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Abstract
The aim is to reconstruct a complete and detailed clothed human from a single‐view input.
Implicit function is suitable for this task because it represents fine shape details and varied
topology. Current methods, however, often suffer from artefacts such as broken or dis-
embodied body parts, missing details, or depth ambiguity due to the ambiguity and
complexity of human articulation. The main issue observed by the authors is structure‐
agnostic. To address these problems, the authors fully utilise the skinned multi‐person
linear (SMPL) model and propose a method using the Skeleton‐aware Implicit Function
(SIF). To alleviate the broken or disembodied body parts, the proposed skeleton‐aware
structure prior makes the skeleton awareness into an implicit function, which consists of
a bone‐guided sampling strategy and a skeleton‐relative encoding strategy. To deal with the
missing details and depth ambiguity problems, the authors’ body‐guided pixel‐aligned
feature exploits the SMPL to enhance 2D normal and depth semantic features, and the
proposed feature aggregation uses the extra geometry‐aware prior to enabling a more
plausible merging with less noisy geometry. Additionally, SIF is also adapted to the RGB‐D
input, and experimental results show that SIF outperforms the state‐of‐the‐arts methods
on challenging datasets from Twindom and Thuman3.0.
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1 | INTRODUCTION

Realistic human reconstruction from a single‐view image is the
key to a myriad of applications from virtual reality to medical
imaging. Though deep learning models have shown great
promise in single‐view human reconstruction [1–4], it is still an
extremely challenging problem due to the various poses, shapes
and cloths. Existing parametric body models regress a mini-
mally clothed human model with a consistent topology, but
lacking important details like hair and clothing. Methods based
on deep implicit function can represent fine shape details and
varied topology; however, they often produce 3D human with
broken or disembodied body parts, especially for the unseen
region. In this paper, we base on deep implicit function, aimed
to achieve a complete and detail‐preserving clothed human
reconstruction from a single‐view input, as shown in Figure 1.

We observe that the main issue with these methods based
on implicit function is the lack of structure prior. Implicit
function is a data‐driving method, which heavily relies on the
learnt knowledge from data. Due to the lack of 3D data, only
fed with more prior to promoting initial learning will make it
possible and practicable for implicit function to reduce de-
pendency on the data. Recent methods [2, 5] only condition on
2D image features, which is obviously insufficient for the
above‐mentioned problems due to the ambiguity and
complexity of human articulation. Methods in refs. [6, 7]
combine implicit function with the parametric model (skinned
multi‐person linear [SMPL]); however, they mainly focus on
surface‐ or volume‐related information from the parametric
model, which leads to SMPL‐like reconstruction. In contrast,
we pay more attention to skeleton‐related prior and propose to
introduce skeleton awareness into the implicit function, which
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is less influenced by SMPL and has the potential to handle
more challenging data like loosing cloth.

Our method SIF, which stands for Skeleton‐aware Implicit
Function, consists of three modules: skeleton‐aware structure
prior, body‐guided pixel‐aligned feature and feature aggrega-
tion (FA). To alleviate the artefact of broken or disembodied
parts, our skeleton‐aware structure prior takes two strategies:
one is the bone‐guided sampling strategy to add extra training
points sampled around the joints and bones, implicitly guiding
the networks to capture the joints and the connectivity of
bones and the other is the skeleton‐relative encoding strategy
which encodes the connectivity and bone lengths related to 3D
joint locations, more explicitly guiding the networks to sense
the human skeleton structure. Compared to surface‐ or
volume‐related information from the parametric model, our
skeleton‐aware structure prior has a higher tolerance to small
disturbances to SMPL, which is demonstrated more robustly
for inaccurate SMPL.

To relieve the artefacts of missing details and depth ambi-
guity problems, our body‐guided pixel‐aligned feature utilises
SMPL to enhance the 2D semantic features. Besides the referred
normal features from ref. [8], we also introduce the depth‐
relative prior from rendered SMPL depth inspired from ref.
[3]. Our simple FA has demonstrated a better performance with
less noisy geometry than the strategy in ref. [8], because the
attached extra geometry‐aware information can distinguish the
query points and help to learn the difference of the reference
confidence between viewpoints.

We evaluate SIF quantitatively and qualitatively on the
challenging datasets, which contains various poses, shapes and
cloths from the Twindom and Thuman3.0 datasets. Results
show that our SIF outperforms the state‐of‐the‐arts (SOTA)
methods. SIF is also adapted to RGB‐D input, which has
achieved better performance than RGB‐D baseline [3].

