  of  telemetry  data.  Due  to  working  in  the
extreme environment, spacecrafts tend to be failed or even damaged
by the failure of  a  device or  subsystem. To reduce the risk of  those
failures, a key task of spacecraft operations is anomaly detection that
is to discover anomalies in the telemetry data.

There have been many research efforts focusing on anomaly detec-
tion  over  spacecraft  telemetry  data  [1]–[3].  Out-of-limits  (OOL)
method  is  the  most  popular  one  due  to  its  simplicity,  low-cost  and
understandability  [4],  [5].  To  overcome  the  limitations  of  the  OOL
methods,  many  data-driven  anomaly  detection  methods  have  been
introduced  [6]–[9].  Recently,  more  and  more  deep  anomaly  detec-
tion  methods  are  designed  [2].  The  most  typical  methods  include
reconstruction  based  approaches  [10],  generation  based  approaches
[11],  predication  based  approaches  [4],  etc.  However,  it  has  been
found that no method can outperform others always [12], and a natu-
ral  and  feasible  solution  is  to  maintain  several  detection  algorithms
meanwhile  and  select  the  most  proper  one  to  detect  anomalies
according  to  the  actual  situations.  Therefore,  it  is  highly  needed  to
study the problem of algorithm recommendation for detecting space-
craft anomalies.

Two principal challenges are identified.
1) The first one is the lack of labels and universal objective func-

tions. Due to the limited computational resources of spacecrafts and
the scarcity of anomalies, it is hardly possible to have access to any
labels  when  online  anomaly  detection  is  processing,  algorithm  rec-
ommendation  methods  must  work  in  an  nearly  total  unsupervised
way. Even worse, there does not exist a universal objective function
that could guide algorithm recommendation.

2)  The  second  one  is  the  limited  computation  resources  of  online
anomaly  detection  for  spacecrafts.  Because  of  the  extreme  working
environments of spacecrafts, to enlarge the lifetime of spacecrafts as
much as possible, only recommendation algorithms with enough high

efficiency are allowed to be deployed.
In this letter, rising to the above challenges, using the ideas of mea-

suring  detectabilities  by  distributions  and  distinguishing  distribu-
tions by sampling, an efficient automated algorithm recommendation
method  for  detecting  spacecraft  anomalies  is  proposed.  The  main
contributions include: a formal definition of the fault detection algo-
rithm  recommendation  problem,  a  Kullback-Leibler  (KL)-diver-
gence based method for measuring the detectability of algorithms, a
sublinear  algorithm  for  efficiently  estimating  the  measures  and
selecting the recommended detection algorithms, and a detailed exper-
imental results to verify the effectiveness of the proposed method.

X = {x1,x2, . . . ,xn}
xt ∈ Rm t ∈ [1,n]

{x1, x2, . . . , xn}

Notations  and  problem  description: The  telemetry  data  of  a
spacecraft  is  usually represented by a time series 
where  each  ( )  is  an m-dimensional  vector  corre-
sponding  to  the  data  on  each  dimension.  In  the  following  parts,  for
the  sake  of  simplicity,  the  proposed  method  will  be  explained  by
assuming that the telemetry data has only one dimension, and we can
denote X as .  It  is  not  hard  to  verify  that  our  method
can be extended to the general cases trivially.

xt A = {A1,A2, . . . ,Ah}
Ai

Di

Ddec
Ai

A

The goal of anomaly detection is to determine whether an observa-
tion  is  an  anomaly  or  not.  Let  be  the  set  of
algorithms utilized for  online  anomaly detection.  Each algorithm 
is  obtained  by  training  over  a  special  dataset  and  previously
selected  among  many  potential  algorithms  as  the  best  one.  Then,
given a new dataset , the problem of algorithm recommendation
for  anomaly  detection  (ARAD)  is  to  select  a  detector/algorithm 
with the best performance in .

