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   Abstract—This  survey  paper  provides  a  review  and  perspec-
tive  on  intermediate  and  advanced  reinforcement  learning  (RL)
techniques  in  process  industries.  It  offers  a  holistic  approach  by
covering  all  levels  of  the  process  control  hierarchy.  The  survey
paper  presents  a  comprehensive  overview  of  RL  algorithms,
including  fundamental  concepts  like  Markov  decision  processes
and  different  approaches  to  RL,  such  as  value-based,  policy-
based,  and  actor-critic  methods,  while  also  discussing  the  rela-
tionship between classical control and RL. It  further reviews the
wide-ranging applications of RL in process industries, such as soft
sensors,  low-level  control,  high-level  control,  distributed  process
control,  fault  detection  and  fault  tolerant  control,  optimization,
planning,  scheduling,  and  supply  chain.  The  survey  paper  dis-
cusses  the  limitations  and  advantages,  trends  and  new  applica-
tions,  and  opportunities  and  future  prospects  for  RL  in  process
industries. Moreover, it highlights the need for a holistic approach
in  complex  systems due  to  the  growing importance  of  digitaliza-
tion in the process industries.
    Index Terms—Process  control,  process  systems  engineering,  rein-
forcement learning.
  

I.  Introduction

R EINFORCEMENT  learning  (RL)  has  emerged  as  an
effective tool for solving complex decision-making prob-

lems in a wide range of fields. It has sparked a growing inter-
est  in  the  process  industries  in  recent  years,  where  it  has
shown promise in optimizing processes, increasing efficiency,
and  improving  safety  [1].  Testing  RL  in  simulated  environ-
ments,  laboratory  experiments  and  pilot-scale  setups  has
yielded  significant  outcomes  and  brought  RL  closer  to  real-
world  applications.  As  a  result  of  these  outcomes  and  rapid
developments  in  computational  technologies,  numerous  tech-
nology  organizations  have  created  and  supported  various
research  institutes  to  accelerate  RL  research  in  robotics  and
language  models.  Despite  these  advancements  outside  pro-
cess industries, most of the RL methodologies use a combina-

tion  of  learning  and  process  control  techniques  extensively
studied  in  the  optimization  and  control  of  process  industries
[2]. On the other hand, operational drifts and varying dynam-
ics  of  processes  require  modifications  in  classical  techniques
and  more  sophisticated  and  adaptable  solutions.  In  order  to
understand  and  contribute  to  RL theory  in  process  industries
while improving its applicability in real-time, researchers and
practitioners  should  analyze  the  operational  levels  in  process
control  holistically  [3].  A  systematic  outline  for  these  levels
(the control hierarchy), was initially given in [4] without con-
sidering possible faults in the production, supervision and exe-
cution  levels. Fig. 1 generalizes  the  existing  presentation  of
the  control  hierarchy  by  considering  complex  applications  in
the  real  world,  and  this  study  provides  representative  RL
applications for each level.
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Fig. 1.     A schematic of the modern control hierarchy based on [4]. The pro-
duction level makes high-level decisions based on market demand and politi-
cal and social events. The supervision level includes real-time optimization of
operational targets, control tuning and other hyperparameter optimizations.
The execution level observes the process variables and matches the criteria
that are defined by the higher levels. These observations are obtained through
sensors, and the actuators deliver the control actions to the plant at the instru-
mentation level.
 

Despite RL’s potential in the control hierarchy, its method-
ologies face several challenges, including a lack of high-qual-
ity data for training, simultaneous learning and control in real-
time, interconnectivity and complexity of systems. Moreover,
optimal  control  strategies  depend  on  industries,  and  finding
them  through  RL  involves  high  risk  and  cost  due  to  signifi-
cant  trial  and error  and long-term effects.  Nonetheless,  it  has
been  reported  that  several  RL  methods  can  solve  real-world
problems effectively.

Parallel  to  the  ongoing  process  control  and  automation
research,  Industry  5.0  builds  upon  Industry  4.0,  aiming  to
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overcome  its  limitations  and  prioritize  human-machine  inter-
action.  Process  control,  automation,  and  reinforcement  learn-
ing  are  crucial  for  achieving  the  goals  of  Industry  5.0.  For
example,  network  automation,  a  key  aspect  of  Industry  4.0,
has  supported  large-scale  Industrial  Internet-of-Things  (IIoT)
and optimized service quality while reducing complexity and
cost [5]. However, Industry 5.0 introduces new challenges like
cross-layer network optimization and privacy/security protec-
tion.  Reinforcement  learning can address  these challenges by
enabling comprehensive network optimization and enhancing
privacy/security measures. Industry 5.0 also emphasizes soci-
etal significance and a human-oriented approach beyond pro-
duction efficiency and economic goals. SCADA systems have
evolved  with  concepts  like  event-oriented,  data-driven,  and
model-driven  systems.  Reinforcement  learning  can  enhance
these  systems by providing intelligent  decision-making capa-
bilities and adaptive control that align with human needs. Sup-
ply chain management has transitioned from Supply Chain 4.0
to Supply Chain 5.0, focusing on tailored demand fulfillment
and better human-machine relationships. Reinforcement learn-
ing is crucial in optimizing supply chain processes, improving
demand forecasting, and facilitating effective human-machine
collaboration.  In  summary,  reinforcement  learning  comple-
ments  process  control,  automation,  and  the  advancements  of
Industry 5.0.  It  enables comprehensive network optimization,
adaptive  control  in  SCADA  systems,  and  improved  supply
chain management. By learning from data and making intelli-
gent  decisions,  reinforcement  learning  facilitates  human-
machine  interaction,  resilience,  sustainability,  and  societal
value in Industry 5.0 [6].

Some  studies  reviewed  machine  learning  and  RL  applica-
tions  in  specific  domains,  including  supply  chain  manage-
ment [7], process control [8], fault detection and diagnosis [9],
[10],  etc.  However,  there  is  still  a  lack  of  a  comprehensive

review of the state-of-the-art theory, outstanding challenges in
the  unified  control  hierarchy,  and  possible  improvements  for
practical  solutions  beyond  toy  problems  and  small-scale
implementations.  A  detailed  analysis  of  the  methodological
development  of  RL  techniques,  concerns  and  obstacles,  and
future prospects may help researchers and practitioners imple-
ment,  enhance,  and  expand  the  existing  accomplishments
more  rigorously.  As  a  result,  the  main  contributions  of  this
manuscript  are  to  show  the  developments  in  deep  learning,
process  control,  and  RL,  introduce  advanced  RL  techniques,
present  an  overview  of  the  recent  progress  in  RL  in  process
industries, and discuss the future prospects in a compact man-
ner. Table I presents the abbreviations used in this manuscript.

The manuscript is organized as follows. Section II progres-
sively introduces the motivation behind RL in process indus-
tries, Section III mathematically explores the RL theory, Sec-
tion IV reviews the recent literature with a focus on soft sen-
sor design, process control, fault detection and diagnosis, fault
tolerant  control,  optimization,  planning,  scheduling,  and  sup-
ply  chain  management.  Then,  Section  V  discusses  the  out-
standing  problems  and  possible  extensions  that  researchers
and professionals of process industries can consider.