Our contributions can be summarised as follows:

1) We firstly propose to incorporate skeleton awareness into
implicit function with a bone‐guided sampling strategy and

skeleton‐relative encoding, which reduces the artefacts like
broken body parts.

2) We propose the SIF method to fully utilise SMPL from 2D
feature to 3D skeleton structure feature, which consists of
body guided pixel‐aligned feature, skeleton‐aware structure
prior and FA, and achieves a complete and detailed human
geometry reconstruction.

3) Our SIF can be also adapted to RGB‐D input and experi-
mental results show that our SIF outperforms RGB and
RGB‐D baselines. Compared to SOTA methods which
extract surface‐ or volume‐related information from the
parametric model, our SIF is more robust for inaccurate
SMPL and has the potential to handle more challenging data
like loosing cloth due to less influence by SMPL.

2 | RELATED WORK

In the following, we focus on 3D human reconstruction and
classify the existing methods into three categories according to
their underlying techniques.

2.1 | Parametric body estimation from a
single image

With the advent of human statistical models like SCAPE [9],
SMPL [10], SMPLX [11] and Star [12], parametric body esti-
mation from a single image has attracted a lot of attention
recently. Methods optimise the shape and pose parameters by
fitting the SMPL model to the 2D keypoint detections [13, 14]
and other dense shape cues [15]. Recently, deep learning
methods have become a trend. In refs. [1, 16–18], the authors
utilise neural networks to directly regress the 3D shape and
pose parameters. The authors in ref. [19] use the Graph‐CNN
[20] to regress the vertices of SMPL instead of shape and pose
parameters. However, these methods cannot reconstruct a
detailed human.

F I GURE 1 Results of SIF on various challenging shapes and cloths. We show the geometry in front and side views. SIF, Skeleton‐aware Implicit Function.
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2.2 | Deep implicit function for human
reconstruction

Implicit function defines a surface as a level set of an occu-
pancy probability function. Compared to explicit representa-
tions, such as point clouds [21, 22], voxel grids [23], and
meshes [24, 25], implicit function can represent detailed 3D
shapes with an arbitrary topology, not limited by the output
resolution. PIFu [2] for the first time utilises the pixel‐aligned
implicit function for clothed human reconstruction, after that
PIFuHD [5] improves geometry details significantly by intro-
ducing normal feature, and Monoport [26] proposes an effi-
cient volumetric sampling scheme to speed up the inference
time. Besides RGB input, methods extend the input to point
clouds [27] and RGB‐D [28]. Recently, Function4D [3] fully
explores the depth information and achieves a real‐time and
detail‐preserving human reconstruction. However, implicit
shapes cannot be posed and animated due to lack of a
consistent mesh topology, and shape reconstructions with
single‐view input often produce artefacts like broken or dis-
embodied parts or geometry noise.

2.3 | Parametric models and implicit
function

Parametric models are well regularised with a consistent to-
pology, while implicit function models are more expressive.
Recent methods combine the two representations to achieve a
field complementation. PaMIR [6] and Deephuman [7] use a
heavy 3D deep neural network to extract features from vox-
elised SMPL volume, which is hard to train and requires larger
datasets for a good generalisation. For the sparse point clouds
input, IPNet [4] infers an occupancy filed to jointly represent
two surfaces with body/clothing layers and then registers
SMPL/SMPL + D to the two layers. Recently, ICON [8]
proposes a body‐guided normal estimation and a visibility‐
aware implicit regressor with a local feature, which is robust
to a large pose; however, it is prone to produce a noisy and
tight clothing geometry, heavily relying on the signed distance
function (SDF) field of SMPL. Our work is similar to ICON,
but much different from the following points.

The differences to ICON: 1) ICON mainly focuses on
surface‐ or volume‐related information from SMPL (i.e. SDF
field), leading to SMPL‐like reconstruction, while our SIF pays
more attention to skeleton‐related prior and proposes the
skeleton awareness into implicit function to make the networks
“sense” human articulation. To enhance the space information,
we also introduce a depth‐relative prior of rendered depth
from SMPL. 2) ICON proposes a visibility‐aware FA based
on SMPL, while our geometry‐aware FA leads to less noisy
geometry. 3) Our SIF has a higher tolerance to small distur-
bances to SMPL, which is more robust for inaccurate SMPL as
shown in Table 1D. Additionally, considering the nature of
sparsity of joints, our SIF can be less influenced by SMPL,
which has the potential to better handle loosing cloth as
showed in Figure 1.

