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Abstract
Event cameras are bio-inspired sensors that produce sparse
and asynchronous event streams instead of frame-based im-
ages at a high-rate. Recent works utilizing graph convolu-
tional networks (GCNs) have achieved remarkable perfor-
mance in recognition tasks, which model event stream as
spatio-temporal graph. However, the computational mecha-
nism of graph convolution introduces redundant computation
when aggregating neighbors features, which limits the low-
latency nature of the events. And they perform a synchronous
inference process, which can not achieve a fast response to
the asynchronous event signals. This paper proposes a local-
shift graph convolutional network (LSNet), which utilizes
a novel local-shift operation equipped with a local spatio-
temporal attention component to achieve efficient and adap-
tive aggregation of neighbors features. To improve the effi-
ciency of pooling operation in feature extraction, we design
a node-importance based parallel pooling method (NIPool-
ing) for sparse and low-latency event data. Based on the cal-
culated importance of each node, NIPooling can efficiently
obtain uniform sampling results in parallel, which retains
the diversity of event streams. Furthermore, for achieving a
fast response to asynchronous event signals, an asynchronous
event processing procedure is proposed to restrict the network
nodes which need to recompute activations only to those af-
fected by the new arrival event. Experimental results show
that the computational cost can be reduced by nearly 9 times
through using local-shift operation and the proposed asyn-
chronous procedure can further improve the inference effi-
ciency, while achieving state-of-the-art performance on ges-
ture recognition and object recognition.

1 Introduction
Event camera (Lichtsteiner et al. 2008; Brandli et al. 2014)
is bio-inspired sensor that utilizes asynchronous and sparse
event streams to represent spatio-temporal visual informa-
tion. It asynchronously triggers an individual event when
the brightness changes of a pixel exceed a preset thresh-
old, which distinguishes it from frame-based cameras. Ben-
efiting from the mechanism of generating data, compared
with traditional cameras, event cameras own many attrac-
tive properties, including low latency, low power, high tem-
poral resolution (s), and high dynamic range (140 dB vs 60
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(a) Spatial graph convolutional network.

(b) Local-shift graph convolutional network.

Figure 1: Feature aggregation way of spatial graph convolu-
tional network and local-shift graph convolutional network.

dB of traditional cameras). Due to these excellent properties,
event cameras are more advantageous over traditional cam-
eras for visual tasks that require fast response, limited power
consumption, robustness to high speed motion, and variable
lighting. Therefore, event cameras have a wide range of ap-
plications, such as gesture recognition (Amir et al. 2017; Li
et al. 2021; Yao et al. 2021), object recognition (Cannici
et al. 2019; Sironi et al. 2018; Deng et al. 2022), optical
flow estimation (Ding et al. 2022; Hu et al. 2022), pose relo-
calization (Nguyen et al. 2019; Sekikawa et al. 2019), video
reconstruction (Rebecq et al. 2021a,b), autonomous driving
(Cheng et al. 2019; Chen et al. 2020a), etc.

For taking advantage of event-based data in downstream
tasks, designing models to effectively extract features from
sparse and asynchronous event streams is a key step. Pre-
vious methods (Liu et al. 2020; Amir et al. 2017) intro-
duce spiking neural networks (SNNs) for event processing,
which exploit the sparsity nature of event data and can asyn-
chronously respond to events. However, these methods have
limited performance in high-level tasks mainly due to the
lacking of general and robust learning rules. Since GCNs
and PointNet-like frameworks are suitable for feature ex-
traction from sparse inputs, recent works (Li et al. 2021;



Sekikawa et al. 2019; Messikommer et al. 2020) combine
GCNs or PointNet with event-by-event processing. How-
ever, when aggregating features for each node, the spatial
graph convolutions involved in these methods need to pro-
cess the features of all its neighbors. Specifically, as shown
in Fig.1a, if a node is a neighbor of multiple nodes, its fea-
tures will be processed multiple times, which incurs signifi-
cant computation consumption.

