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Abstract— Only a planar bioluminescence image acquired
from an ordinary cooled charge-coupled device (CCD) array
every time, how to re-establish the three-dimensional small
animal shape and light intensity distribution on the surface has
become urgent to be solved as a bottleneck of bioluminescence
tomography (BLT) reconstruction. In this paper, a finite element
algorithm to solve the Dirichlet type problem for the first
order Hamilton-Jacobi equation related to the shape-from-
shading model is adopted. The algorithm outputting the globally
maximal solution of the above problem avoids cumbersome
boundary conditions on the interfaces between light and shad-
ows and the use of additional information on the surface. The
results of the optimization method are satisfied. It demonstrates
the feasibility and potential of the finite element shape-from-
shading (FE-SFS) model for reconstructing the small animal
surface that lays one of key foundations for a fast low-cost
application of the BLT in the next future.

I. INTRODUCTION

Molecular imaging that unites molecular biology and in

vivo imaging has emerged as a cornerstone discipline in the

biomedical community [1], [2]. Optical molecular imaging

has full use of molecular probes in vivo. The emitted

light carries a wealth of biological information from the

small animal surfaces. Bioluminescence tomography (BLT)

that can acquire three-dimensional (3D) information of the

in vivo light sources inside small animals has become a

flagship product for optical molecular imaging [3], [4], [5],

[6]. Although Wang , Klose and colleagues presented the

uniqueness theorems in BLT about the light information from

the surface to the inside in vivo [7], [8], how to obtained the

surface light intensity distribution in mice by the detected

planar bioluminescence image has not specially reported. At

present, BLT mostly has to rely on computed tomography

(CT) or Micro-CT, and laser scanner and so on to acquire

3D living surface data [9], [10], [11], [12]. Shortcomings

are followed by the position changes of a live mouse and its

different organs, the extension of imaging time, the increased

cost of imaging equipments, and the imbalanced matching

between the optical signal strength and the body surface. The

finite element shape-from-shading (FE-SFS) model is such
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an algorithm being developed in order to overcome the above

problems by the optical molecular imaging system itself.

Lots of papers on the SFS problem have appeared since

the classical publication by Horn and Brooks, which seem

to be the most representative in three classes: methods of

resolution of partial differential equations, methods using

minimization and methods approximating the image irra-

diance equation[13]. It is the fact that the SFS problem

deserves analysis despite the simplicity of its formulation

and satisfactory approaches is still lacking with a global

method for its resolution under realistic assumptions. Many

technical questions such as the uniqueness of solutions with-

out continuity assumptions remain open. Mathematical tools

and numerical techniques that involve non-smooth solutions

and boundary conditions, and guarantee convergence to an

approximate solution under rather broad assumptions, are

developed quickly these years. The FE-SFS model is an

outcome of these advances, which integrates the finite ele-

ment, an unique continuous viscosity solution of the einkorn

equation, and the maximal solution with shadows into a

method that will be detailed in the following.

The organization of the paper is as follows. The next

section introduces the proposed FE-SFS algorithm. The

experiments and results of the 3D surface reconstruction are

thoroughly demonstrated in Section 3. Section 4 concludes

the paper and discusses future works.

II. ALGORITHMS

The FE-SFS model about the two-dimensional (2D) im-

ages can be derived by the image radiation equation [13],

[14]

Γ(�n(x, y)) = I(x, y), (1)

where I(x, y) is the light intensity measured at the point

(x, y) in the domain of the Lambertian surface s given as a

graph g = s(x, y) with x, y ∈ R, �n(x, y) is the unit normal

to the surface at the corresponding point and Γ(�n(x, y)) is

the reflection map giving the value of the light reflection on

the surface as a function of its normal orientation at each

point. I(x, y) takes double values in the interval [0, 1] so

as to construct a continuous model. Let’s assume that there

is a unique light source at infinity, of which the direction

is indicated by the unit vector ω = (ω1, ω2, ω3) ∈ R3,

and s has a compact support Ω. Then, we can describe the

reflection map as Γ(�n(x, y)) = �n(x, y) ·ω. Equation (1) can

be rewritten in the form

I(x, y)
√

1 + | ▽ s(x, y)|2 + l(x, y) = 0, (2)

l(x, y) = (ω1, ω2) · ▽s(x, y) − ω3, (x, y) ∈ Ω. (3)
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(2) is a first order nonlinear partial differential equation of

Hamilton-Jacobi type. Meanwhile, we complement (2) with

the natural Dirichlet boundary condition

s(x, y) = 0, (x, y) ∈ ∂Ω, (4)

which means that the surface is standing on a background.