A
D = {D1,D2, . . . ,Dh}

Di A
Di Ddec
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M = {⟨Ai,D j⟩, . . . } ⟨Ai,D j⟩

Ai A D j

The  proposed  RecAD: The  intuitive  idea  of  RecAD is  to  utilize
the historical training information collected for the algorithms in .
Given a set of training datasets , for each dataset

,  it  is  assumed  that  all  algorithms  in  have  been  trained  and
tested over ,  and the best  one has been known.  Besides  and
the algorithm set , the inputs of RecAD also include the matching
pairs ,  where  a  matching  pair  means  that
the algorithm  performs better than others in  on .

Ddec
D j

Ai
Ddec

Ddec

Ddec
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For the new dataset , the main idea of RecAD is to find out the
most  similar  training  dataset  and  recommend  the  corresponding
algorithm  to  be  the  online  detector.  The  whole  procedure  of  the
RecAD  method  is  shown  in Fig. 1.  First,  given  the  new  data ,
after  the  regular  preprocessing,  two  procedures,  discretization  and
gram-extraction, are called to transform  into the form proper for
distribution-aware computation. Then, a procedure of computing the
KL-divergence of  with training datasets is invoked to select the
recommended algorithm. Since computing KL-divergence is a rather
expensive procedure, to achieve high-performance online fault detec-
tion, a filtering procedure with only sublinear time cost is utilized to
prune impossible algorithms from  as many as possible. The details
of the RecAD method is shown in Algorithm 1, where the main part
(Lines  1−7)  includes  discretization  and  gram-extraction,  and  the
function Match is invoked (Line 8) by RecAD finally.

Algorithm 1 RecAD (Recommendation for Anomaly Detection)

A = {A1, . . . ,An}
D = {D1, . . . ,Dn} Ddec

Input: A set of algorithms  and the corresponding
　　　  training datasets  the new dataset .

Output: The recommended algorithm A.
D̂ = {D̂i} S ∈ N+1: Construct the discretized data  with ;
D̂dec S ∈ N+2: Construct the discretized data  with ;

D̂ ∈ D̂∪ D̂dec3: for each dataset  do
D̂(l)4: 　　Initialize  to be empty;
x̂i ∈ D̂ i ∈ [1, |D̂| − l+1]5: 　　for each  such that  do

x̂(l)
i ← x̂i x̂i+1 · · · x̂i+l−16: 　　　　 ;

x̂(l)
i D̂(l)7: 　　　　insert  to ;

A← argmaxAi∈AMatch(D̂(l)
i , D̂

(l)
dec)8: ;

9: return A;
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X̂ Ŷ
pX̂ pŶ

Discretization and gram extraction: Given two time series data X
and Y, since the elements of X and Y take real values, they can not be
represented  efficiently  by  discrete  distributions.  Therefore,  they  are
first transformed into  and  using discretization methods, and the
corresponding distributions  and  can be defined as follows.

[0,1]
xi yi

x̂i = ⌊xi ×S ⌋ ŷi = ⌊yi ×S ⌋
X̂ Ŷ pX̂

Without loss of generality,  suppose the domain of the values in X
and Y is  and a positive integer S is given in previous. First, the
values  in X and Y are  discretized  by  replacing  and  with

 and ,  and  the  obtained  time  series  are
denoted by  and . Then, the corresponding distribution  can be
defined by (1).
 

pX̂(a) =
∑

1≤i≤nX 1(a = x̂i)
nX̂

, a ∈ [0,S ] (1)

nX̂ X̂ 1(·)where  is  the  length  of  the  time  series  and  the  function 
returns 1 if the condition is satisfied and 0 otherwise.