Based on these observations, to effectively extract spatio-
temporal information from sparse event streams, this paper
proposes a local-shift graph convolutional network, namely
LSNet, which processes event sequence as a spatio-temporal
graph. To improve feature extraction efficiency, we replace
the spatial graph convolution with lightweight point-wise
convolution and a novel local-shift operation which shifts in-
formation from neighbor nodes to the current one for feature
aggregation. Specifically, each node in the graph only needs
to be performed point-wise convolution operation one time
to obtain its independent features. Then, the local-shift op-
eration aggregates neighbors features across channel dimen-
sions, as shown in Fig.1b. However, shifting features of dif-
ferent neighbors to the current node equally ignores the rela-
tionship between it and different neighbors. Therefore, a lo-
cal spatio-temporal attention component is proposed, which
adaptively determines the contribution degree of each neigh-
bor when performing the local-shift operation.

To perform hierarchical learning and improve feature ex-
traction efficiency, previous graph-based methods (Li et al.
2021; Bi et al. 2020; Deng et al. 2022) introduce graph pool-
ing operations to obtain a few representative nodes, such as
cluster-based pooling, random pooling and pooling through
farthest point sampling (FPS). However, cluster-based pool-
ing obtains the downscaling factor based on the resolution of
events and preset cluster size, like pooling operation in con-
volutional neural networks (CNNs), which is not suitable for
the sparse event stream. Although random pooling can fast
obtain the pooling results, the sampled nodes cannot retain
the diversity of events. Pooling through FPS can cover the
spatio-temporal coordinates of sparse events, but the serial
sampling process introduces huge time consumption. This
paper proposes a node-importance based parallel pooling
method (NIPooling) which calculates the importance of each
node and obtains uniform sampling results covering the im-
portance range in parallel. In this way, we can efficiently ob-
tain representative nodes that retain the diversity of events.

To achieve a fast response to asynchronous event signals,
an asynchronous event processing procedure is designed for
the LSNet. When a new event arrives, the proposed asyn-
chronous procedure can reuse the previous calculations ac-
cording to the connectivity relationship between nodes to
avoid recalculating all nodes features in the reconstructed
graph. Specifically, our method only needs to compute the
changed activations around the new added node at the lowest
layer and propagates these changes to higher layers, which
achieves asynchronous response to event streams in a nearly
latency-free and power-saving way.

The contributions are summarized as follows:

• We propose a local-shift graph convolutional network

(LSNet) to adaptively shift information from neighbor
nodes to the current one to reduce computational cost.
• We propose a node-importance based parallel pooling

method, namely NIPooling, which efficiently obtains
uniform sampling results covering the importance range.
• We propose an asynchronous event processing procedure

that achieves a fast asynchronous response to event data.
• Experiments show that the proposed method achieves

state-of-the-art results on object recognition and gesture
recognition, while significantly reducing the computa-
tional complexity compared with previous methods.

2 Related Work
2.1 Event-Based Approaches
Motivated by the huge success achieved by CNNs in tra-
ditional computer vision, many previous methods compress
event streams into 2D frames (Cannici et al. 2020; Nguyen
et al. 2019; Rebecq et al. 2019) or 3D voxel grids (Gehrig et
al. 2019; Pan et al. 2020) to utilize existing efficient methods
based on dense CNNs. However, such data representation
transformations discard the sparse and asynchronous nature
of event streams, resulting in redundant computation.

Some methods propose to exploit the sparse nature of
events through sparse network architectures, such as SNNs,
PointNet-like frameworks, and GCNs. Although SNNs are
bio-inspired designed and tailored to process asynchronous
event streams, SNNs-based methods (Liu et al. 2020;
Shrestha et al. 2018) obtain limited performance due to the
lacking of training technology. Some methods treat event
streams as event clouds and utilize PointNet-like frame-
works or GCNs for better performance. (Wang et al. 2019)
utilize PointNet++ (Qi et al. 2017) to extract local and global
features for gesture recognition. (Bi et al. 2020; Chen et al.
2020b; Mitrokhin et al. 2020; Rebecq et al. 2021b) utilize
GCNs to exploit the topological structure of event clouds by
interpreting them in the form of spatio-temporal graphs. (Bi
et al. 2020) utilize the properties of B-spline bases to filter
the graph inputs and prove that such graph representation
requires less computation and memory than CNNs. (Deng
et al. 2022) propose a voxel-wise graph representation and a
multi-scale feature relational layer to extract spatial and mo-
tion cues. However, these methods perform a synchronous
inference process, which means that for each new arrival
event, they need to recompute all network activations, but a
single event only indicates a per-pixel change independently.