Research Methodology: In order to compile the specific lit-
erature  as  extensively  as  possible,  this  survey  focuses  on  the
relevant  keywords  in  the  control  hierarchy  shown  in Fig. 1.
An example combination is as follows [“Process control” OR
“Fault detection”] AND [“Reinforcement learning”]. After fil-
tering the literature in Google Scholar,  Web of Science, Sco-
pus,  and  IEEE  Xplore  using  these  keywords,  this  article
includes peer-reviewed research and review papers written in
English.  In  order  to  focus  on  the  most  recent  developments,
the survey paper considers the articles published after January
2019 in most of the survey sections (e.g., in process control).
However,  since this  is  the first  review article  that  focuses on

 

TABLE I 

Nomenclature

A2C Advantage actor-critic GRU Gated recurrent units PDE Partial differential equation

A3C Asynchronous advantage actor-critic HLA/LLA High/Low level agent PID Proportional-integral-derivative

ACER Actor-critic with experience replay HVAC Heating, ventilation, and air condi-
tioning PIDE Partial integral differential equation

ACKTR Actor-critic using Kronecker-factored
trust region IIoT Industrial Internet-of-Things PLC Programmable logic controller

CNN Convolutional neural network KL Kullback-Leibler PPO Proximal policy optimization

COD Chemical oxygen demand LQR Linear quadratic regulator PSE Process systems engineering

CSTR Continuous stirred-tank reactor LSTM Long short-term memory PSV Primary Separation Vessel

DDPG Deep deterministic policy gradient LTI Linear time-invariant RL Reinforcement learning

DL Deep learning MC Monte Carlo RNN Recurrent neural network

DoS Denial-of-Service

DP Dynamic programming MDP Markov decision process SAC Soft actor-critic

DPG Deep policy gradient MILP Mixed integer linear programming SARSA State-action-reward-state-action

DQN Deep Q learning MIMO Multiple input multiple output SS Soft sensor

FD Fault detection MINLP Mixed integer non-linear program-
ming TD Temporal difference

FIM Fisher information matrix ML Machine learning TD3 Twin delayed deep deterministic policy
gradient

FTC Fault tolerant control MPC Model predictive controller TRPO Trust region policy optimization

GAN Generative adversarial network ODE Ordinary differential equation VAE variational auto-encoder
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the entire control  hierarchy,  it  also considers older  articles in
sections like automated soft sensor design and fault detection.
Moreover,  to  minimize  the  overlap  and  provide  a  unique
resource,  the  articles  covered  in  the  recent  related  review
papers  (e.g.,  in  [11],  [12])  were  excluded  from  this  survey’s
scope. Fig. 2 presents  the  number  of  related  articles  in  the
Scopus  database  to  highlight  the  importance  and  opportuni-
ties in these fields.
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Fig. 2.     Scopus literature survey for the related topics. The figure shows an
exponential increase in the topics covered in this survey paper since 2000.
   

II.  Recent Innovations in Control and
Learning Technologies

  

A.  Advances in Process Control
Process  control  is  a  highly  interdisciplinary  field  that  has

been evolving from the earliest forms of proportional-integral-
derivative (PID) controllers to the more sophisticated optimal
control  schemes.  While  the  PID  controllers  are  effective  for
low-level, simpler control tasks (execution level in Fig. 1), the
optimal  control  schemes  are  preferred  for  complex  systems,
particularly at the supervisory level. The general optimal con-
trol  problem  is  formulated  as  a  cost-minimization  problem
expressed as follows:
 

min
u
Φ0(x(τ0), τ0)+

w τ f

τ0
ζ(x(τ),u(τ), τ) dτ+Φτ(x(τ f ), τ f )

(1)
Φ0 Φτwhere , ζ, and  represent the arrival, running, and termi-

nal  costs  respectively.  Variables x and u represent  the  states
and inputs, respectively. The linear quadratic regulator (LQR)
and the model predictive controller (MPC) are the most popu-
lar optimal control scheme where the cost functions are taken
as quadratic functions. The LQR usually solves the optimiza-
tion problem once in the selected window, whereas the MPC
solves  the  optimization  problem  in  a  receding  window  man-
ner  at  every  time  instant.  Moreover,  LQR  assumes  a  linear
model, while the MPC framework can handle both linear and
nonlinear system models. Thus, MPC is more widely used as
it  is  more  suitable  for  real  process  systems.  Optimal  control
schemes, in general, are very versatile and have the ability to

incorporate various system complexities.
One such complexity arises from the fact  that  modern pro-

cesses  are  highly  integrated.  This  leads  to  complex  systems
that  contain  multiple  sub-systems  which  interact  with  each
other. Distributed MPC techniques have been explored in the
past couple of decades [13] for such systems. Economic MPC
is another widely explored category of MPC that combines the
economic  objectives  of  a  plant  operation  with  the  control
objectives [14]. This fuses the production-level decisions and
supervisory-level controls depicted in Fig. 1, thus leading to a
holistic  consideration  of  various  aspects  such  as  economics,
time-varying operation, and process dynamics. Robust MPC is
another important area that has received substantial attention.
This  deals  with  the  issues  such  as  model  mismatch,  uncer-
tainty in the system model, and the presence of unknown dis-
turbances.  Some important  methods include tube-based MPC
[15], stochastic MPC [16], etc.

The  standard  MPC  formulations  usually  assume  the  avail-
ability of a process model which may be challenging to deve-
lop  for  complex  systems.  Thus,  the  recent  trend  has  been
implementing MPC based on data-driven techniques for learn-
ing  system  dynamics  or  controller  design  [17].  In  particular,
increasing focus is on approaches that do not learn an explicit
parametric  model  using  system  identification  techniques.
Thus,  MPC  implementations  based  on  approaches  such  as
Gaussian  process  models  [18],  direct  utilization  of  historical
signal  trajectories  [19],  etc.,  have  been  explored.  The  advent
of  deep  learning  has  also  resulted  in  the  adoption  of  deep
learning  into  optimal  control  problems.  There  has  been  con-
siderable  research  on  using  neural  network  architectures  in
MPC for various objectives such as learning the feedback con-
trol law [20], and modelling process dynamics [21]. In partic-
ular,  dynamic  network  architectures  such  as  recurrent  neural
networks (RNN), long short-term memory (LSTM), and gated
recurrent  units  (GRU)  are  commonly  used  to  model  process
dynamics.  

B.  Advances in Deep Learning
The  modern  resurgence  in  deep  learning  started  in  2006

with  works  related  to  greedy  layer-wise  training  using
restricted  Boltzmann  machines  [22].  Since  then,  deep  learn-
ing  has  been  continuously  evolving  both  in  terms  of  training
methods  and  architectures.  The  improvements  in  the  training
methods  include  weight  initialization,  weight  regularization,
dropout,  etc.  [23].  Similarly,  the  architectural  improvements
have also been significant. Several breakthrough architectures
since 2006 include the  generative  adversarial  network,  GRU,
variational  auto-encoder  (VAE),  residual  network,  and  atten-
tion-based  neural  networks  [24].  These  developments  have
vastly  improved  the  fields  of  computer  vision,  natural  lan-
guage processing, finance, engineering, etc. Deep learning has
also been finding wide acceptance in process industries owing
to its ability to model complex nonlinear systems. Deep learn-
ing  and  machine  learning,  in  general,  can  be  broadly  classi-
fied  into  three  categories:  unsupervised  learning,  supervised
learning, and RL. All three facets of deep learning have been
utilized  in  process  industries,  particularly  the  unsupervised
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and  supervised  learning  techniques,  which  have  been  exten-
sively explored.

1) Unsupervised Learning: Unsupervised learning has been
used in process industries for a variety of process monitoring
applications,  such  as  fault  detection  and  diagnosis  [25],  and
fault  prognosis  [26].  Since  modern  industrial  processes  are
complex  in  nature,  a  deep  learning  approach  is  a  suitable
choice  for  these  tasks.  Similar  to  the  general  deep  learning
research,  the  research  for  process  industrial  applications  also
has  been  evolving  continuously  to  accommodate  more  com-
plex  structures.  These  include  auto-encoders,  GANs,  VAE,
RNN, and their variants [27], [28], etc. This array of methods
spans  a  wide  range  of  approaches  covering  the  aspects  of
deterministic  and  probabilistic  methods,  and  dynamic  and
static methods. Recently, RL has been explored as an avenue
to achieve these traditional unsupervised learning tasks.