The solution of above Dirichlet problem shall give a surface

corresponding to the brightness I(x, y) measured in the

image representing Ω.

Let us consider the case of a vertical light, ω = (0, 0, 1).
The general equation (2) turns into

I(x, y)
√

1 + | ▽ s(x, y)|2 − 1 = 0. (5)

We write (4), (5) in explicit out an array
{

| ▽ s(x, y)| = f(x, y), (x, y) ∈ Ω
s(x, y) = 0, (x, y) ∈ ∂Ω

(6)

f(x, y) =

√
−1 + 1/I(x, y)

2
, 0 < I(x, y) < 1. (7)

Note that there is no shadow with a vertical light since our

surface is a graph and I(x, y) can only vanish at points of

maximum brightness where f(x, y) = 0. This causes the

lack of uniqueness of classical viscosity solutions. So a new

variable ν(x, y) = 1 − e−s(x,y) is introduced to obtain an

approximation scheme in the form of a fixed point problem,

according to the results by Ishii-Ramaswamy and M.Sagona.

The problem for ν(x, y) becomes




ν(x, y) + max{ϕ(x, y)} = 0, (x, y) ∈ Ω
ϕ(x, y) = − a

f(x,y) · ▽ν(x, y) − 1 (x, y) ∈ Ω

a ∈ B2(0, 1)
ν(x, y) = 0, (x, y) ∈ ∂Ω.

(8)

It is proved that (8) has a unique continuous viscosity

solution provided f is bounded and never vanishes in Ω.

In the FE-SFS model with a mesh of the set Ωδ = Ω +
δB2(0, 1) , we assume that the image is a rectangle Ω ⊂ R2.

Υin is the set of indices of the nodes pi = (xi, yi) ∈ Ω, while

Υout is the set of indices of the nodes pi ∈ Ωδ\Ω. Then,

their union is Υ and N is the number of total nodes. Let k
be the size of the mesh and Ek denote the space of linearly

piecewise affine functions on the cells. It is our aim that is

to find a solution ǫ ∈ Ek of




ǫ(pi) = min{e−hǫv(pi)} + 1 − e−h, i ∈ Υin

v(pi) = pi + h a
f(pi)

, i ∈ Υin

ǫ(pi) = 0, i ∈ Υout.

(9)

M. Falcone proved that the FE solution of (9) existed and it

was unique. The FE solution of our problem can be acquired

by a fixed point iteration on the operation Φ : RN → RN

(Φ)i ≡

{
min{e−hP (a)A}i + 1 − e−h, i ∈ Υin

0, i ∈ Υout
(10)

where A is the N dimensional vector containing the values

at the nodes of the mesh, and P (a) is the matrix of the local

coordinates of the points v(pi). In summary, the FE-SFS

model will converge monotonically to the globally maximal

solution.

The final part will explain why we can use the same

equation everywhere in Ω without introducing any boundary

condition in the light region Ωlight. Although the boundary

of the light region may be non-smooth or not belong to the

mesh while the light is oblique, I(x, y) = 0 in the shadow
region Ωshadow. Here, Ω = Ωlight

⋃
Ωshadow. In an other

word, we only need to solve the equation

l(x, y) = 0, (x, y) ∈ Ωshadow. (11)

Equation (11) clearly coincides with (2). So we will have a

similar operator with the same properties of T corresponding

to the oblique light, while the numerical approximation of

the maximal solution with shadows is also satisfied using the

FE-SFS model.

III. EXPERIMENTS AND RESULTS

In order to display a complete process, the section will

demonstrate a in vivo mouse experiment and its results.

The work was all implemented on a computer with Intel

Core(TM)2 Duo Processor 2.33GHz and 2GB RAM.

