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Abstract— In this paper, we present an algorithm for au-
tomatic liver segmentation from CT scans which is based on
a statistical shape model. The proposed method is a hybrid
method that combines three steps: 1) Localization of the average
liver shape model in a test CT volume via 3D generalized Hough
transform; 2) Subspace initialization of the statistical shape
model; 3) Deformation of the shape model to adapt to liver
contour through an optimal surface detection approach based
on graph theory. The proposed method is evaluated on MICCAI
2007 liver segmentation challenge datasets. The experiment
results demonstrate availability of the proposed method.

I. INTRODUCTION

Computer-aided liver analysis can help reduce the risk of
liver surgery and design treatment strategies. Accurate and
robust segmentation of liver tissue from medical images is
a prerequisite for liver analysis and diagnosis. Computed
tomography (CT) volume is often used for liver segmentation
and subsequent liver vessels segmentation. Due to highly
varying shape of liver and weak edges among some neigh-
boring organs, liver segmentation becomes a challenging
task which attracts much research attention more recently.
Remarkably, MICCAI 2007 Workshop on 3D liver segmen-
tation provides a platform for testing and comparing different
approaches for the topic [1]. In the competition, the statistical
shape model (SSM) based method [2], [3] has the best
performance among all approaches. As a matter of fact, SSM
based approaches are proved available for liver segmentation
by researchers.

The statistical shape model segmentation framework is
first proposed by Cootes [4] et al. Techniques involved in
the SSM include shape correspondence, shape representation
and search algorithms. In the shape model construction
step, establishing landmark points correspondence among all
shapes of the training sets is generally the most challenging
part. Spherical harmonics (SPHARM) [5] mapping for each
training shape is an effective registration method for shape
correspondence and the group-wise optimization strategy can
produce better results than pair-wise method. Subsequently, a
compact shape description via classical principal component
analysis (PCA) can be applied for shape representation. In
fact, SSM based approaches are sensitive to initialization of
the model pose. Contrast to manual or the time-consuming
evolutionary algorithm [6] proposed before, we present a 3D
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generalized Hough transform method to detect approximate
location of the liver and then a subspace initialization based
on intensity and gradient profile along the vertex normal is
proposed. Finally, the shape model is deformed to adapt to
the liver contour through an optimal surface detection based
on graph theory.

II. METHODS

A. Shape Model Construction

The liver shape model is built from several ground truth
segmentation results. Shape model is always described as a
point distribution model (PDM) which refers to the landmark
points on an object surface. The PDM of the liver is repre-
sented by a triangulated mesh which is obtained via marching
cubes algorithm. The key process of statistical shape model
construction is establishing landmark points correspondence
among all shapes of the training sets. A population-based
method for points correspondence is minimizing description
length (MDL) [7] of the generated model. For convenient
manipulation, original triangulated mesh is mapped to a unit
sphere by spherical harmonics (SPHARM)[5] parameteriza-
tion. After alignment of all training triangulated meshes in
a common coordinate system based on similarity transform
(translation, rotation and scaling), the standard principal
component analysis (PCA) is applied to represent variation
modes of the training set. Each valid liver shape vector can
be approximated by the average shape vector plus a subspace
spanned by the first c (c ≤ n) eigenmodes:

Φ � T−1

Φ +

c∑

m=1

bm pm

 (1)

where Φ =
∑
i

Φi/n is the average shape vector, pm is the

principal mode of variation obtained through PCA, bm is
the corresponding weight for each principal mode, T is a
similarity transform computed from the given shape Φ to
the average shape Φ. An instance of a SSM should have a
limitation of bm ∈

[
−3
√
λm, 3

√
λm

]
for not producing large

deviation from the training sets, where λm is the correspond-
ing eigenvalue for each eigenvector pm. The variability of
the liver shape model is displayed in Fig. 1.