2)  Supervised  Learning: As  with  unsupervised  learning,
there  is  extensive  research  in  deep  learning  for  supervised
learning  applications  in  process  industries.  In  the  process
industries, supervised learning is primarily used for tasks such
as soft sensing [29] and fault classification. Architectures such
as  the  stacked  auto-encoders,  LSTM,  and,  VAE  [30],  [31]
have been explored to achieve these tasks. Besides these tradi-
tional  nonlinear  regression-type  tasks,  computer  vision-based
soft  sensors  also  have  been  developed  [32],  which  rely  on
CNN  to  extract  essential  features  from  an  image  for  super-
vised learning.

Both  the  unsupervised  and  supervised  learning  techniques
are  usually  purely  data-based  and  require  a  vast  amount  of
data  to  obtain  reliable  models.  RL,  on  the  other  hand,  is  a
learning framework where an agent interacts with the system
and gets a reward for achieving a certain goal [33]. The agent
learns  the  system information  in  this  process  and  develops  a
decision framework to achieve the goals. RL thus can aid the
traditional  supervised  and  unsupervised  learning  tasks  where
even with the vast amount of data, one still has to manage cer-
tain aspects such as the selection of features, selection of net-
work  architecture,  and  dealing  with  unseen  data,  etc.  Thus,
apart  from  the  control  applications,  RL  may  also  be  used  to
aid  the  conventional  unsupervised  and  supervised  learning
tasks in process industries.  

C.  Advances in Reinforcement Learning
Parallel  to  the  advancements  in  control  and  DL,  RL  has

advanced  over  the  past  decade,  primarily  driven  by  the
research  institutions  supported  by  the  technology  industry.
Primary  developments  include  but  are  not  limited  to  the  fol-
lowing:

1) Stability in policy and value function updates [34], [35],
which can improve the learning in actor-critic settings,

2) Sample  efficient  exploration and model-based learning
that can speed up learning without requiring lengthy or costly
operations [36], [37],

3)  Interactive  RL  that  utilizes human  feedback to  improve
agent’s behaviour based on expert knowledge [38].

Although  these  topics  will  not  be  covered  in  this  context,
this survey paper will provide insights about leveraging these
techniques  in  process  industries.  Despite  specific  advance-

ments  in  the RL literature  (e.g.,  robust  RL,  model-based RL,
offline RL, etc.), the RL in this article refers to generic online
model-free RL, unless otherwise specified. More details about
algorithmic improvements in RL have been listed in [39].  

D.  Relationship Between Classical Control and RL
The theoretical foundations of RL and optimal control origi-

nated  from  the  1950s  with  dynamic  programming  (DP).
Despite this crucial fact, they were studied separately between
the late 1900s and 2010s. For example, the computational sci-
ence community has focused primarily on the learning stabil-
ity  and sample  efficiency of  the  algorithms on toy  problems,
while the process industries’ main concern was control stabil-
ity in complex systems. However, learning and control perfor-
mance often affect each other and should be analyzed jointly.
This  section  connects  RL  and  classical  control  (specifically
MPC)  to  motivate  the  necessity  of  such  joint  developments.
The broad similarities between the two approaches are due to
the fact that the stochastic MPC and RL essentially solve the
same  or  a  similar  objective  function.  Stochastic  MPC  mini-
mizes  the  expected  value  of  the  cost  function  given  in  (1),
while RL maximizes the expected value of a reward function
as  will  be  discussed in  Section III-A.  On the  other  hand,  RL
and  classical  MPC  methodologies  differ  due  to  several  rea-
sons:

1)  Most  RL  methodologies  utilize  episodic  learning,
whereas MPC focuses on continual calculations.

2)  Model-free  RL  [33]  uses  an  explicit  model  only  during
training  and  can  operate  without  a  model  after  training.  In
contrast, MPC always requires a model.

3)  General  MPC  often  utilizes  a  quadratic  or  linear  objec-
tive  function.  This  function  is  used  to  track  a  setpoint,  reject
disturbances, or enhance control stability and smoothness. On
the other hand, RL uses a more general reward function that is
customized to the particular application. This reward function
can be discrete or continuous. As a result, the optimizers that
MPC and RL use  can differ  significantly.  Numerous training
and  evaluation  objectives  for  RL  applications  will  be  pro-
vided in Table III.

4) MPC does not typically take an adaptive form, while RL
adapts to environmental changes.

5) RL often uses an approximated function to represent the
policy,  which  can  describe  complex  control  structures,  while
MPC relies on a mathematical model, which is less flexible.

The following section discusses the fundamentals  of  RL to
explain these similarities and differences mathematically.  

III.  Reinforcement Learning Paradigms
and Algorithms

Unlike MPCs, which control systems using process models
directly,  machine  learning  methods  require  training  a  neural
network based on process data. That is, the data used in MPC
is the current feedback from the system, which is an estimate
of  the  state  of  interest.  Although  a  conventional  time-invari-
ant  MPC provides a  locally optimal  controller  output  at  each
step,  it  does  not  handle  variations  in  the  operational  condi-
tions since it does not have an update mechanism.

Inspired  by  model-based  dynamic  programming  [40]  and
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animal  learning,  RL  provides  an  alternative  framework  to
optimal  control  by  training  an  agent  in  the  process  environ-
ment [33]. The agent optimizes a control policy while interact-
ing with the environment. The policy defines the behaviour of
the agent given a state during the interaction. After an action
is  selected  according  to  the  policy,  it  is  implemented  in  the
environment,  and the agent  receives  a  reward signal,  indicat-
ing the goodness of the decision. Although the agent can learn
a policy offline (through historical data) [41], this section will
cover online/recursive RL algorithms that can learn autonomo-
usly without explicit system knowledge or any process model.

This  section is  divided into four  subsections,  each explain-
ing a different RL element.  Section III-A introduces the con-
cept of Markov decision process (MDP), which is a formaliza-
tion of  sequential  decision-making and forms the  mathemati-
cal foundation of RL. Section III-B presents values-based RL
where actions are selected based on their estimated action val-
ues.  Section  III-C  highlights  policy  gradient  RL,  where  the
agent  directly learns a  parameterized policy to select  actions.
Finally,  Section III-D covers  various actor-critic-based meth-
ods  that  are  also  policy-based  RL,  but  they  consist  of  two
parameterized functions that work together to select actions.  

A.  Markov Decision Process

x ∈ X
u ∈ U

x′ ∈ X

p(x′,r|x,u)

Sequential  problems require  optimal  decisions  with  tempo-
ral order. Considering the complex nature of the environment,
the  outcomes  of  the  actions  of  an  agent  are  often  uncertain.
The MDP is a probabilistic framework for sequential decision-
making  where  the  agent  observes  a  state, ,  chooses  an
action ,  and  receives  a  reward, r,  and  the  next  state,

. This framework assumes the Markov property, where
the information in the next time step depends only on the cur-
rent  time  step,  as  shown  in Fig. 3.  A  transition  probability
function, , governs the system dynamics. The agent
aims to maximize a return function, G, shown in (2).
 