3 | PRELIMINARY

A deep implicit function F is usually represented by multi‐layer
perceptrons (MLPs) [2], which predicts the continuous inside/
outside probability field of a 3D model. It can define a surface
as a level set of an occupancy probability function, e.g.
FðqÞ ¼ 0:5 where q ∈ R3 represents a 3D point. To represent a
specific object surface, F usually takes the conditioned features
(e.g. image feature of the object) as input and can be written as
follows:

F CðqÞð Þ : R3 ↦ ½0; 1� ð1Þ

The work PIFu [2] combines the pixel‐aligned feature with
the point coordinate and formulates the C(q) as follows:

CðqÞ ¼ S FI ;πðpÞð Þ;ZðpÞð Þ ð2Þ

where FI represents the image feature maps from the deep
encoder, πðpÞ represents the 2D projection on the input image,
S FI ;πðpÞð Þ is the sampling function using bilinear interpola-
tion to sample the value on the feature maps FI at pixel πðpÞ,
ZðpÞ is the z‐value of p in the camera coordinate space. With

TABLE 1 Quantitative errors (mm) based on RGB input.

Methods

Twindom + THuman3.0

Chamfer ↓ P2S ↓ Normals ↑

A SIF w. PE 3.6258 3.5078 0.8793

SIF 3.6775 3.5649 0.8784

B PIFu 8.5336 8.4515 0.7975

PIFuHD 5.5912 5.5553 0.8536

PaMIR 5.5982 5.3239 0.8573

ICON 4.5096 4.6425 0.8194

SMPL 10.3470 9.6107 0.7954

C SIF w/o. F J 4.3151 4.1625 0.8724

SIF w/o. JtsEncode 3.9316 3.9778 0.8421

SIF w/o. JtsSample 3.7282 3.5981 0.8791

SIF w/o. FN 6.1333 6.0628 0.8117

SIF w/o. Depth 4.2072 4.0701 0.8672

SIF w/o. FA 3.8593 3.7032 0.8674

ICON w. FA 4.0898 4.1057 0.8468

D SIF w. N 3.8185 3.6992 0.8770

ICON w. N 5.2072 5.7652 0.8099

SMPL w. N 15.2560 13.6187 0.6752

Note: The best results are highlighted with bold numbers. (A) Our methods with
different cutoff strategies: simple truncation and positional encoding strategy (PE); (B)
performance with respect to SOTA and the errors of estimated SMPL; (C) ablation
study about three modules; (D) SIF and ICON with perturbed SMPL ðN Þ.
Abbreviations: SIF, skeleton‐aware implicit function; SMPL, Skinned Multi‐Person
Linear; SOTA, state‐of‐the‐arts.
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256‐dimension pixel‐aligned feature and 1‐dimension z‐value,
PIFu [2] can reconstruct a detailed clothed human surface
aligned to the input image. However, heavily conditioned on
the 2D feature is not enough to deal with large pose variation
and occlusion problems, which leads to artefacts, such as
broken body parts, lacking of details, or non‐human shape,
especially for the unseen region. Considering that implicit
function is structure‐agnostic, in this paper, we propose the
skeleton awareness into implicit function, to make the net-
works “sense” human articulation.

4 | METHOD

The proposed method SIF is a deep learning model aimed to
output a complete and detail‐preserving clothed 3D human
from the single view input, which takes a segmented monoc-
ular image as input, along with an estimated parametric human
shape (SMPL). Figure 2 gives an overview of our SIF archi-
tecture. We will describe the major modules in detail in the
following : (1) body‐guided pixel‐aligned feature, (2) skeleton‐
aware structure prior and (3) FA.

4.1 | Body‐guided pixel‐aligned feature

The pixel‐aligned feature from 2D feature maps plays a leading
role as shown in Equation (2). Introducing an extra depth
input [3, 28] or referred normal [5] can effectively alleviate the
artefacts of over‐smoothing. To enrich the geometric and
spatial features, we exploit the body model SMPL to combine
the normal and depth prior. We followed ref. [8] for a more

plausible normal estimation. But different from ref. [3], we use
the rendered depth from SMPL as input. Given the RGB
image I, the depth and normal images can be obtained through
the following steps, described as follows:

DR Mð Þ→N b
;Db ð3Þ

GN N
b
; I

� �
→N c

ð4Þ

whereM denotes the estimated SMPL body mesh and DRð⋅Þ
represents the differentiable render. We use DR to renderM
from the given view and the opposite view to obtain the

SMPL‐body normal maps N b
¼ N

b
front;N

b
back

n o
and SMPL‐

body depth Db ¼ Db
front;D

b
back

n o
. The network GN predicts

the clothed‐human normal N c
¼ N

c
front;N

c
back

n o
with image

I and body normal N b as input. Then we can obtain the
feature maps from these images I ;N c

;Db� �
.