X̂

x̂i

X̂ x̂(l)
i

xixi+1 · · · xi+l−1

X̂(l) {x̂(l)
1 , x̂

(l)
2 , x̂

(l)
3 , . . .}

X̂(l) {0,1, . . . ,S }l

Next, to capture the data dependencies over time, an extension for
the  time  series  data,  named  gram  extraction,  is  introduced,  whose
idea is to use l-grams to replace the elements in a discretized distribu-
tion . Intuitively, the l-grams contains information of the l adjacent
elements  in the series,  that  is,  they can describe the time dependen-
cies of data within every intervals with length l. Given an element 
in ,  the  corresponding l-gram,  denoted  by ,  is  the  composited
value .  Then,  we  can  define  the  corresponding  time
series  as the list , and the domain of elements in

 is .
Ai

Dec(Ai,D)
Measuring  the  detectability: Here,  the  detectability  of  on D

can  be  represented  by .  The  method  of  measuring  the
detectability  is  motivated  by  the  KL-divergence.  Previous  works
(e.g.,  [13])  have  shown  that  KL-divergence  is  a  useful  tool  for  the
recommendation of supervised learning algorithms.

KL(p||q) =
∑

x p(x) log p(x)
q(x)

Generally speaking, given two probability distributions p and q, the
KL-divergence  is  the  measure  of  the  relative  difference  between
them, which can be calculated as .

Ai

D̂(l) D̂(l)
i

Then,  for  a  fixed  gram size l,  the  detectability  of  on D can  be
evaluated over the transformed data  and  as follows:
 

Dec(Ai,D) =Match(D̂(l)
i , D̂

(l)) = 1/KL(pD̂(l) ||pD̂i
(l) ). (2)

KL(pD̂(l) ||pD̂i
(l) )

Ai Dec(Ai,D)
Match

Here,  the  larger  the  value  of  is,  the  smaller  the
detectability of  on D is.  The  task  of  calculating  is
implemented  by  the  function  whose  details  are  shown  in
Algorithm 2 and will be explained in the following part.

Dec(Ai,D)

O(n logn)

Dec(Ai,D)

Detectability evaluation: Obviously, the essential part of comput-
ing  is calculating the corresponding KL-divergence. KL-
divergence can be calculated directly according to the definition, and
the  computation  time  cost  can  be  bounded  by .  To  satisfy
the  requirement  of  online  algorithm  recommendation  and  anomaly
detection,  the  total  cost  of  RecAD algorithm shown in  Algorithm 1
should be reduced as much as possible. Therefore, propose a method
to  further  filter  unnecessary  computation  of  and  reduce
the times of invoking KL-divergence computation.

Sublinear algorithms for filtering: In this part,  a sublinear algo-

Ddec
Di

Di

rithm for filtering the candidate algorithms is introduced. The filter-
ing  algorithm  can  reduce  the  times  of  divergence  computation  and
improve  the  performance  of  RecAD  significantly  with  only  small
extra costs. Intuitively, if the new data  is quite different from a
special  training dataset ,  that  is  the  corresponding KL-divergence
is quite large, the matched algorithm of  can be filtered.

MatchAlgorithm 2  (Detectability Evaluation)

Ddec γ ∈ (0,1)
D∗ ϵ ∈ (0,1)

Input: The new dataset , a threshold , a training data
　　　  , and an input .

A∗ DdecOutput: The detectability of  on .
Z← {a|pDdec (a) < γ}1: ;

Ddec2: Construct D by removing data points in Z from ;
Z′3: Let  be the domain of D;

D′ Z′ D∗4: Construct  by removing data points not in  from ;
k =

2logn+log 2
ϵ

1+ϵ5: Let , where n is the domain size;
B0← {a : D′(a) < ϵ2n }6: ;

k−17: for j from 1 to  do
B j← {a : ϵ(1+ϵ)

j−1

2n ≤ D′(a) < ϵ(1+ϵ)
j

2n }8: 　　 ;
count = 09: ;

10: for each random sample d from D do
Bi d ∈ Bi11: 　　Let  be the one satisfying ;