Gt = Rt+1+γRt+2+γ
2Rt+3+ · · · =

∞∑
k=0

γkRt+k+1 (2)

γ ∈ [0,1]

π(u|x)
v(x)

q(x,u)

where the capital letters denote that the reward is a stochastic
variable, t indicates  discrete  time  steps,  and  is  a
weight that controls how much future gains will contribute to
the  return  function.  During  its  interactions  with  the  environ-
ment,  the  agent  samples  its  actions  from  a  stochastic  policy,

,  the  performance  of  which  is  tracked  using  a  value
function.  There  are  two  kinds  of  value  functions:  and

,  and the  type  depends  on the  policy  evaluation  appro-

ach. Learning can be performed by solving the Bellman equa-
tions iteratively, as illustrated in (3) and (4) [42].
 

vπ(x) = Eπ [Gt |Xt = x]

=
∑

u

π(u|x)
∑

x′

∑
r

p(x′,r|x,u)
[
r+γvπ(x′)

]
(3)

 

qπ(x,u) = Eπ [Gt |Xt = x,Ut = u] ,∀x,u ∈ X×U

=
∑

x′

∑
r

p(x′,r|x,u)

r+γ∑
u′
π
(
u′|x′)qπ(x′,u′)


(4)

E[·]where  represents the expected value of a random variable.
Equations  (5)  and  (6)  can  be  used  to  find  the  optimal  value
functions after the recursions.
 

v∗(x) =max
π

vπ(x),∀x ∈ X (5)
 

q∗(x,u) =max
π

qπ(x,u),∀x,u ∈ X×U

= E
[
Rt+1+γv∗(Xt+1)|Xt = x,Ut = u

]
. (6)

Finally,  (7)  can  be  used  to  calculate  the  optimum  (also
known as greedy) policy.
 

π∗(x) = argmax
u

q∗π(x,u). (7)

p (·)However,  because  the  system  model, ,  is  often
unknown, (3) and (4) cannot be solved analytically. To tackle
this  problem,  the  agent  learns  a  value  (or  a  policy)  function
from the data and stores it in memory, whereas, for example,
the MPC iteratively optimizes the value function at each step
using the system model.  

B.  Value-Based RL

v∗(·)
q∗(·)

Initial  RL  implementations  used  the  value-based  (critic-
only) methodology [43] to obtain an optimal policy and solve
control problems. In these methodologies, actions are derived
directly  from  a  value  function,  which  predicts  the  long-term
outcomes of a specific policy. The state value function (shown
in (3)) is the expected return obtained from state x while fol-
lowing  policy π.  The  action-value  function  (shown  in  (4))  is
the expected return after taking action u in state x and follow-
ing the policy π thereafter. The optimal value functions, 
and  (shown  in  (5)  and  (6))  are  the  unique  value  func-
tions that maximize the value of every state.

V(x) ≈ vπ(x) Q(x,u) ≈ qπ(x,u)
Value-based  methodologies,  during  policy  evaluation,  esti-

mate  or  for  the  current  policy
and  improve  the  policy  iteratively.  A  common  example  is
greedily  selecting  actions  with  respect  to  the  updated  value
function.

Although  dynamic  programming  (DP)  [40]  and  Monte
Carlo  (MC) techniques  can be  used to  solve  an RL problem,
these  methods  are  computationally  infeasible,  need  to  wait
until an episode ends, have high variance, or require a perfect
system  model.  Temporal  difference  (TD)  methodology  pro-
vides a practical alternative to these algorithms by combining
the  bootstrapping  (estimating  the  values  by  using  the  previ-
ously  estimated  values)  ability  of  DP  and  the  model-free
nature  of  MC.  As  a  result,  TD  algorithms  can  update  their
policies  before  an  episode  ends.  Two  examples  of  TD-based

 

Ut+1

Rt+1 Rt+2 Rt+3

Ut+2

Xt+1 Xt+2

Ut

Xt

 
Fig. 3.     A graphical representation of the Markov decision process. The next
state and the reward depend only on the current state and action. The capital
letters indicate that the state, action and reward are random variables.
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state  and  action-value  function  update  rules  are  given  in  (8)
and (9).
 

V(Xt)← V(Xt)+α(Rt+1+γV(Xt+1)−V(Xt)) (8)
 

Q(Xt,Ut)← Q(Xt,Ut)+α(Rt+1+γQ(Xt+1,Ut+1)

−Q(Xt,Ut)) (9)
← (Rt+1+

γV(Xt+1)) V(Xt)
where “ ” represents  the  update  operation,  where 

 and  in  TD  learning  respectively  correspond
to measurement and prediction in classical control.

Ut+1

Built  upon  the  TD  learning  methodology,  two  RL  algo-
rithms,  namely SARSA (state-action-reward-state-action) and
Q-learning [33], have shown promising results in process con-
trol applications [11]. These algorithms differ in terms of their
policy evaluation/improvement strategies. For example, SAR-
SA is an on-policy algorithm since it improves a policy that is
used to make decisions. In contrast,  the Q-learning algorithm
is off-policy since it improves a policy different from that used
to  generate  data.  The  policy  improvement  step  is  given  by
(10). This step shows that the SARSA algorithm uses the next
action, ,  in  the  process  and  updates  the  Q-function,  as
shown in (9). However, the Q-learning algorithm performs an
additional  greedy  action  selection  to  find U and  updates  the
action-value (Q) function by using U, as shown in (10).
 

Q(Xt,Ut)← Q(Xt,Ut)+α(Rt+1+γmax
U

Q(Xt+1,U)

−Q(Xt,Ut)). (10)
Since U is  not  used  to  control  the  system  (but  is  used  to

update the Q-function), it can act as an additional exploration
factor  in  Q-learning.  On  the  other  hand,  the  optimal  Q-func-
tion can result  in  aggressive control  actions,  which can com-
promise  safety,  as  Sutton  and  Barto  showed  [33]  through  a
cliff walking problem. Therefore, the practitioners must select
and  test  the  appropriate  algorithm  considering  mathematical
and safety requirements.

The terminal  state in RL can be defined based on an event
or time for process industries. Some examples of the terminal
state  include  but  are  not  limited  to  an “unsafe” state  (e.g.,
when  the  simulated  temperature  of  a  hydrocracking  reactor
reaches  10  000  K),  a  physically  impossible  state  (e.g.,  in  a
simulated environment, when the temperature reaches –1 K), a
specific time step (e.g.,  when the plant has been operated for
ten hours), and average return value (e.g., when the agent has
achieved an integral absolute error of 100 bar). If the hyperpa-
rameters  are  selected  appropriately,  SARSA  and  Q-learning
algorithms will  asymptotically  converge  to  their  optimal  val-
ues [33]. Successful SARSA and Q-learning applications have
been reported in [44], [45].

V(x|ω) Q(x,u|ω)
v (x) q (x,u)

A challenge with SARSA and Q-learning algorithms is that
the  action  value  function  is  stored  as  a  look-up  table,  where
the Q-value is represented explicitly for each state-action pair.
On  one  hand,  large  discretization  steps  can  reduce  the  accu-
racy  of  the  Q-table.  However,  selecting  small  discretization
steps  makes  it  infeasible  to  store  and  update  the  Q-table  for
large  or  continuous  state/action  spaces.  Therefore,  for  large
state/action spaces,  a  practical  solution is  to  use  approximate
value  functions,  such  as  or ,  instead  of  stor-
ing  for  each  state  value  or  for  each  state-action

pair. The parameters of the value functions are specified by ω
in this case. A variety of applications have utilized deep neu-
ral  networks  to  train  RL  agents  in  large/continuous  state
spaces  [46],  [47].  Nevertheless,  the  value-based  RL  algo-
rithms  often  generate  discrete  and  deterministic  actions
(which  can  be  insufficient  for  continuous  state-action  space
control problems) and have been reported to be divergent for
large-scale problems [48].  

C.  Policy-Based RL

πθ(u|x, θ)

Process industries often involve large/continuous action spa-
ces with stochastic state transitions. Policy-based (actor-only)
methods [49], [50] learn stochastic and continuous actions by
parameterizing  a  policy, ,  and  directly  optimizing  it
by using a performance metric, as demonstrated in (11).
 

J2(θ) =max
θ
Eπθ [Gt |θ] (11)

J2(θ)where  is the agent’s objective function, and θ represents
the  policy  weights.  As  stated  in  (12),  the  policy  update  rule
can be obtained by using the policy gradient theorem [33].
 