To fully utilise the rendered depth information, inspired
from ref. [3], we calculated the relative depth between z‐value
of the 3D query point p and the projection value on the
rendered depth, which can be written as follows:

ΔzðpÞ ¼ T S Db;πðpÞ
� �

− ZðpÞ
� �

ð5Þ

where Z(p) is the z‐value of p in the camera coordinate space,
Sð⋅Þ is used to fetch pixel‐aligned values, T(⋅) is used to
truncate the relative depth values in −τ; τ½ �, which avoids
misleading guidance for the invisible region. Compared to the

F I GURE 2 Overline of our SIF architecture. Given an input image and estimated SMPL model, SIF contains three main modules for (1) body‐guided pixel‐
aligned feature, (2) skeleton‐aware structure prior and (3) feature aggregation (FA). SIF, Skeleton‐aware Implicit Function; SMPL, skinned multi‐person linear.
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absolute depth, the depth‐relative value provides a view‐
dependent spatial semantics. Additionally, we introduce a
local feature as demonstrated in ref. [8] that only feeding global
features are sensitive to varied poses. Thus, our body‐guided
pixel‐aligned feature can be formulated as follows:

FNðpÞ ¼ S F∗ð Þ;πðpÞð Þ;S I ;πðpÞð Þ;ΔzðpÞ½ � ð6Þ

where F* represents the feature map extracted from

I;N c
;Db

� �
by neural networks. Our pixel‐aligned feature

combines a global feature sampled from the feature maps F*, a
local feature sampled from the images I, and a depth‐relative
clue Δz.

4.2 | Skeleton‐aware structure prior

Relying on clues from 2D images cannot make implicit func-
tion structure‐aware, leading to artefacts such as broken parts.
To make the networks “sense” inherent human articulation, we
propose to incorporate the skeleton awareness into the deep
implicit function, which consists of two main strategies: a
bone‐guided sampling strategy for a more implicit guidance,
and a skeleton‐relative encoding strategy for a much more
explicit induction. In the following, we describe our joints
estimation firstly and then our two strategies at length.

4.2.1 | Skeleton estimation

Given the estimated SMPL body meshM, the skeleton joints
can be easily obtained by J ¼ J ðvÞ, where v is the vertex set of
M, J is a matrix that transforms vertices v into joints. Since
SMPL does not model hand and face motion, we filter two
inaccurate hand joints and add some facial joints [29] and get
our 30 body skeleton joints finally as shown in Figure 3.

Although our skeleton joints are obtained from SMPL for
convenience, much more pose estimators can be adapted to
our method, which can be discussed in future.

4.2.2 | Bone‐guided sampling strategy

The sampling strategy for training data plays a central role in
achieving expressiveness and accuracy of implicit function. To
model the clothed human surface, PIFu [27] samples training
data around the human surface, and similarly, [30] samples
around the hands for hand reconstruction. That is to say that
implicit function pays more attention to what data gives.
Inspired from this, we propose the bone‐guided sampling
strategy, to guide the implicit function “sense” to the bone (the
connectivity of two adjacent joints).

Compared to the surface‐guided sampling strategy, which
mainly focuses on sampling points around the surface, our
strategy enhances the expressiveness of human joints and
articulation skeleton. Specifically, we extra sample K0 training
points around the bones with a small Gaussian noise σ0 and K1

random sampling points around the joints with a small Gaussian
noise σ1. These bones and joints related sampling points share
the same label (inside the surface), which guides the network to
give the same predicted results for points around the bones, thus
making the network “sense” the skeleton and the connectivity
of bones during the learning procedure. To ensure all the bone‐
guided sampling points are inside the surface, we filter out some
error prone bones and joints, such as joints on the ears, nose and
eyes, as depicted in Figure 3.