To avoid the redundant computation caused by recalculat-
ing all activations, recent methods propose to reuse network
activations and achieve event-by-event inference. EventNet
(Sekikawa et al. 2019) designs a recursive and event-wise
manner to process event streams. (Messikommer et al. 2020)
propose a general framework to convert synchronous mod-
els into asynchronous models through applying efficient re-
cursive update rules. However, EventNet (Sekikawa et al.
2019) lacks hierarchical learning and local information ex-
traction, limiting its scalability to high-level tasks, and the
input representation of (Messikommer et al. 2020) discards
the temporal information of event data. (Li et al. 2021) intro-
duce a graph-based recursive algorithm for efficient event-



wise processing. However, when aggregating features for
each node, the spatial graph convolution involved in it needs
to process all neighbors features, which introduces repeated
computation of node features. Therefore, this paper proposes
the LSNet to effectively extract features from sparse event
streams, and an asynchronous event processing procedure to
achieve a fast asynchronous response to event data.

2.2 Shift Convolution Operators
Recently, shift operations (Jeon et al. 2018; Wu et al. 2018;
Zhong et al. 2018) are utilized to replace expensive spatial
convolutions to reduce the number of parameters and com-
putational complexity. However, these methods are designed
for standard CNNs and are not compatible with sparse event
data. Shift-GCN (Cheng et al. 2020) successfully applied
shift to GCN for skeleton-based action recognition. How-
ever, for the proposed non-local shift graph operation, the
receptive field of each node covers the full skeleton graph,
which can not be used to process events with a large number.
And the proposed shift operation solves the computational
redundancy in computing features using three kinds of adja-
cent matrix for each node. We propose a novel local-shift op-
eration, which avoids processing a node multiple times when
aggregating features to reduce computational complexity.

3 Preliminaries
3.1 Event Camera Model
Event cameras respond to changes of logarithmic bright-
ness L(ui, ti) = logI(ui, ti) between timestamp ti and
ti−1 asynchronously and independently at each pixel ui =
(xi, yi) :

∆L = L(ui, ti)− L(ui, ti−1) (1)

An event ei = (xi, yi, ti, pi) will be triggered imme-
diately when the ∆L exceeds a preset threshold C (with
C > 0) which is a camera parameter. Each event encodes
the pixel location (xi, yi), trigger time ti, and polarity of the
brightness change pi ∈ {−1, 1}:

p =

{
1,∆L > C

−1,∆L 6 −C (2)

A group of events in a time window T can be expressed
as a sequence of events:

{ei}Ne
= {xi, yi, ti, pi}Ne

(3)

where Ne is the number of events in the sliding window.

3.2 Event Graph and Spatial Graph Convolution
A directed event graph can be constructed for each sliding
window, which is denoted as G = {V, E} with V nodes and
E directed edges. Each event is a node vi in the event graph,
which contains the spatio-temporal coordinate (xi, yi, ti)
and the node attribute (pi). For constructing the connectivity
relationship between nodes, this paper introduces the ball-
query strategy (Qi et al. 2017). Specifically, the neighbor
nodes connected to node vi are the first K neighbor nodes

whose Euclidean distance between vi is less than radius dis-
tance R. And each edge connecting vi and vj has its own
attribute eij , which is obtained by calculating the relative
Cartesian coordinates of the linked nodes vi and vj .

After constructing the event graph, spatial graph convolu-
tion in previous methods (Li et al. 2021; Bi et al. 2020) oper-
ate on local neighborhood graphs, which aggregates features
for each node by weighting its neighbors features through a
trainable function. However, it can be found that if a node
is a neighbor of multiple nodes, its features will be pro-
cessed multiple times for feature aggregation, which brings
redundant computation. The proposed local-shift operation
can solve this problem.

4 Method
For effectively extracting the spatio-temporal information
from sparse event streams, this paper proposes a local-
shift convolutional network (LSNet), which adaptively ag-
gregates features for each node through a local-shift opera-
tion equipped with a local spatio-temporal attention compo-
nent. In addition, a node-importance based parallel pooling
method (NIPooling) is proposed to efficiently sample rep-
resentative nodes covering the importance range, based on
the calculated importance of each node. Furthermore, for
achieving a fast response to asynchronous event signals, we
propose an asynchronous event processing procedure.