∆θ = θt+1− θt = αGt∇θ lnπθ(Ut |Xt, θt) (12)
where α denotes  the  learning  rate.  Although  policy  gradient
methods  can  converge  to  at  least  locally  optimal  policies,
learn continuous actions and “fuzzy” strategies that are a mix-
ture  of  different  actions,  and  often  converge  better  than  the
value-based  methods,  they  generally  suffer  from higher  vari-
ance than the  value-based methods.  To reduce the  variability
during  learning,  REINFORCE  algorithm  modifies  the  policy
gradient algorithm as shown in (13) [51].
 

∆θ = α(Gt −b(Xt))∇θ lnπθ(Ut |Xt, θt) (13)
b(Xt) Ut

qπ(Xt,Ut)

where  is  a  baseline independent  on the action, .  Sut-
ton et  al. [52]  have  modified  this  methodology  further  by
replacing  the  actual  return  with  the  action  value  function,

 as shown in (14).
 

∆θ = α(Qπ(Xt,Ut)−b(Xt))∇θ lnπθ(Ut |Xt, θt). (14)

Gt
∆θ→ 0

|Gt | > ξ |∇ lnπ| > ξ

Qπ

Although  (12)  and  (13)  update θ in  the  direction  of  high
return values, α and  remain crucial for θ to converge. For
example,  an indication of  convergence is  [52].  How-
ever,  this  convergence  condition  may  not  be  satisfied  if

 or ,  with ξ being  a  small  threshold  value,
which can result in non-convergence. Nevertheless, the defini-
tion of convergence depends on the application. Moreover, 
in (14) is the expected return, which is initially unknown and
can  take  a  long  time  for  the  agent  to  learn  it.  Despite  these
challenges, policy-gradient methods have been applied to con-
tinuous action spaces in various domains.  

D.  Actor-Critic RL

π(u|x, θ) V(x|ω) Q(x,u|ω)

Similar  to  a  student-teacher  pair  or  generative  adversarial
networks (GANs) [53] that  utilize generative and discrimina-
tive networks, actor-critic algorithms generate control actions
and  examine  the  outcomes  by  using  a  scalar  reward  signal
without any labels [54]. As shown in Fig. 4, these algorithms
combine  policy  and  value-based  methods  via  an  actor  and  a
critic, respectively. The actor and the critic can be represented
as  two  neural  networks,  and  (or ),

 288 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 2, FEBRUARY 2024



respectively. This value-assisted policy learning methodology
reduces θ variability while promoting convergence to optimal
policies  [33],  [55].  Although  various  actor-critic  algorithms
have been proposed to solve the optimal control/RL problems,
an  early  example  combines  the  policy  gradient  with  state-
value estimation [33], as shown in (15).
 

∆θ = α(Gt −V(Xt,ω))∇θ lnπθ(Ut |Xt, θt)

= α(Rt+1+γV(Xt+1,ω)−V(Xt,ω))∇θ lnπθ(Ut |Xt, θt). (15)
V(Xt,ω) , (Rt+1+γV(Xt+1,ω))

(Rt+1+γV(Xt+1,ω)) ∆θ

V(Xt,ω) (Rt+1+γV(Xt+1,ω))

Initially,  since ω is  often  a
set  of  randomly  initialized  parameters.  As  a  result,  high  val-
ues of  will result in large . However, as

 approaches ,  the  variability  in θ
decreases over time [56].

ε ∈ [0,1) ε = 1

This subsection focuses on the most commonly used model-
free algorithms that are represented in Table II. Some of these
methods  use  entropy  regularization,  whereas  others  take
advantage of heuristic methods. A common example of these
methods is the ε-greedy approach, where the agent takes a ran-
dom action  with  a  probability .  corresponds  to
random search since it learns a policy but does not utilize the
learned  policy  in  the  decision-making  process.  Other  explo-
ration  techniques  include  but  are  not  limited  to  introducing
additive  noise  to  the  action  space,  introducing  noise  to  the
parameter  space,  utilizing  the  upper  confidence  bound,  etc.
The readers can see [11] for more detail. The actor-critic algo-
rithms are summarized as follows:

1)  Deep  Deterministic  Policy  Gradient  (DDPG): The
DDPG  algorithm  [57]  has  been  proposed  to  generalize  dis-
crete, low-dimensional value-based approaches [62] to contin-

uous action spaces.  This algorithm uses two deep neural  net-
works,  namely  the  deep  policy  gradient  (DPG)  and  deep  Q-
learning  algorithms,  to  map  the  states  into  actions  and  esti-
mate the action-value function (Q-function), respectively. The
resulting architecture is shown in Fig. 5.
 

π(u|x, θ')

Q(x, u|ω')

Environment

TD error

buffer

Q(x, u|ω)
Critic

π(u|x, θ)
Actor

rx u

Noise

Update

Experience/Replay

 
Fig. 5.     A schematic of the DDPG algorithm. The solid lines show the data
flow, and the dashed lines show the update mechanism.
 

π(u|x, θ)
Q(x,u|ω) π(u|x, θ′) Q(x,u,ω′)

Similar  to  the  policy  update  methodology  shown  in  (15),
this algorithm updates the policy by using the derivative of the
Q-function with respect to ω. This update rule helps the agent
maximize the expected return while improving the value esti-
mation and policy. In addition to this improvement, this algo-
rithm  utilizes  copies  of  the  actor  (  and  critic
( )  as  target  networks  (  ).  After
observing  a  state,  real-valued  actions  are  sampled  from  the
actor-network  and  are  mixed  with  a  random  process  (e.g.,
Ornstein-Uhlenbeck  process,  [63])  to  encourage  exploration
as shown in (16).
 

Ut = π(Ut |Xt, θ)+OUt (16)
OU dOU =

−(OUη)OUdt+σdWt OUη > 0 σ > 0
Wt

OU

where  is  the  Ornstein-Uhlenbeck  process, 
,  and  are tuning parame-

ters,  and  is  the  Wiener  process  with  d  representing  the
ordinary  differential  symbol.  Note  that  the  process  is  a
correlated  noise,  but  the  use  of  white  noise  has  also  been
reported for exploration purposes [61]. The agent stores state,
action,  and reward  samples  in  an  experience  replay  buffer  to
break the correlation between consecutive samples to improve
learning. It minimizes the mean square error of the loss func-
tion to optimize its  critic,  as  shown (for  one sample)  in (17),
and  updates  the  policy  parameters  using  the  policy  gradient
shown in (18).
 

L =
(
Rt +γQ

(
Xt+1,π(Xt+1|θ′)|ω′

)−Q (Xt,Ut,ω)
)2 (17)

 

∇θ(Q(X, θ)) = ∇Ut Q(Xt,π(Ut |Xt, θ)|ω)∇θπ(Xt |θ). (18)
The target  networks  are  updated using a  low-pass  filter,  as

shown in (19).
 

[ω′, θ′]T ← τddpg[ω,θ]T + (1−τddpg[ω′, θ′]T (19)

 

TABLE II 

A Comparison of the Actor-Critic Algorithms Based on
the Type of Action Spaces & the Exploration Method.

The State Space Can be Either Discrete or
Continuous for All Algorithms

Algorithm Action space Exploration

DDPG [57] Continuous Noisy actions

A2C or A3C [33], [56] Discrete/Continuous Entropy regularization

ACER [36] Discrete/Continuous Entropy regularization

PPO [58] Discrete/Continuous N/A

ACKTR [59] Discrete/Continuous N/A

SAC [60] Continuous Entropy regularization

TD3 [61] Continuous Noisy actions
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Value-based

(b)

Policy-based

(c)

Actor-critic
x (state)

x

u (action)

V(x)

Q(x, u)
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Q(x, u)
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Critic

Actor

Actor

Critic
u

π(u|x)

π(u|x)
State-value

Action-value

Policy

 
Fig. 4.     Comparison  of  value,  policy  and  actor-critic  based  RL.  The  value-
based methods derive the policy based on the value functions (which estimate
the future return values), the policy-based methods directly optimize the pol-
icy, and the actor-critic methods simultaneously learn the policy and the value
functions.
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τddpgwhere  is  the  filter  coefficient  that  adjusts  the  contribu-
tion of the observation (ω and θ,  which are a function of the
empirical/observed reward) and the previous values of the tar-
get parameters. Since the value function is learned for the tar-
get policy based on a different behaviour policy, DDPG is an
off-policy method.