4.2.3 | Skeleton‐relative encoding

To more explicitly incorporate domain knowledge of how the
body parts are linked and transformed to each other, we
propose a skeleton‐relative representation into implicit func-
tion. Our original intention is to transform the query point p
relative to skeleton before determining the occupancy proba-
bility. For the purpose, we encode the connectivity and bone
lengths via 3D joint locations. Inspired from A‐nerf [31], our
skeleton‐relative representation can be written as follows:

rk ¼ rk;1;…; rk;m
� �

; rk;j ¼ kpk − Jjk2 ∈ R ð7Þ

F I GURE 3 Visualisation of joints and sampling data. From left to right: 24 joints of SMPL, 30 joints of our SIF, surface‐guided sampling data and bone‐
guided sampling data (green for points inside the surface while red for points outside the surface). SIF, Skeleton‐aware Implicit Function.
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where the subscript m denotes the number of joints, rk,j de-
notes the Euclidean distance between the 3D query point pk
and joint Jj. Thus, a 3D point pk can map into a vector rk
relative to all them skeleton joints. Specially, a point should not
be influenced by all but only nearby bones to reduce the impact
of irrelevant skeletons, a cutoff strategy is required to filter the
far distant values. We give two alternative cutoff strategies as
follows:

Truncation. We set a distance threshold δ and use a
truncation function T(⋅) which truncates the distance encoding
rk into [0, δ], described as follows: r0k ¼ T rkð Þ. This strategy is
intuitive and lower‐dimensional.

Positional Encoding. Inspired from A‐nerf [31], we
firstly use a positional encoding λ which consists of high fre-
quency functions, mapping rk to higher dimensional space,
described as follows:

rpk ¼ δ − rkð Þ ◦ λ ð8Þ

λðpÞ ¼ sin 20πp
� �

; cos 20πp
� �

;…; sin 2L−1πp
� �

; cos 2L−1πp
� ��

ð9Þ

In our experiments, we set L = 3. Then, we use sigmoid step
function S to learn a weight relative to bone m by
w k;mð Þ ¼ 1 − S τ r k;mð Þ − δð Þð Þ, where τ denotes the sharp-
ness, we set τ = 20 empirically. Thus, the weighted skeleton‐
relative encoding can be described as follows: r0k ¼ wk ∗ rpk.
However, this strategy is much higher‐dimensional and also
requires a larger pixel‐aligned feature for balance.

Compared to the truncation strategy, the positional
encoding strategy [31] is much more well‐designed which in-
troduces a windowed version of positional encoding by
multiplying the weight with respect to the bones. However, we
find that the simper truncation cutoff strategy has a compa-
rable result to the positional encoding strategy, as shown in
Table 1, for that our depth‐relative prior Δz can also provide a
space information which lightens the burden of our skeleton
encoding. Although we choose this simple truncation for our
SIF considering the tradeoff between efficiency and effec-
tiveness, we do not limit the special cutoff strategy and more
ingenious alternatives can be discussed in future work. Thus,
our skeleton‐relative encoding can be written as follows:

F J pkð Þ ¼ T rkð Þ; k¼ 1; ::;N þ K ð10Þ

where K denotes the extra training points sampled around the
bones and joints.

4.3 | Feature aggregation

For single‐view input, we lighten the invisible region by referring
the backside normal. Thus, for a 3D query point, it corresponds
to two pixel‐aligned features from the frontside and backside
views, which requires to aggregate these features before the final
discrimination. PIFuHD [5] directly concatenates normal

features as the input to implicit function, due to the orthogonal
projection assumption. ICON [8] calculates the visibility of the
closet point in SMPL and determines which view pixel‐aligned
feature to use. However, this strategy in ref. [8] is more similar
to the 0‐1 decision that often produces artefacts at the boundary
region of two views (see Figure 4). We observe that the depth‐
relative value Δz and skeleton‐relative encoding FJ can distin-
guish the query points with space and structure information.
Thus, we attach these geometry‐aware information to the pixel‐
aligned feature maps and simply use two layers perceptrons
followed by a pooling operation for FA. We find that with these
extra geometry‐aware prior, our simple architecture achieves
better results than the strategy in ref. [8], especially in the
boundary region as shown in Figure 4.

5 | EXPERIMENTS

5.1 | Datasets

Most of the existing 3D clothed‐human datasets are com-
mercialised and few are public. High‐fidelity 3D geometry
scans with corresponding SMPL fits are required for training
our detail‐preserving human reconstruction, we use realistic
Twindom data and THuman3.0 [32] datasets for experiments.
For the Twindom, to get the ground‐truth SMPL, we firstly use
MuVS [33] to the multi‐view images for pose calculation and
then register the estimated SMPL to the scans followed in ref.
[6]. Finally, we choose 500 high‐quality scans from the two
datasets for training and 100 subjects for testing, which contain
various cloths, poses and human–object interactions. For
realistic images, we use the PRT‐based renderer as in ref. [2]
with a resolution of 512 � 512. Each scan and SMPL fit is
rendered from every 6° in yaw axis, resulting in 500 � 60 = 30,
000 for training. For points sampling during training, we firstly
sample 8000 points around the surface followed in ref. [2],
which uses the mixture of uniform sampling and importance
sampling per subject, and then sample 1000 points around
joints and bones with K0 = 800, σ0 = 0.05, K1 = 200, σ1 = 0.1.
For testing, we select 10 uniformly distributed rendered images
for each scan (result in 100 � 10 = 1, 000 images), and for
occupancy querying, we follow the embree algorithm [34].