4.1 Local-Shift Convolutional Network
The proposed LSNet comprises three kinds of layers: local-
shift layer, global aggregation layer, and classifier layer, as
shown in Fig.2.

Local-shift layer. To obtain multi-scale features for each
node, the local-shift layer contains two parallel feature ex-
traction branches, the upper and lower paths shown in Fig.2.
Each branch contains two 1 × 1 convolutions for extract-
ing features of all nodes in the event graph. Then the local-
shift operation is performed to aggregate neighbors features.
There are two differences between the two branches. The
first one is that the receptive fields of nodes are different,
that is, different R and K are set in the ball-query strategy
when constructing event graph. The second one is that the
numbers of channels in the 1× 1 convolutions are different,
which are set larger for the branch with larger receptive field.
Features extracted from the two branches are concatenated
to obtain the multi-scale features of each node.

In local-shift operation, let vi denotes a node in the graph
and Fnei

i ∈ RNK×Cn1 represents a feature map of its NK

neighbor nodes. Neighbors are sorted in ascending order
of distance from vi and are numbered starting with 0. The
feature in cth channel of vi is replaced by feature in the
same channel location of the cth mod NK neighbor node,
as shown in Fig.3. After shifting, the aggregated features of
vi are formed by alternating the features of its neighbors in
the channel dimension.

However, there are two shortcomings of shifting features
as described above. Firstly, the shifting process ignores the
relationship between vi and its different neighbor nodes.



Figure 2: Overview of the proposed LSNet, which contains two local-shift layers, one global aggregation layer and one classifier
layer. The local-shift layer extracts multi-scale features for each node and performs the local-shift operation to aggregate
features. Blue arrows represent feature extraction and local-shift operation are performed on small receptive field, and red
arrows represent large receptive field. The global aggregation layer aims at obtaining high-level global features through global
max pooling operation. The classifier layer contains two fully connected layers for predicting results.

Figure 3: Local-shift operation for vi. For intuitive represen-
tation, vi has 6 neighbors including itself, and the number of
feature channels is 18.

Secondly, the neighbor information is asymmetric. Specif-
ically, different nodes have different frequencies of becom-
ing neighbors of other nodes. Nodes with higher frequency
appear more times in the shifting process, while the features
of nodes with low frequency may be abandoned.

To solve the first problem, a local spatio-temporal compo-
nent is proposed, which can adaptively determine the contri-
bution degree of neighbors when performing the local-shift
operation. It contains two concatenated 1 × 1 convolutions
to obtain features of all nodes F latt ∈ RN×Clatt in graph,
and determines the contribution degree of different nodes in
each local-neighbor graph according to the feature response
strength. The symbol n denoting layer number is omitted for
clarity. Let f latt(i) ∈ R1×Clatt denotes the features of vi.
f latt
i (j) and Ai(j) represent the features and the calculated

contribution degree of its jth neighbor, respectively:

Ai(j) =
|f latt

i (j)− f latt|(i)∑
j∈N (i)[|f

latt
i (j)− f latt(i)|]

(4)

where N (i) is the neighbor nodes set of vi. The calculated
contribution degree of the neighbor nodes will be multiplied
with the corresponding features during the local-shift opera-

tion to achieve adaptive feature aggregation.
To solve the second problem, for vi, the max pooling oper-

ation is performed on the shifted features fshift(i) and the
original features fori(i) of it in the channel dimension to
obtain the final features. In this way, the features with large
responses in fshift(i) and fori(i) at the same channel loca-
tion will be retained to avoid that important original features
are discarded due to the asymmetry of neighbor information.

Global aggregation layer. This layer adopts three 1 × 1
convolutions for feature extraction and introduces a global
attention component for feature aggregation. The attention
component utilizes two 1×1 convolutions to extract features
fgatt ∈ R1×Cgatt for Ng input nodes, which are utilized to
calculate the contribution degree:

GA(j) =
fgatt(j)∑Ng

j=0 f
gatt(j)

(5)

Finally, each feature vector is multiplied by the calculated
weight before being aggregated through a global max pool-
ing operation to obtain a one-dimensional feature vector.