2)  Asynchronous  Advantage  Actor-Critic  (A2C/A3C): Inst-
ead  of  storing  the  experience  in  a  replay  buffer  that  requires
memory, this scheme involves local workers that interact with
their  environments  and  update  a  global  network  asyn-
chronously,  as  shown  in Fig. 6.  This  update  scheme  inher-
ently increases exploration since the individual  experience of
the  local  workers  is  independent  [56].  Instead  of  minimizing
the error based on the Q function, this scheme minimizes the
mean square error of the advantage function (A or δ) for critic
update, as shown in (20).
 

At = δ = Rt +V (Xt+1|ω)−V (Xt |ω) . (20)

 

Global
network
θG, ωG

Local
worker1
θL1

, ωL1

Local
worker2
θL2

, ωL2
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workern
θLn

, ωLn

...

Environment1

Environment2

Environmentn

...

updates

A2CA3C

dθ 1, d
ω 1

dθ2, dω2

dθ
n , dω

n

Asynchronous

 
Fig. 6.     Multiple worker scheme in the A3C algorithm. Local workers inter-
act with their environment and update a global network. Using a single A3C
worker results in an A2C agent.
 

In this scheme, the global critic is updated by using (21) and
the entropy of  the policy is  used as  a  regularizer  in  the actor
loss function to increase exploration, as shown below:
 

dωG ← dωG +αc∇ωLδ (xt |ωL)2 (21)
 

dθG ← dθG +αa∇θLδ (xt |ωL) lnπ (ut |xt, θL)

+βπ (ut |xt, θL) lnπ (ut |xt, θL) (22)
dθG = dωG = 0 αc αawhere initially .  and  are the learning rates

for critic and actor, respectively, and β is a fixed entropy term
that  is  used  to  encourage  exploration.  Subscripts L and G
stand for the local and the global networks respectively. Mul-
tiple workers (A3C) can be used in an off-line manner and the
scheme can be reduced to a single worker (A2C) to be imple-
mented online. Even though the workers are independent, they
predict the value function based on the behaviour policy of the
global network, which makes A3C an on-policy method.

{X0, U0,R1, µ(·|X0), . . .Xk, Uk, Rk+1, µ(·|Xk)}

3)  Actor-Critic  With  Experience  Replay  (ACER): ACER
was  proposed  to  address  sample  inefficiency  of  A3C  and
improve  learning  stability  [36].  The  algorithm  utilizes ‘trun-
cated  importance  sampling  with  bias  correction,  trust  region
policy  optimization,  stochastic “duelling” network  architec-
tures,  and  the  Retrace  algorithm  [64].  the  ACER  algorithm
modifies the policy update rule shown in (15) for a trajectory

 and  calculates

the importance weighted policy shown in (23).
 

∆θ =

 k∏
t=0

ρt

 k∑
t=0

 k∑
i=0

γirt+1+i

∇θ logπθ(Ut |Xt) (23)

ρt =
π(Ut |Xt)
µ(Ut |Xt)

where  is the important weight, and μ and π are the
behaviour  and  the  target  policies  respectively.  To  reduce  the
variance,  the  algorithm estimates  the  action value of  the  pol-
icy by using the Retrace algorithm shown in (24).
 

Qret(st,at) = Rt +γη̄t+1[Qret(Xt+1,Ut+1)

−Q(Xt+1,Ut+1)]+γV(Xt+1) (24)
η̄t =min {c,ρt}where the truncated importance weight, ,  and c

is  a  clipping  constant.  The  algorithm  updates  the  actor  and
critic  using  the  clipped trust  region policy  optimization  tech-
nique and the Retrace algorithm shown below：
 

Qret = Rt+1+γV(Xt |θ′) (25)
 

g = min{c,ρt}∇ϕθ′ (Xt) log f (Ut |ϕθ′ (Xt))

× (Qret(Xt,Ut)−Vω(Xt))

+

[
1− c
ρ′t

]
+

(Q(Xt,U′t |ω′)−V(Xt |ω′))

×∇ϕθ′ (Xt) log f (U′t |ϕθ′ (Xt)) (26)
 

k = ∇ϕθ′ (Xt)DKL[ f (·|ϕθ(Xt))| f (·|ϕθ′ (Xt))] (27)
 

∆θ = ∇θ′ϕθ′ (x)

g−max

0, kT g−δ
||k||22

k

 (28)

 

∆ω′ = (Qret −Q(Xt,Ut |ω′))∇ω′Q(Xt,Ut |ω′)
+min{1,ρt}(Qret(Xt,Ut)−Q(Xt,Ut |ω′))
×∇ω′V(Xt |ω′)

(29)

ρ′t =
f (U′t |ϕθ′ (Xt))
µ(U′t |Xt)

DKL

where f represents  a  sampling  distribution, ϕ is  a  neural  net-
work  that  generates  the  statistics  of f, ,  and

 is  the  KL divergence.  Because of  its  Retrace algorithm,
ACER is an off-policy method.

4)  Proximal  Policy  Optimization  (PPO): The  trust  region
policy optimization (TRPO) algorithm suggests maximizing a
soft-constrained objective function shown in (30),
 

max
θ

JKL = max
θ
E
[ πθ(Ut |Xt)
πθold(Ut |Xt)

At

−βDKL[πθold (Ut |Xt)|πθ(Ut |Xt)]
]

(30)

θold
At

where β is a weight for the KL divergence term, and  rep-
resents the old policy parameters.  is the advantage estimate
that represents how good the agent’s actions are, as shown in
(20), and the KL divergence creates a lower bound on the per-
formance of π. However, using a fixed weight, β, in the objec-
tive function shown in (30), can result in large policy updates.
To avoid abrupt changes in the policy, the PPO algorithm sug-
gests  [58]  clipping the surrogate  objective function as  shown
in (31).
 

JCLIP(θ) = E
[
min
(
r (θ) At,clip (r (θ) ,1− ϵ,1+ ϵ) At

)]
(31)
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r(θ) = πθ(u|x)
πθold (u|x)where , and ϵ is the clipping constant. Then, the

algorithm includes a  KL penalty and a value loss function in
the objective function, which results in (32)
 

JPPO = E[JCLIP− c1JVF+ c2H] (32)
c1 c2 H =

E[− logπ(Ut |xt, θ)] JVF = (V(Xt |ω)−V(Xt |ω′))2
where  and  are  weight  coefficients, 

, and . The resul-
ting architecture of the PPO algorithm is shown in Fig. 7. Due
to the practical advantages of these modifications, PPO and its
variants  have  been  one  of  the  most  commonly  used  algo-
rithms to solve control problems [65].

 
Environment

Experience
buffer

Actor

Critic

J PPO

r(θ)

At

LVF



<x, x', r>
Update

u

 
Fig. 7.     A schematic of the PPO algorithm. The solid lines show the data
flow, and the dashed lines show the update mechanism.
 

5)  Actor-Critic  Using  Kronecker-Factored  Trust  Region
(ACKTR): Classical  gradient  descent/ascent  algorithms,  such
as  the  general  policy  gradient  algorithm  (shown  in  (15)),
update  the  parameters  by  solving  the  optimization  function
shown in (33).
 