5.2 | Implementation details

For the image encoders, we use the backbone of HRNetV2‐
W18‐Small‐v2 [26], which takes as input an image of 512 �
512 resolution and outputs a 32‐channel feature map with
resolution of 64�64. For the FA, we use a two‐layer fully
convolutional networks with hidden neurons (256,128) fol-
lowed by a pooling operation. For the feature decoders, the
implicit function is implemented as MLPs with the skip con-
nections, where the hidden neurons are (128,128,128 and 1).

For training, we use Adam optimiser with learning rate of
2.0 � 10−4 which is decayed by the factor of 0.1 at every 10
epochs, the batch size of nine, the number of epochs of 25.
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And we set τ = 0.05 m and δ = 0.175 m empirically. We train
the network with ground‐truth SMPL and normal images with
random noise. For the training loss, we calculate the L2 loss
between the predicted labels and ground‐truth labels for the
training sampling points followed in ref. [5]. For training
normal images, we follow ref. [8] with a pix2pixHD [35]
network as the backbone and use the Adam optimiser with the
learning rate of 2.0 � 10−4 until convergence at 100 epochs.
The frontside and backside normal prediction networks are
trained individually with batch size of six under the following
objective function defined as follows:

LN ¼ LVGG þ λLl1 ð11Þ

Where Ll1 is the L1 distance between the ground truth and the
prediction, LVGG is the perceptual loss [36]. The weight λ is set
to 5.0 in our experiments. We use the Adam optimiser with a
learning rate of 2.0 � 10−4 until convergence at 100 epochs.

For reference, we evaluate the implicit fields with the res-
olution of 256 � 256 � 256 and use the Marching Cubes [37]
with iso‐surface threshold at 0.5 to extract the meshes. During
the test, it is required to estimate SMPL and refine the SMPL
and estimated normal images first. We use the PARE [38] as a

SMPL estimator and follow ref. [8] to use a feedback loop
between refining the SMPL mesh and normal maps for 2K
iterations. For details, please refer the original papers [5, 8].

5.3 | Comparisons

We quantitatively evaluate our reconstruction with three
different metrics, described in the following: Chamfer dis-
tance: For the ground truth scans and estimated meshes, we
firstly sample 15,000 points uniformly on the scans/meshes
and calculate the average bi‐directional point‐to‐surface dis-
tance. This metric can capture the geometry difference, but
misses very small geometric details; P2S distance: We addi-
tionally report the point‐to‐surface distance from scan points
to the closet predicted surface points. This metric can be
regarded as a single‐directional version of chamfer distance;
and Normal consistency: We compute the normal of these
sample points and measures the accuracy and completeness of
the shape normal (higher is better), followed [27].

We firstly qualitatively and quantitatively compare our
method with the SOTA methods, including PIFu [2], PIFuHD
[5], PaMIR [6], and ICON [8]. We retrain their networks using

F I GURE 4 Qualitative comparison. We compare our method SIF mainly with PIFu [2], PIFuHD [5], PaMIR [6] and ICON [8]. SIF, skeleton‐aware implicit
function.
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our training dataset and evaluate the performance on our test
dataset. ICON provides two types of networks: without or
with encoder, considering our more challenging datasets with
various clothing, we compare to the type of ICON with
encoder for a fairer comparison. Considering that parametric
model based methods rely on an accurate estimated SMPL, we
evaluate the robustness to small SMPL noise of our SIF
compared to PaMIR and ICON. Finally, we extend out SIF to
the RGB‐D input and compare our SIF* with RGB‐D baseline
method from ref. [3].

5.3.1 | Quantitative comparison

As shown in Table 1B, our SIF with much lower‐dimensional
(32‐dim) feature maps still performs much better than PIFu
and PIFuHD with higher‐dimensional (256‐dim) feature maps,
since we find that they heavily rely on higher‐dimensional
image feature to synthesise human structure and shape, espe-
cially for PIFu even using much heavier encoder networks (4
stacks Hour Glass [39]). For PaMIR and ICON, they extract
volume‐ or surface‐related information from SMPL and pro-
duce tight‐clothing reconstruction in our challenging dataset
due to their heavy dependence on SMPL, while our SIF still
achieves better results, thanks to our richer pixel‐aligned
feature, more plausible FA and skeleton‐aware structure prior.