Classifier layer. Finally, the high-level global feature vec-
tor is fed into two fully connected layers for classification.

4.2 Node-Importance based Parallel Pooling
Method

To perform hierarchical learning and improve feature extrac-
tion efficiency, graph-based methods introduce graph pool-
ing operations to obtain a few representative nodes from
the input. However, the serial sampling process in FPS in-
troduces huge time consumption, and the sampling results
of random pooling are clustered in the area with high den-
sity, which fails to retain the diversity of events. This paper
proposes a node-importance based parallel pooling method
(NIPooling), in which the importance of a node means its
clustering degree. To be exact, if a node is close to its neigh-
bors, it will have a high clustering degree and importance.
The process of NIPooling can be divided into three steps.
1. The importance of each node is calculated based on the

Euclidean distance obtained in the ball-query strategy.



Let Nin and Nout denote the number of nodes before
and after pooling operation, respectively. Note that Nin

is divisible by Nout. The distances between vi and its
(Nin/Nout)

2 nearest neighbors are summed, the smaller
the result, the higher the importance of vi.

2. All nodes are ranked in decreasing order of importance.

3. To obtain uniform sampling results covering the impor-
tance range, indexes are generated starting from 0 with
the step of Nin/Nout. According to the indexes and
ranked results, the sampled nodes are finally obtained.

Through the proposed NIPooling, the pooling operation
is performed in parallel, which improves the sampling effi-
ciency. And the sampled nodes cover the importance range,
which retains the diversity of event data.

4.3 Asynchronous Event Processing Procedure

GCNs-based methods process sparse events in the sliding
window for constructing an event graph. When the time win-
dow is slid from t−1 to t, new events will enter the window,
and old events will leave. Although an event only measures
single pixel changes independently, previous methods need
to recompute all network activations when a new event ar-
rives, which introduces redundant calculations. This paper
proposes an asynchronous event processing procedure for
LSNet to restrict the nodes needed to be recomputed only to
those affected by the new arrival event, based on the connec-
tivity relationship between nodes.

As a new event arrives, a new node vnew and new edges
connecting it with existing nodes will be added to the event
graph, in which the oldest node vold and its edges are aban-
doned. For reusing the previous calculated activations, a fea-
ture propagation rule is proposed, which guides the propaga-
tion of feature update from input layer to deeper layer. At the
first layer layer1 of the LSNet (layer0 is the input layer),
vnew or vold only affects the nodes treating it as neighbor.
Features of vnew are obtained through extracting multi-scale
features and performing local-shift operation, according to
the local-neighborhood graph of it. For other nodes affected
by vnew or vold at layer1, they need to perform the shift
operation based on the new neighbor relationship to update
features. For deeper layers layern, the affected nodes are
those that treat the updated nodes at layern−1 as neighbors.

Pooling operation aims at obtaining a few representative
nodes to perform hierarchical learning and improve feature
extraction efficiency. Therefore, two types of nodes are re-
garded as the newly added nodes, including the new sampled
nodes and the nodes both sampled at t− 1 and t whose fea-
tures are updated. For the nodes sampled at t − 1 and are
not sampled at t, they and their edges are discarded from
the graph. Then the features of the affected nodes can be
updated according to the above feature propagation rule.

Thanks to the asynchronous event processing procedure,
when a new node is inserted into the event graph, the net-
work activations are updated locally, which greatly reduces
computation complexity to achieve asynchronous response
to event in a nearly latency-free and power-saving way.

4.4 Training and Testing Strategies
In the training phase, since the feature update achieved by
asynchronous event processing procedure is equivalent to
recalculating the full graph nodes, the LSNet can be trained
on batches of sliding windows through backpropagation. In
this paper, sliding windows are obtained based on a fixed
time interval T . The cross-entropy loss function with label
smoothing is adopted for training. In the inference phase,
for each event stream, events triggered before T construct
the initial event graph, and the LSNet is applied to the full
graph to initialize the features of each node. Then when new
event arrives, the asynchronous event processing procedure
is introduced to update the features, which achieves a fast
response to the asynchronous event signals.