B. Preprocessing

In order to reduce noise while preserving liver contour, a
3D nonlinear diffusion filter is applied to a test volume, the
nonlinear diffusion equation is given as follows:
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(a) (b) (c)
Fig. 1. Variability of a statistical model of the liver shape obtained from
40 training data sets. (a) The eigenmode with the largest variance +

√
λ1 p1;

(b) The averaged liver model Φ; (c) The eigenmode with the largest variance
−√λ1 p1.

(a) (b)
Fig. 2. 3D nonlinear diffusion filtering. (a) Original transversal slice
of liver before nonlinear diffusion; (b) Transversal images of liver after
nonlinear diffusion.

{
∂u(x,y,z,t)

∂t = div[g(|∇u|)∇u]
u (x, y, z, 0) = u0 (x, y, z)

(2)

where the diffusivity function g (s) = 1 −
exp

(
−3.315 (λ/s)8

)
if s > 0 and g (s) = 1 otherwise.

The effect of the diffusion filter on a CT slice is illustrated
in Fig 2.

C. Liver Localization by 3D Generalized Hough Transform

Liver localization is a prerequisite for accurate liver seg-
mentation. This makes the average shape initialization in
volume data a crucial step. Hough transform is an effective
and robust method to detect any arbitrary shape in an image
[8]. During GHT learning process, the triangulated mesh of
the average shape model is employed as a template shape. As
shown in Fig. 3, the liver centroid c is used as the reference
point. For each vertex p on the surface, revolution angle α
and azimuthal angle β of the vertex normal −→np is discretized
as the entries of the 2D reference table (R-table). The R-table
constructed by storing vector −→rp for each vertex p is indexed
by α and β, as shown in Fig. 3(b). When detecting liver shape
in a test volume, the gradient angle α and β of an edge point
is employed to retrieve corresponding entries of the R-table.
An accumulator array for parameter space saves the votes of
edge points to determine the most probable center of liver.

In order to reduce dimensionalities of the parameter space,
we restrict the average shape model only transform under
translation and isotropic scaling which neglects rotation.
The transformation requires a 4D parameter space storage.
The experiments show the assumption can effectively reduce
computational cost while giving acceptable localization re-
sult. For an edge point −→vq in a test volume, the corresponding
−→rp can be determined by gradient direction of the edge point.
Then the possible location of reference point in the parameter
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(a) (b)
Fig. 3. Parameters involved in the 3D GHT. (a) The revolution angle α
and azimuthal angle β of the surface vertex normal is indexed as the entries
of the R-table; (b) Illustration of a 2D R-table constructed by storing vector
~r.

space is calculated from −→vq + s−→rp, where s denotes the scaling
factor.

Before liver localization, the CT volume requires pre-
processing. 1) Image downsampling: GHT is performed
on the low resolution layer of the CT volume to capture
global information while improving efficiency. The original
CT image is downsampled to 3 × 3 × 3 mm3 using linear
interpolation. Since the scale of the liver is more larger than
the spacial sampling interval, shape of liver can be preserved
well after downsampling process. 2) Image smoothing: In
order to eliminate staircase edges resulted from downsam-
pling, a mean filter is employed to smooth the downsampled
CT volume. 3) Edge detection: The edges of the image is
detected through Canny edge detector while pruning edges
which definitely not belong to liver boundary. The liver has
a CT value range of

[
Ilow, Ihigh

]
, edges with corresponding

CT value out of the range will be pruned for an accurate
and fast GHT localization.

D. Subspace Initialization of the Statistical Shape Model

An instance of the SSM demands computing a similarity
transformation T and shape parameters bm in the Eq. (1).
Each vertex on the mesh is adjusted by evaluating fitness
on the basis of the image data. First the pose of the
model is evaluated through a similarity transform T, then
the displacement vector of the transformed model and the
original averaged model is projected onto subspace in the
Eq. (1) through multivariate linear regression method to give
the optimal parameter bm.