5.3.2 | Qualitative comparison

Figure 5 shows the qualitative comparison with SOTA
methods. Given the single view input, we can see that our SIF

gets a more complete and detailed geometry. PIFu and PaMIR
generate over‐smooth results missing details due to lack of
normal information, and ICON is prone to producing noisy
surface while our SIF produces a more detailed surface, thanks
to our rich pixel‐aligned feature and plausible FA. For the
unseen region, PIFu and PIFuHD produce broken or disem-
bodied limbs due to lack of the structure prior, especially for
PIFu with an obvious depth ambiguity problem, while our SIF
performs better than PaMIR and ICON with a more complete
and plausible geometry thanks to our more explicit skeleton‐
aware structure modelling.

5.3.3 | Robustness to SMPL noise

The estimated SMPL from an image might not be perfectly
aligned with ground truth. Thus, SIF, ICON and PaMIR need to
be robust against noise SMPL. As demonstrated in [8], ICON
performs more robust than PaMIR, since PaMIR heavily relies
on 3D features extracted from SMPL. To evaluate our method,
we add small noise to SMPL pose and shape followed in ref. [8],
and compare SIF with ICONwithout any optimisation strategy.
Table 1D shows that SIF gets slightly affected by small SMPL
noise (the result drops 5.4%) while ICON gets bigger errors (the
result drops 19.8%). We argue that SIF is more robust to small
noise SMPL than ICON and PaMIR because SIF mainly relies
on skeleton joints compared to ICON with SDF of SMPL and
PaMIR with volume of holistic SMPL. The skeleton‐relative
encoding of SIF bases on the assumption that all joints should
be inside the body and are not required to remain in the exact
position. Thus, SIF performs a higher fault tolerance to small
noise SMPL than ICON and PaMIR.

F I GURE 5 We compare our RGB‐D extension SIF* with the baseline PIFu* [3]. From left to right: the input, PIFu* results, SIF* results and the ground
truth. Our SIF* can deal with artefacts, including broken or disembodied parts, and missing details. SIF, Skeleton‐aware Implicit Function.
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5.3.4 | RGB‐D extension

Our SIF can be easily adapted to RGB‐D input, since we orig-
inally use the depth information rendered from SMPL body
model. For the RGB‐D input, we share the same network ar-
chitecture but for more efficiency and effectiveness, we only
need to render the backside depth from SMPL and set the
different τ (1 cm for frontside and 5 cm for backside) in
Equation (5). Additionally, we can filter out empty voxels with
the depth image, which is faster for our inference. To create
realistic depth data, we render ground truth depth and then add
the synthesis depth sensor [40] on top of depthmaps followed in
ref. [3]. From Function 4d [3]we compare the RGB‐D baseline
(denoted as PIFu*), as demonstrated in Table 2A and Figure 6.
Our extension SIF (denoted as SIF*) outperforms the baseline
and performs better for the depth ambiguity problem and ar-
tefacts such as broken parts in the unseen region.

5.4 | Ablation study

We make the ablation study to verify our proposed modules
based on the RGB input, since our extension SIF* shares the

same network architecture as SIF; for a more comprehensive
evaluation, we also conduct some experiments based on the
RGB‐D input considering the efficiency for faster convergence
and reference.

5.4.1 | Body‐guided pixel‐aligned feature

We quantitatively evaluate our pixel‐aligned feature based on
RGB and RGB‐D input. As shown in Tables 1C and 2B,
without our bone‐guided pixel‐aligned feature FNð Þ, the re-
sults of SIF and SIF* considerably drop . Specially, to further
evaluate our proposed depth‐related feature (denoted as
Depth), we further conduct two experiments in Tables 1C and
2B. We can see that SIF without Depth performs much worse,
which demonstrates the effectiveness of our depth‐related
feature, while PIFu* with Depth shows slightly better results
for RGB‐D input that has provided space information for
PIFu*.