S i12: 　　Insert d to the multiset ;
|S i| ==C×

√
n
ϵ2

13: 　　if  then(||pS i ||22 > (1+ ϵ2)/|Bi|
) (

D′(Bi) ≥ ϵ/k
)

14: 　　　　if  and  then
15: 　　　　　　return 0;
16: 　　　　else

count = count+117: 　　　　　　 ;
count == k18: 　　if  then

19: 　　　　break;
1/KL(pD∗ ||pDdec )20: return ;

Match
Match

D∗

Ddec D∗
D′

D′(B0) ≤ ϵ/2 ||D′B j
−UB j ||2 ≤ ϵ/(2

√
|B j|)

Match

Bi
Bi

Bi D′

1/KL(pD∗ ||pDdec )

O(
√

n logn/ϵ6)

Õ(
√

n/ϵ6)

The algorithm  provided in  this  part  is  highly motivated by
[14]. The intuitive idea of  is to transform an arbitrary distribu-
tion  to a set of uniform distributions and check whether the differ-
ences  between  the  given  distribution  and  the  uniform  distributions
are too large. The details are shown in the main part in Algorithm 2.
The first step is to remove the data points with low frequencies from

 and remove the unrelated data points from  (Lines 1−4). The
datasets obtained are represented by D and , respectively. The sec-
ond  step  is  called  bucketing  (Lines  5−8).  After  the  bucketing,  intu-
itively,  the  constraints  and 
are satisfied. After bucketing, the algorithm  works as follows.
Random samples from D are  collected into different  buckets.  When
the  size  of  some  bucket  is  large  enough  (Line  13),  it  will  be
checked whether  the constrained distribution of D on  is  far  from
an  uniform  distribution  and  the  suppose  size  of  on  is  large
enough  (Line  14).  If  both  of  the  two  conditions  are  satisfied,  the
input  dataset  will  be  filtered  by  returning  0  to  represent  the  corre-
sponding  detectability.  After  all  buckets  have  been  checked  (Line
18),  the  value  of  will  be  returned  (Line  20)  by
invoking  a  trivial  method  for  calculating  KL-divergence  exactly.
Obviously,  the  cost  of  the  filtering  procedure  is  determined  by  the
sample size, according to [14], it can be bounded by 
in  a  high  probability.  Therefore,  the  time  cost  will  be  bounded  by

 obviously, and the time cost of the filtering will be sublin-
ear.

ϵ ∈ (0,1) Match O(
√

n logn/ϵ6)
Ddec D∗

Match 1/(2 ln2)ϵ2

Theorem 1: Given ,  will  take  sam-
ples from , and with a high probability, the candidate data  fil-
tered by  has a divergence larger than .

Experimental  results: This  part  introduces  the  experimental
results

Datasets:  Seven  real  life  datasets,  SWaT,  WADI,  DMDS,  SKAB,
MSL, SMAP, and SMD, are used. They are also often used by previ-
ous works[4], [10], and the details can be found in [12].

Algorithms:  The  fault  detection  algorithms  considered  to  be  the
candidates  of  the  recommendation  methods  in  this  letter  are  PCA,

 

Preprocessing

Fault detection

Sublinear time
filtering 

〈Alg, data〉
…Discretization

gram-extraction

Detectability
evaluation 

D
is

cr
et

iz
at

io
n

gr
am

-e
xt

ra
ct

io
n

Ddec

 
Fig. 1. Overview of the RecAD method.
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UAE  [15],  LSTM-AE  [16],  TCN-AE  [17],  LSTM-VAE  [18],
MSCRED [19], BeatGAN [20], and NASALSTM [4].