∇θJ(θ) = Eπ[
∞∑

t=0

Ψt∇θ logπ(Ut |Xt |θ)] (33)

Ψ

Gt Q(Xt,Ut |ω) At
J(θ)

∆θ J(θ+∆θ)
||∆θ||z = (∆θT z∆θ)0.5 < 1

∆θ ∝ z−1∇θJ(θ) z = I

z = F , I

where  is  the  magnitude  of  the  update,  which  is  often
selected as , , or . Such RL algorithms aim to
maximize a  non-convex function, ,  in  the  steepest  ascent
direction  while  calculating  such  that  is  maxi-
mized. In general, the goal is to keep ,
and z is a positive semidefinite matrix. The result of this opti-
mization problem is in the form of , with ,
as  shown  in  (15).  Instead  of  a  gradient  descent  algorithm  to
optimize  the  actor  and  the  critic  networks,  ACKTR [66]  uti-
lizes  second-order  optimization,  which  provides  more  infor-
mation  during  learning.  That  is, ,  where F is  the
Fisher  information  matrix,  which  is  challenging  to  calculate,
store and invert.  ACKTR overcomes the computational  com-
plexity  by  using  Kronocker-factored  approximation  [59]  to
approximate  the  inverse  of  Fisher  information  matrix  (FIM)
that, otherwise, scales exponentially with respect to the neural
network  parameters.  Moreover,  ACKTR  keeps  track  of  the
Fisher  statistics,  which  yields  better  curvature  estimates.  The
resulting algorithm updates the parameters as shown in (34).
 

∆θ = αF−1∇θδ (34)

F = Ep(τ)[∇θ logπ(Ut |Xt, θ)(∇θ logπ(Ut |Xt, θ))T ]where , and τ is
shown in (35). 

τ = p(X0)
T∏

t=0

π(Ut |Xt)p(Xt+1|Xt,Ut) (35)

where p denotes  the  probability  distribution  functions.  As  a
result  of  these  improvements,  ACKTR has  shown  successful
results in various applications [67].

6)  Soft  Actor-Critic  (SAC): Unlike  methods  such  as  A3C
and PPO, which use the entropy of the policy as a loss regu-
larizer  [56],  [58],  [68],  SAC  augments  the  reward  function
with the entropy term (as shown in (36)) to encourage explo-
ration while maintaining learning stability.
 

J(θ) =
∑
t∈T
E(xt ,ut)∼π

[
R (xt,ut)+αH (πθ (·))

]
(36)

H Q(·,ϕ)
V(·,ω)

where θ represents  the  parameters  of  the  policy,  and α is  a
user-defined (fixed or time-varying) weight to adjust the con-
tribution of the entropy, . This scheme relies on both 
and  functions  to  utilize  the  soft-policy  iteration.  The
parameters  of  the  neural  networks  are  updated,  as  shown  in
(37)–(39).
 

∇ωJV (ω) = EXt∼D[0.5(V(Xt |ω)

−EUt∼πθ [Qϕ(Xt,Ut)− logπθ(Ut |Xt)])2]

= ∇ωV(Xt |ω)(V(Xt |ω)−Qϕ(Xt,Ut)

− logπθ(Ut |Xt)) (37)
 

∇ϕJQ(ϕ) = E(Xt ,Ut)∼D[0.5(Qϕ(Xt,Ut)− Q̂(Xt,Ut))2]

= ∇ϕQϕ(Xt,Ut)(Qϕ(Xt,Ut)

−Rt+1−γVω′ (Xt+1)) (38)
 ∇θJπ(θ) = ∇θ logπθ(Xt |Ut)+ (∇Ut logπθ(Xt |Ut)

−∇Ut Q(Xt,Ut))∇θ fθ(ϵ|Xt) (39)
Ut fθ(ϵ |Xt)

Q̂(Xt,Ut) = Rt+1+γEXt+1 [Vω′ (Xt+1)]

D

where  is  evaluated  at , ϵ is  a  noise  vector,  and
.  Similar  to  DDPG  and

PPO,  SAC stores  the  transitions  in  a  replay  buffer,  indicated
as ,  to  address  sample  efficiency.  This  approach  has  also
been  reported  in  [55],  [60]  to  improve  the  robustness  of  the
policy  against  model  and  estimation  errors.  Besides  enhanc-
ing  the  exploration,  this  off-policy  training  methodology  has
been  used  in  several  control  and  optimization  applications
[69]  and  reported  to  improve  stability  since  it  utilizes  target
networks.

7)  Twin  Delayed  Deep  Deterministic  Policy  Gradient
(TD3): TD3  is  an  extension  to  the  DDPG  algorithm  [61].  It
addresses  error  propagation  (which  is  a  non-trivial  challenge
in  statistics  and  control)  due  to  function  approximation  and
bootstrapping (i.e.,  instead  of  an  exact  value,  using  an  esti-
mated value in the update step). To reduce the overestimation
bias,  the scheme predicts  two separate  action-value functions
and prefers the pessimistic value to update the network param-
eters,  avoiding  sub-optimal  policies.  TD3  utilizes  target  net-
works,  delays  the  update  to  the  policy  function,  and  uses  an
average target value estimate by sampling N-transitions from a
replay buffer to reduce variance during learning. The scheme
introduces  exploration  by  adding  Gaussian  noise  to  the  sam-
pled actions and performs policy updates using the determinis-
tic  policy  gradient  [49].  As  a  result  of  these  modifications,
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TD3 has been considered one of the state-of-the-art RL algo-
rithms in control and optimization [70], [71].  

IV.  RL Applications in Process Industries

Now  that  various  RL  algorithms  have  reviewed,  this  sec-
tion presents  applications of  RL in various activities  relevant
to process industries.  

A.  Soft Sensors
Soft sensors, also known as inferential or virtual sensors, are

widely  used  for  quality  estimation,  process  monitoring,  and
feedback  control  [29].  When building  a  data-driven  soft  sen-
sor  model,  there  are  mainly  four  procedures,  including  data
selection, model selection, model training and validation, and
model  maintenance.  Typically,  data-driven  soft  sensor  mod-
els individually consider the aforementioned modelling proce-
dures  and  process  knowledge  is  applied  to  each  procedure
separately and in a non-autonomous manner. Moreover, most
existing  data-driven  soft  sensor  methods  are  based  on  tradi-
tional  statistical  methods  and/or  (semi)  supervised  learning
methods that eventually lead to specific regression modelling
problems.

Compared  to  traditional  statistical  methods  and/or  (semi)
supervised  machine  learning-based  data-driven  soft  sensor
methods,  RL enables  autonomous soft  sensor  design.  Thanks
to  the  nature  of  the  MDP,  RL  can  be  naturally  applied  to
address  dynamic  soft  sensor  design  problems.  The  crucial
aspects  of  soft  sensor  modelling  tasks,  including  data  selec-
tion  and  regression  model  training,  validation,  and  mainte-
nance,  may  be  addressed  as  a  sequential  decision-making
problem  via  RL.  Recently,  one  interesting  work  proposed  a
framework  based  on  deep  RL  for  autonomous  data  selection
and soft sensor modelling [72], where the authors formulated
the soft sensor as an MDP problem and showed that the pro-
posed RL methods outperform some commonly utilized data-
driven  soft  sensor  methods,  including  statistical  methods,
transfer  learning methods,  and just-in-time learning methods.
Reinforcement learning and particle filtering were jointly used
in  [73]  for  remaining  useful  life  estimation  of  sensor-moni-
tored degrading systems. In addition, [74] suggested using soft
sensing techniques for quality prediction and data collection in
RL-based  control  optimization  of  wastewater  treatment  pro-
cesses.  To  the  best  of  the  authors’ knowledge,  the  research
results  in  this  direction  are  very  limited.  The  applications  of
RL in autonomous soft sensing deserve future research.  