5.4.2 | Skeleton‐aware structure prior

We qualitatively and quantitatively evaluate our skeleton‐
aware module FJ, which consists of bone‐guided sampling
strategy and skeleton‐relative encoding. As shown in Ta-
bles 1C and 2B, without our FJ, the result declines consid-
erably. To further evaluate our two strategies, we conduct
two experiments based on the RGB input as shown in Ta-
ble 1C, where JtsEncode represents the skeleton‐relative
encoding strategy and JtsSample represents the bone‐guided
sampling strategy. Additionally, we also add the two strate-
gies to PIFu* to verify the effectiveness as shown in Ta-
ble 2B. From the experiments, we can see that SIF without
each strategy achieves much worse results, while PIFu* with
these two strategies both significantly improve the results.
Meanwhile, for a more obvious comparison, we qualitatively
show the results based on PIFu* as demonstrated in
Figure 7. For the unseen right arm, our skeleton‐relative
encoding can capture a coarse profile, but still existing
broken parts; while adding our sampling strategy, the net-
works can sense the connectivity of the skeleton and produce
a complete surface, which demonstrates the effectiveness of
our two strategies.

TABLE 2 Quantitative errors (mm) with RGB‐D input.

Methods

Twindom + THuman3.0

Chamfer ↓ P2S ↓ Normals ↑

A PIFu* 4.5058 4.4950 0.8525

SIF* 3.0672 3.0166 0.8712

B SIF*w/o.F J 4.2427 4.2706 0.8456

SIF*w/o.FN 3.8663 3.6204 0.8680

SIF*w/o.FA 3.3042 3.5229 0.8274

PIFu* w. Depth 4.3363 4.3720 0.8359

PIFu*w. JtsEncode 3.9337 3.7501 0.8575

PIFu*w. JtsEncode + JtsSample 3.8663 3.6204 0.868

C SMPL 10.3470 9.6107 0.7954

Note: The best results are highlighted with bold numbers. (A) Our SIF* compares to the
baseline PIFu*, (B) ablation study and (C) the errors of estimated SMPL.
Abbreviations: SIF, Skeleton‐aware Implicit Function; SMPL, skinned multi‐person
linear.

F I GURE 6 Ablation study about skeleton‐aware structure prior. (a) the input, (b) PIFu* results, (c) PIFu* with only skeleton‐relative encoding strategy,
(d) PIFu* with our two strategies, (e) ground truth. Our two strategies can make the implicit function sense of the connectivity of the skeleton and produce a
complete surface
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5.4.3 | Feature aggregation

To evaluate the effectiveness of our FA, we compare it with the
module in ICON, which relies on the visibility of the point to
choose a feature. As shown in Tables 1C and 2B, using the
same module as ICON (denoted as w/o.FA), our SIF (w/o.
FA) and SIF* (w/o.FA) gets a slightly worse result, while the
results of ICON (w.FA) improve considerably, for which our
geometry‐aware FA can guide the networks to distinguish the
subtle difference between viewpoints. Meanwhile, Figure 4
demonstrates that our FA gets a less noisy geometry especially
in the boundary region as explained in Section 4.3.

6 | DISCUSSION

6.1 | Conclusion

In this paper, we propose the method using SIF to recover a 3D
mesh of a completed and detailed person from a single‐view
image. Our SIF reduces the depth ambiguity problem and ar-
tefacts such as broken or disembodied parts, missing details, and
frequency noise. The main technical contributions include (1)
introducing the skeleton awareness into implicit function with a
bone‐guided sampling strategy and a skeleton‐relative encoding
strategy and (2) providing a method to fully dig out SMPL
feature with a body‐guided pixel‐aligned feature, a skeleton‐
aware structure feature and a geometry‐aware FA. The abla-
tion study demonstrates the effectiveness of each module.
Moreover, SIF can be extended to RGB‐D input and experi-
ments show that SIF improves the performance compared to
RGB and RGB‐D based SOTAmethods, which performs more
robustly for inaccurate SMPL and has the potential to handle
more challenging data such as loosing cloth.

6.2 | Limitation and future work

Our method requires high‐quality human scans with SMPL
annotation for training. However, it is time‐consuming and
costly to make a large‐scale high‐fidelity 3D human dataset. SIF
explores bone‐ and skeleton‐related prior rather than surface‐ or
volume‐related information from SMPL, which performs
robust to small SMPL noise; however, significant failure of body

estimation still leads to bad reconstruction, which is a general
problem for all parametric model‐based methods. Although we
theoretically analyse and argue that our skeleton‐aware structure
prior can be adapted to many pose estimators, it needs to be
extensively evaluated for completeness in future. Moreover, SIF
is trained with weak‐perspective or orthographic projection,
which is much different from the real scenes. In the near future,
we will explore how to improve the generation of the model
to complex projection of real scenes, such as perspective
projection.
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