RecAD RecAD

RecAD

RecAD

Results: The comparison of algorithms utilized in the experiments
and  the  recommendation  results  are  shown  in Table 1,  where  the
comparison is based on the F1-scores [12]. It is found that the UAE
method outperforms other methods in five of the datasets used, TCN-
AE  is  the  best  detection  algorithm  on  SMD,  and  LSTM-VAE  per-
forms  best  on  WADI.  The  recommendation  methods  are  shown  in
the last row of the table, and the algorithm recommended is denoted
by . It can be found that the  algorithm can not always
find  out  the  best  algorithm,  but  it  can  select  the  best  one  on  six
datasets.  Also,  can  indeed  avoid  the  worst  algorithm  effi-
ciently,  for  example,  on  SKAB,  the  algorithm  recommended  by

 is not the best but it has comparative performance.
 

Table 1.  The Result of Recommendation
DMDS MSL SKAB SMAP SMD SWaT WADI

PCA 0.5339 0.4067 0.5524 0.3793 0.5344 0.5314 0.3747

UAE 0.6378 0.5111 0.5550 0.4793 0.5501 0.5713 0.5105

LSTM-AE 0.5999 0.4481 0.5418 0.4536 0.5271 0.5163 0.4265

TCN-AE 0.5989 0.4354 0.5488 0.3873 0.5800 0.4732 0.5126

LSTM-VAE 0.5939 0.3910 0.5439 0.2988 0.5427 0.4456 0.5758

BeatGAN 0.5391 0.4531 0.5437 0.3732 0.5479 0.4777 0.4908

MSCRED 0.2906 0.3944 0.5526 0.3724 0.4145 0.4315 0.3253

NASALSTM 0.1284 0.4715 0.5339 0.4280 0.3879 0.1398 0.1058

RecAD UAE UAE LSTM-VAE UAE TCN-AE UAE LSTM-VAE
 
 

RecAD
RecAD

RecAD

RecAD

To verify the efficiency of , we selected 10 data slices gen-
erated  from the  given  datasets,  and  ran  both  the  algorithms
with  and  without  filtering  procedures.  The  time  costs  of  them  are
compared  and  shown in Fig. 2,  where  the  labels  of x-axis  represent
different  data  slices,  the  time  cost  taken  by  the  no-filter  method  is
standardized  to  be  1,  and  the  values  of y-axis  represent  the  ratio  of
time costs between  with and without filtering procedures.  It
can be found that the filtering procedure proposed by this paper can
improve the performance of  significantly in most cases. The
only exceptional instance is the third data slice, where the cost using
filtering is 6% more than the one not using filtering, because the data
slice is too common to rule out any algorithms by the filtering proce-
dure and the extra cost is caused by the filtering procedure.
 

0

1

2

1 2 3 4 5 6 7 8 9 10
Computation-filter Computation-nofilter

 
Fig. 2. Efficiency of the filtering procedure.
 

RecADTo  verify  the  end-to-end  performance  of ,  three  kinds  of
time costs are compared. The first one is All-Check representing the
cost  of  using  all  algorithms  to  check  anomalies,  the  second  one  is
Rec-Check  representing  the  cost  of  using  only  the  recommended
algorithm, and the third one is RecAd representing the cost of select-
ing  the  recommended  algorithm.  The  detailed  results  are  shown  in
Table 2. It  can be found that the procedure of algorithm recommen-
dation only takes few costs and the time costs can be hugely reduced
by the strategy of only running the recommended algorithm.
 

Table 2.  The Result of Time Costs (in seconds)
DMDS MSL SKAB SMAP SMD SWaT WADI

All-Check 175.8 30.3 25.1 109.3 344.8 553.1 737.7
Rec-Check 36.7 5.1 5.3 17.9 65.5 97.3 170.5

RecAd 4.1 2.3 3.6 3.0 3.1 2.9 3.2
 
 

Conclusion: This letter has investigated the problem of algorithm
recommendation  for  online  anomaly  detection  of  spacecrafts.  Using
the idea of measuring detectabilities by distributions, RedAD is pro-

posed  to  support  efficient  automated  algorithm recommendation  for
detecting  spacecraft  anomalies.  Experimental  results  show  that  the
proposed method is effective and efficient.
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