5 Experiments
5.1 Experimental Setup
Datasets. Our methods are evaluated on four commonly
used event-based datasets, including DVS128 Gesture
Dataset (Amir et al. 2017), N-Cars (Sironi et al. 2018),
MNIST-DVS (Orchard et al. 2015a), and CIFAR10-DVS
(H et al. 2017). The DVS128 Gesture Dataset records
1342 instances of 11 gestures. The N-Cars dataset con-
tains 12336 car samples and 11693 background sam-
ples. These two datasets are collected by event cameras
in real world environments. Differently, MNIST-DVS and
CIFAR10-DVS are converted from the existing frame-based
datasets MNIST dataset (Lecun et al. 1998) and CIFAR10
dataset (Krizhevsky 2009), respectively. The MNIST-DVS
contains 30000 samples, which are obtained by displaying
10000 converted samples at three scales. The CIFAR10-
DVS dataset converts 10000 samples of 10 categories.

Implementation details. The local-shift layer contains
two parallel feature extraction branches to obtain multi-scale
features from different receptive fields. For the first local-
shift layer, K and R in ball-query strategy are set as 8, 0.06
and 16, 0.12 for the upper and low paths, respectively. For
the second layer, K and R are set as 16, 0.12 and 32, 0.24,
respectively. In pooling layers, the number of representa-
tive nodes are 512 and 256. The proposed method is imple-
mented by PyTorch, which is trained on TITAN RTX GPU.
The batch size is 64 and Adam optimizer (Kingma and Ba
2015) is adopted with an initial learning rate of 0.001 multi-
plied by 0.5 every 20 epochs. More details about the network
architecture are shown in the supplementary material.

Metrics. For object recognition and gesture recognition
tasks, prediction accuracy is adopted. For evaluating the
computational complexity, the giga and million floating-
point operations of the network (GFLOPs and MFLOPs)
and the million floating-point operations per event (MFLOP-
s/event) are introduced.

5.2 Ablation Study
For verifying the reduction of computational complexity
brought by the proposed LSNet and asynchronous event pro-
cessing procedure, as well as the performance gain brought



Method Local-shift L-att G-att Acc(%) MFLOPs
Baseline 95.45 940.9

Shift
X 95.51 105.1
X X 95.78 110.8
X X X 96.10 117.2

Table 1: Contribution of local-shift operation and each atten-
tion component, evaluated on N-Cars dataset. Local-shift,
L-att, and G-att refer to the proposed local-shift operation,
local spatio-temporal attention component, and global atten-
tion component, respectively.

by the local spatio-temporal attention component, global at-
tention component and NIPooling, we conduct ablation ex-
periments on the N-Cars dataset. Each sliding window with
T set as 50ms in N-Cars is randomly sampled 1024 events
for processing.

Local-shift convolutional network. For verifying the ef-
ficiency and accuracy improvement brought by the local-
shift operation and each attention component, architectures
with various settings are introduced, as shown in Table 1.
Baseline means the network has a similar structure as LSNet
removing two attention components, except that it performs
spatial graph convolutions on the local-neighborhood graph
of each node to aggregate features. Note that for a fair
comparison, architectures in Table 1 all adopt the proposed
NIPooling. As shown in the first two rows of Table 1, the
proposed local-shift operation reduces the MFLOPs by 9×,
while achieving better accuracy (95.51% vs 95.45%). And
after introducing the proposed two attention components,
the accuracy is further improved (96.10%) with a small in-
crease in computational complexity, which confirms that the
two lightweight attention components can adaptively guide
the feature aggregation to obtain a better performance.

Node-importance based parallel pooling method. For
verifying the effectiveness of the NIPooling, two additional
pooling methods are introduced to the LSNet, as shown in
Table 2. Random performs random sampling from input to
obtain representative nodes. FPS means that the pooling re-
sults are obtained by utilizing farthest point sampling. Ta-
ble 2 shows that the NIPooling achieves better accuracy
than FPS (96.10% vs 95.88%) while improving the speed by
nearly 780×. The results prove that based on the importance
of each node, the NIPooling obtains higher quality represen-
tative nodes than only relying on node coordinates. And the
parallel operation significantly reduces the sampling time,
which is beneficial to the low-latency nature of event data.
In addition, the accuracy of NIPooling is 0.29% higher than
that of Random, which proves that the sampled nodes pre-
serving the diversity of events obtained by NIPooling can
provide richer features for prediction.