Fig.1 included a bioluminescent image (Fig.1(a)) and the

corresponding photographic image (Fig.1(b)) derived from

the same perspective. The pair of images was processed using

a robust image modeling technique [15] to be restored and

segmented. In the experiment, the Nu/Nu nude mouse sub-

cutaneously transplanted tumor cells was anesthetized by 2%
isoflurane delivered in medical air, and scanned in the optical

molecular imaging system, WinMI. WinMI was calibrated

with the help of USS-1200V-LL Integrating Spheres. Hence,

we simultaneously obtained the corresponding light intensity

at the surface area of small animals. In order to reconstruct

the 3D surface of the small animal using the FE-SFS model,

the binary image (Fig.1(c)) of the photograph was created.

A gray-scale transformation of the photographic image

was processed to reconstruct the surface on the small animal

using the FE-SFS model. The transformation function was

defined as follows

Ĩ(x, y) =

{
I(x, y), 0 ≤ I(x, y) ≤ I0

I0, I0 ≤ I(x, y) ≤ 1.
(12)

Then, Ĩ(x, y) and the binary image were used as the inputs

in the FE-SFS model.

Fig.2 and Fig.3 were the 3D surface as outputs of the FE-

SFS model. The 3D digital mouse was discredited by tetra-

hedron elements with 17996 triangles, 180190 tetrahedrons,

and 35439 nodes in Fig.2 and Fig.3 . In the experiment,

the step for x, y, z axis was 0.015cm showing in Fig.2 and

Fig.3 , while I0 = 0.99 during the computing phase. The

number of the total iteration was 1887, while the total time

cost by the proposed algorithm in the paper was 44 seconds

with the mean absolute deviation error 1%. The maximum

height of the reconstructed surface from the background

was 2.94cm. Finally, the energy at every node of the finite

element mesh in the direction of orthogonal projection was

set by the bioluminescent image, because of assuming that

there was only a uniquely vertical light source. The result was

illustrated in Fig.4. Fig.5 was the enlarged one of Fig.4 so

as to be clearly observed.
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(a) Bioluminescent image

(b) Photographic image (c) Binary mouse image

Fig. 1. The in vivo bioluminescent image with the corresponding photo-
graphic image was derived from the same perspective, as the input of the
FE-SFS model . (a) is the bioluminescent image of the mouse; (b) is the
photographic image; (c) is the binary image of the photograph.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

The in vivo experiments were performed to verify the FE-

SFS model and 3D surface light intensity distribution in mice

can be reconstructed by 2D images from only one perspec-

tive. Given the difficulty that there is no unique solution to

the eikonal equation of the SFS problem in general case,

and the need for fast low-cost BLT reconstruction algorithm,

we have developed and applied the FE-SFS algorithm. The

global solution of the Dirichlet type problem in FE-SFS

model was a unique viscosity solution, although it was

only an approximate of the maximal solution of the eikonal

equation. The application of FE-SFS model in BLT presented

in the paper may be useful for the fast low-cost molecular

imaging.

B. Future Works

Our method currently required a special border region of

lighting area that limits potential applications. We default

that the height of light areas adjacent to the shadow or

background is zeros. In fact, it is not always true. For

example, the mouse’s ears should be erected, but what we

get is attached to the ground in Fig.3 or Fig.4. Another

disadvantage is that the surface of the mouse is not smooth,

Fig. 2. The reconstructed finite element mesh with 17996 triangles, 180190
tetrahedrons, and 35439 nodes by the FE-SFS method, using only one 2D
photographic image. a, b, and c are the XY, YZ, and ZX plane of the
tetrahedron elements respectively.

compared with the real mouse. As you known, the back of

the mouse should be more relatively flat. Therefore, there

are a lot of interesting work waiting for us to improve the

FE-SFS model.
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Fig. 3. The reconstructed surface by the FE-SFS method, using only one
2D photographic image. The mouse was discredited by tetrahedron elements
with 17996 triangles, 180190 tetrahedrons, and 35439 nodes.

Fig. 4. The bioluminescence distribution on the mouse surface recon-
structed by the FE-SFS method, using the 2D bioluminescent image and
photographic image. a, b, and c are the XY, YZ, and ZX plane of the
surface respectively.

Fig. 5. The local image of the reconstructed mouse with the bioluminescent
surface distribution by the FE-SFS method.
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