Designing an appropriate search strategy is very crucial.
Suppose the CT value range of liver is IL =

[
Ilow, Ihigh

]

and gmax denotes the maximum gradient magnitude of the
liver boundary. For each vertex −→vi on the mesh, candidate
liver boundary point is searched along the vertex normal −→ni ,
N equidistant points are sampled along each vertex normal
direction:

−→vk = −→vi + (k − N − 1
2

) • d • −→ni k = 0 · · ·N − 1 (3)

where d is the sampling distance. For an initial vertex
vk (k = N−1

2 ) on the mesh, if I (vk) ∈ IL then count the
number c of consecutive i ≤ k with I (vi) ∈ IL, the vertex vk is
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considered inside liver when c ≥ cthresh, otherwise vk outside
liver. Based on these assumptions, two different strategies
are used for searching candidate points:

1) vk is inside liver: Search candidate points with i ∈[
N−1

2 ,N − 1
]
, count number c of consecutive points

I (vi) ∈ IL and |∇I (vi)| ≤ gmax, set k = N−1
2 + c;

2) vk is outside liver: Search candidate points with i ∈[
0, N−1

2

]
, count number c of consecutive points I (vi) ∈

IL and |∇I (vk)| ≤ gmax, set k = c.
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Fig. 4. The flowchart of the subspace initialization process.

The flowchart is illustrated as Fig. 4. For an initial mesh
M generated from 3D GHT localization, search candidate
point for each vertex and then compute the pose T and
shape parameters b iteratively until convergence. The output
of the step is M = (T ∗)−1

(
Φ + Pb∗

)
, where T ∗ and b∗ are

corresponding optimal solution of T and b.

E. Optimal Surface Detection Approach Based on Graph
Theory

Since the segmentation result of the subspace initialization
is just a linear combination of variation modes described in
Eq. (1), which abundantly exploits prior of a typical liver
shape, but lacks flexibility to adapt to a liver in an arbitrary
test volume. Based on the previous segmentation result, we
employ an optimal surface detection algorithm in the final
refined segmentation process.

The optimal surface detection approach based on graph
theory is first proposed by Li et al [9]. The method can
globally optimize a cost function which incorporates sum
of nodes cost and surface smoothness constraint by trans-
forming it to a minimum s-t cut problem. Then a max-
flow/min-cut algorithm [10] can be employed to solve the s-t
cut problem in polynomial time. In this refined segmentation
process, the segmentation result of the previous step is used
as initialization.

The graph is constructed in a narrow-band around the
segmented surface. Suppose a vertex −→vi on the mesh and

its normal −→ni , N equidistant points are sampled along each
vertex normal direction for composing a column: −→pk =
−→vi + (k − N−1

2 ) • d • −→ni (k = 0 · · ·N − 1). As shown in Fig.
5 (b), there are two types of arcs in the graph, intra-column
arcs and inter-column arcs. For each column in the graph,
the intra-column arcs is defined as Eq. (4), the blue edges in
Fig. 5 (b) denotes intra-column arcs.

Ea = {〈pk, pk−1〉 | k = 1, · · · ,N − 1} (4)

The inter-column arcs express the smoothness constraint.
Consider two neighbouring columns Pm and Pn in the graph,
the inter-column arcs is defined as Eq. (5), where the
smoothness constraint ∆ represents the maximum allowed
difference between two neighbouring points on a surface.
The green edges in Fig. 5 (b) denotes the inter-column arcs.

Er = {
〈
pm

k , pn
max(0,k−∆)

〉
| ∀Pm, Pn is adjacent} (5)

Both the intra-column and inter-column arcs are regarded
as n-links in graph and assign infinity. In the weighted
directed graph, each node has a weight w(vk). Nodes with
w(vk) ≥ 0 are connected to the sink node by a directed edge
of weight w(vk), while nodes with w(vk) < 0 are connected
to the source node by a directed edge of weight −w(vk).
The weight wm

k of kth point in the mth column is defined as
Eq. (6). The cost function c used in the Eq. (6) is negative
gradient magnitude c(vk) = − |∇I(vk)| if I(vk) ∈ IL and
c(vk) = 1 otherwise. The negative gradient magnitude c(vk) is
computed in image domain and then the node cost is derived
by linear interpolation according to coordinate of the node.

wm
k =

{
cm

k k = 0,
cm

k − cm
k−1 otherwise. (6)

Fig. 5. Graph Construction. (a) A triangulated surface mesh with vertex
normals; (b) Graph is constructed with intra-column and inter-column arcs.
The blue edges denotes intra-column arcs while green edges denotes inter-
column arcs. Smoothness constraint in this graph is ∆ = 1.