Asynchronous event processing procedure and hyperpa-
rameter settings. Since K and R in ball-query strategy
influence the connectivity of nodes in the graph, which af-
fect the accuracy and efficiency of the network as well as
the number of nodes needed to be updated in the asyn-

Pooling method Random FPS NIPooling

Accuracy(%) 95.81 95.88 96.10
Average pooling time(ms) 0.11 85.81 0.11

Table 2: The accuracy and average pooling time of choosing
different pooling methods.

Kmin 4 8 16

SLSNet 86.3 117.2 179.0
ALSNet 1.1 2.3 5.3

Accuracy(%) 95.74 96.10 95.95

Table 3: The MFLOPs/event and accuracy of SLSNet and
ALSNet with different Kmin.

chronous procedure, ablation experiments are conducted.
Because the LSNet consists of tow shift-layers contain-
ing multi-scale feature extraction, for reducing the num-
ber of hyperparameters, we set the ratio between the four
K and the ratio between K and R. Following the set-
ting in (Qi et al. 2017), let Kmin denotes the minimum
K at the first layer, then the other K of the first layer is
2Kmin. And the two K at the second layer are 2Kmin

and 4Kmin, respectively. For the setting of R, we adjust
R according to the ratio of K = 16, R = 0.12. In ex-
periments, SLSNet means that the LSNet performs a syn-
chronous update process in inference, that is, when a new
event arrivals all nodes activations are recomputed. ALSNet
refers to utilizing the asynchronous event processing proce-
dure. As shown in Table 3, since ALSNet introduces asyn-
chronous processing, it reduces MFLOP/s by 78×, 51×, and
33× compared to SLSNet, respectively. With K increasing,
due to ALSNet processing the affected nodes, the MFLOP-
s/event is increased. Although the MFLPOs/event is only 1.1
when Kmin is set as 4, the prediction accuracy is sacrificed
(95.74%), due to insufficient neighbor information. By set-
ting Kmin to 8, ALSNet can extract sufficient local infor-
mation and obtains the best performance 96.10%, striking
a balance between accuracy and computation cost. If Kmin

is set too large, interference information may be introduced
when aggregating features, resulting in decreased accuracy
95.95%. In subsequent experiments, Kmin is set to 8 to bal-
ance accuracy and efficiency.

5.3 Object Recognition
Experiments are conducted on three commonly used object
recognition datasets. For CIFAR10-DVS and MNIST-DVS,
T is set as 200ms and 100ms. Each window is randomly
sampled 4096 and 1024 events, respectively. The setting of
N-cars is the same as in the ablation study.

Comparison with State of the Art. Table 4 compares the
SLSNet and ALSNet with other methods. Compared with
EvS-B (Li et al. 2021) which also utilizes a synchronous up-
date process, thanks to the proposed local-shift operation,
SLSNet reduces the computational complexity by 9.8×,
2.14×, and 12×, respectively. After introducing the asyn-
chronous event processing procedure, ASLNet further re-



MNIST-DVS N-Cars CIFAR10-DVS
Methods Representation Acc% MPs/ev Acc% MPs/ev Acc% MPs/ev

H-First (Orchard et al. 2015b)* Spike 59.5 - 56.1 - 7.7 -
HATS(Sironi et al. 2018)* TimeSurface 98.4 - 90.2 - 52.4 -

HOTS (Lagorce et al. 2017)* TimeSurface 80.3 26 62.4 14.0 27.1 26
DART (Ramesh et al. 2020)* TimeSurface 98.5 - - - 65.8 -
LIAF-Net (Wu et al. 2020) Frame 99.1 - - - 70.4 -

YOLE (Cannici et al. 2019)* VoxelGrid 96.1 - 92.7 328.1 - -
Asynet (Messikommer et al. 2020)* VoxelGrid 99.4 112 94.4 21.5 66.3 -

EV-VGCNN(Deng et al. 2022) VoxelGrid - - 95.3 - 67.0 -
Dominic et al. (Jack et al. 2020) Point-clouds 99.1 - - - 56.6 -

Bi et al. (Bi et al. 2020) Graph 98.6 - 91.4 - - -
EvS-B (Li et al. 2021) Graph 99.1 1152 93.1 251 68.0 3020
EvS-S (Li et al. 2021)* Graph 99.1 15.2 93.1 6.1 68.0 33.2

SLSNet Graph 99.61 117.2 96.10 117.2 74.86 251.2
ALSNet* Graph 99.61 3.3 96.10 2.3 74.86 2.0

Table 4: Comparison with different methods on the MNIST-DVS dataset, N-Cars dataset, and CIFAR10-DVS dataset. * means
that the results are obtained through event-by-event processing.

duces the computational cost because it only needs to update
the activation of nodes affected by the new arrival event.
Compared with SLSNet, ALSNet reduces the MFLOP-
s/event by 35×, 51×, and 125× on the three datasets. Com-
pared with EVS-S* (Li et al. 2021) and Asynet* (Mes-
sikommer et al. 2020), which achieve comparable accuracy,
ASLNet obtains the best performance with the lowest com-
plexity, which further proves the effectiveness of the pro-
posed method. Note that CIFAR10-DVS is the most diffi-
cult dataset among the three datasets, due to high intra-class
difference. ALSNet not only greatly improves the computa-
tional efficiency on this dataset, but also improves the pre-
diction accuracy significantly, which proves the strong fea-
ture extraction and aggregation capabilities of the network.

5.4 Gesture Recognition

In DVS128 Gesture Dataset, T is set as 0.5s. For each slid-
ing window, 1024 events are sampled for training.

Comparison with State of the Art. Since the other meth-
ods in Table 5 do not provide results on MFLOPs/event, we
compare the results on accuracy and GFLOPs. As shown
in Table 5, SLSNet achieves the best performance with
the lowest computational complexity. Although LIAF-Net
(Wu et al. 2020), TA-SNN (Yao et al. 2021), and (Bi
et al. 2020) have achieved comparable performance, the
dense frame representation and CNNs used by the former
two, and the spatial graph convolution adopted by the lat-
ter, all bring computational redundancy. Through introduc-
ing sparse graph representation and local-shift operation,
SLSNet decreases GFLOPs by nearly 100×. In addition,
these methods all need to perform synchronous update pro-
cess when a new event arrives, which limits the low-latency
nature of event data. By adopting the asynchronous event
processing procedure, compared with SLSNet, MFLOP-
s/event of ALSNet is further reduced in inference (117.2 vs
3.1).

Methods Representation Acc(%) GFLOPs

Amir et al. (Amir et al. 2017) Spike 94.59 -
SpArNet (Khoei et al. 2020) Spike 95.10 -

STBP-tdBN (Zheng et al. 2020) Spike 96.87 -
Wang et al. (Wang et al. 2019) Point-clouds 95.32 -

PAT (Yang et al. 2019) Point-clouds 96.00 -
Kugele et al. (Kugele et al. 2020) Frame 95.56 15.0
Massa et al. (Massa et al. 2020) Frame 89.64 -

LIF-Net (He et al. 2020) Frame 93.40 -
LIAF-Net (Wu et al. 2020) Frame 97.56 13.6
TA-SNN (Yao et al. 2021) Frame 98.61 -
Bi et al. (Bi et al. 2020) Graph 97.20 13.7

SLSNet Graph 99.62 0.12

Table 5: Comparison with different methods on the DVS128
Gesture Dataset.

6 Conclusion

Although previous method adopting GCNs have achieved
remarkable performance in event-based tasks, they face re-
dundant computation brought by the computational mecha-
nism of spatial graph convolution and can not fast respond
to the asynchronous event signals, which limit the low-
latency nature of event-based data. This paper proposes a
novel local-shift convolutional network for efficient event
processing, which aggregates neighbors features for each
node through local-shift operation and significantly reduces
the computation complexity. To improve the efficiency of
pooling operation in feature extraction, a node-importance
based parallel pooling method is designed for low-latency
and sparse event-based data. NIPooling efficiently obtains
uniform sampling results that retain the diversity of events
in parallel. Furthermore, an asynchronous processing pro-
cedure is proposed, which achieves a fast response to event
signals. Experiments demonstrate that the ALSNet achieves
new state-of-the-art results with the lowest computation
complexity.
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