III. EXPERIMENTS AND RESULTS

The proposed method is tested on the training datasets of
MICCAI 2007 liver segmentation challenge. There are 20
CT volumes of abdomen with contrast agent in the training
datasets. All datasets have an in-plane resolution of 512×512
pixels and inter-slice spacing from 0.7 mm to 5.0 mm. Other
40 CT volume with normal liver anatomy obtained clinically
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TABLE I
P S

Step Parameters

1. Nonlinear diffusion filtering λ = 30, ∆t = 0.15, t = 1.5
∆α = π

20 , ∆β = π
20 ,

2. 3D GHT scaling factor s ∈ [0.9, 1.0, 1.1],[
Ilow, Ihigh

]
= [50, 200]

sampling distance d=1 mm,
sampling points N = 41,

3. Subspace initialization cthresh = 10, ε = 2,
gmax = 200,

all 40 variation modes are used
sampling distance d=1 mm,

4. Optimal surface detection sampling points N = 31,
smoothness constraint ∆ = 2

(a) (b)

0.00120949

6.47518

12.9492

(c) (d)
Fig. 6. The contour of the expert manual reference segmentation is in green,
the contour of the segmentation of the method described in this paper is in
red. (a), (b) and (c) are sagittal, coronal and transversal slice from a test
CT volume respectively; (d) Surface distance map from the segmentation
result to the reference result.

are used for shape model construction with 2562 equally
distributed vertices on each model.

A. Segmentation Workflow and Parameters Selection

The segmentation workflow consists of following steps: 1.
Nonlinear diffusion filtering; 2. Average model localization
through 3D GHT; 3. Model subspace initialization; 4. Re-
fined segmentation based on optimal surface detection. The
parameters for each step are listed in Table I.

B. Results

The resulting surface meshes are converted to volume with
the same dimension and spacing as the corresponding CT
volume datasets. Fig. 6 shows the final segmentation results
with comparison to expert manual reference segmentation.
The segmentation results are compared to the ground truth
results according to volumetric overlap error (Overlap Error),
symmetric average surface distance DAvg and symmetric
RMS surface distance DRMS. The three average segmenta-
tion results metrics of 20 training datasets achieved by the
proposed method are summarized in Table II in comparison
with previous works from literature.

TABLE II
R   C M  P W

Overlap Error[%] DAvg[mm] DRMS [mm]

Kainmueller[2] 6.09 ± 2.13 0.63 ± 0.11 1.22 ± 0.22
Heimann[6] 5.1 ± 1.4 1.6 ± 0.5 3.3 ± 1.2

Lamecker[11] 7.0 ± 1.8 2.3 ± 0.3 3.1 ± 0.5
Our approach 5.25 ± 0.91 0.93 ± 0.25 2.23 ± 1.04

IV. FUTURE WORKS

The paper presents a hybrid method based on statistical
shape model to perform automatic liver segmentation from
CT scans. The experiments demonstrate availability of the
proposed method. There are two important future works
along our study: more training datasets will be involved in
shape model construction and improve efficiency of some
processing steps. Though 3D GHT provides acceptable liver
localization of the average shape model just under translation
and isotropic scaling, the major weakness of GHT is that
the scale and rotation of the object is handled in a brute-
force manner which requires a 6D parameter space and high
computational cost. An orientation and scale-invariant GHT
method may solve the problem. The subspace initialization
step proceeds iteratively and the candidate points searching
process takes most of the time but it can be parallelized for
acceleration.
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