B.  Process Control
As  motivated  in Fig. 1,  the  primary  process  control  (after

instrumentation  and  monitoring)  occurs  in  the  Execution  and
Supervision levels,  where  the  controllers  drive  the  controlled
variables  to  the  desired  operating  points.  Successful  RL
implementations  can  cater  to  maintaining  safe,  optimal  and
environmentally-friendly operations if these desired points are
optimally  determined  and  if  the  controller  parameters  are
selected  appropriately.  This  section  divides  process  control
into  two levels.  Low-level  control  refers  to  the  controllers  at
the  Execution  level  (e.g.,  PID,  LQR,  and  MPC),  high-level
control  refers  to  tuning  these  controllers’ hyperparameters

(e.g., PID parameters, MPC parameters).
1)  Low-Level  Control: Classical  control  theory  has  limita-

tions  in  achieving  complex  desired  behaviours,  even  with
variants  of  the  quadratic  cost  function.  To  address  this,  the
model predictive control (MPC) cost function can be automat-
ically  learned  through  inverse  reinforcement  learning  (IRL).
This  method  could  particularly  be  useful  for  large-scale  sys-
tems with intricate interactions, as demonstrated in [75].

Traditional controllers depend on accurate system models to
achieve optimal performance, which may not always be avail-
able. In contrast, RL offers more adaptable and versatile solu-
tions. In [76], RL and MPC were combined to create an opti-
mal controller that addresses safety and stability issues in lin-
ear systems. The resulting controller provides better adaptabil-
ity and reliability than traditional approaches.

Safety  is  a  crucial  consideration  when  implementing  RL
agents, especially in process industries where operational vari-
ables  are  critical.  State  constraints  can  be  added  to  the  RL
learning objective to maintain safety, as shown in [77]. Addi-
tionally, input constraints proposed in [78] can promote opera-
tional safety by limiting the actions of the RL agent.

Additionally,  it  was  demonstrated that  multi-agent  RL sys-
tems could be trained to control multiloop processes in a feed-
forward feedback configuration to promote closed-loop stabil-
ity and disturbance rejection, which can significantly enhance
control  performance  [79].  However,  the  potential  benefits  of
multi-agent  RL  systems  come  with  the  cost  of  potentially
time-consuming  training  processes.  Despite  this,  the  benefits
of multi-agent RL systems in promoting closed-loop stability
and  disturbance  rejection  make  them  a  promising  area  of
research  for  researchers  in  process  control  and  process
automation.

Another promising approach for heating, ventilation, and air
conditioning (HVAC) system control combined deep learning
and MPC to utilize the benefits  of modern and classical  con-
trol techniques [80]. This algorithm effectively improves sys-
tem performance by assigning the update target as the cumula-
tive  reward  in  the  prediction  horizon  of  MPC.  The  proposed
method  has  been  validated  through  a  case  study  involving  a
two-zone  data  center  in  a  simulated  environment,  where  it
achieves  the  largest  average  rewards  with  four  weather  data
sets  out  of  five.  These  results  demonstrate  the  potential  for
this approach to enhance HVAC system performance, making
it a valuable addition to the toolkit of process industries.

A novel RL-based approximate optimal control method that
guarantees  state-constraint  handling  abilities  on  attitude  for-
bidden zones and angular velocity limits has been proposed in
[81]. In this work, barrier functions were used to encode con-
straint  information  into  the  cost  function,  and  a  simplified
critic-only  neural  network  was  used  to  replace  the  conven-
tional  actor-critic  structure.  The  authors  also  demonstrated
promising estimation error given limited excitation instead of
persistent excitation.  The effectiveness and advantages of the
proposed  controller  were  verified  by  numerical  simulations
and experimental tests.

In  addition  to  these  developments  in  the  low-level  control
settings, the controller performance often depends on parame-
ter  tuning,  also  known  as  high-level  control,  as  will  be  dis-
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cussed in the following subsection.
2) High-Level Control: A meta-RL approach to tuning fixed

structure  controllers  in  closed-loop  without  explicit  system
identification has been presented in [82]. It was shown that the
proposed  algorithm  was  able  to  tune  fixed-structure  process
controllers  online  with  no  process-specific  training  and  no
process  model.  Despite  this  algorithm’s  incremental  nature,
which can result in divergent control performance, the authors
proved  the  concept  of  control  tuning  using  meta-learning
schemes.

Another  model-free  goal-based  algorithm  for  self-tuning
MIMO PID systems for real-time mobile robots has been pre-
sented in [83]. The proposed adaptive architecture allows for a
direct representation of the state space, and the network used
for  parameterizing the policy function is  able  to  directly out-
put  the  parameters  of  the  MIMO  system  without  any  re-
parameterization.

In addition, a contextual bandit-based approach for PID tun-
ing  has  been  proposed  in  [84]  to  handle  parameter-varying
and nonlinear systems. This approach first trains an agent on a
step  response  model  to  address  sample  efficiency  and  then
fine-tunes the agent to learn the model-plant mismatch online.
This type of learning can benefit industries with thousands of
PID loops where the systems cannot be excited persistently.

An automated tuning framework for the weights of nonlin-
ear MPC to reduce the time and effort of users has been pro-
posed  in  [85].  The  proposed  agent  was  implemented  in  two
stages.  In  the  first  stage,  the  agent  explored  the  weights  that
could  maintain  the  vehicle  position  at  the  desired  points.  In
the second stage, the agent was trained to find the best param-
eters  for  trajectory  tracking.  The  empirical  results  validated
computational efficiency, direct applicability, and satisfactory
trajectory  tracking  performance.  Therefore,  this  two-step
methodology  can  be  helpful  for  practical  implementations  in
process  industries  that  involve  setpoint  tracking  problems.
Similarly, a dynamic weights-varying MPC was developed to
autonomously  learn  a  policy  for  online  weight  modifications
of  an  MPC  cost  function  [86].  This  approach  used  deep  RL
and allowed users to specify additional objectives in a multi-
objective  cascaded  Gaussian  reward  function.  The  agent
observed  the  low-level  states  and  their  deviations  from  their
setpoints  while  outputting  the  controller  weight  parameters.
Empirical  findings  showed  that  the  proposed  methodology
outperformed  a  manually-tuned  MPC.  In  addition  to  the
weights  of  controllers,  finding  appropriate  lengths  of  predic-
tion and control horizons is challenging. It  was demonstrated
that  for  simple  systems,  RL  could  be  used  to  automatically
modify  and  adapt  the  prediction  horizon  of  the  MPC  con-
trollers  using  only  a  few  minutes  of  data  collection  [87].
These tuning methods have shown that RL could be used for
autonomous controller optimization.  

C.  Distributed Industrial Processes and Control
Distributed  industrial  processes,  also  known  as  distributed

parameter  systems,  are  often  considered  another  major  class
of industrial processes in addition to lumped parameter indus-
trial  processes.  Compared  to  lumped  parameter  processes
modelled  by  ordinary  differential  equations  (ODE),  as  cov-

ered in the earlier sections, distributed parameter processes are
modelled  by  partial  differential  equations  (PDE)  or  partial
integral-differential  equations  (PIDE),  which  makes  them
capable of describing spatial-temporal dynamics in numerous
industrial  applications,  e.g.,  processes  that  involve  chemical
reactions,  heat  transfer,  crystal  growth,  or  irrigation,  fluid
dynamic  and  flexible  mechanical  systems  (e.g.,  flexible  air-
craft wing design) utilize PDEs and PIDEs to describe the sys-
tem  dynamics  comprehensively  [88].  However,  due  to  the
complexity  of  PDE (or  PIDE)  models,  applications  of  RL in
distributed  parameter  processes  are  more  challenging  and
complex than that in ODE-based processes from both theoreti-
cal and practical viewpoints.

Over  the  past  decades,  various  contributions  have  been
reported in the literature on RL-based control synthesis of dis-
tributed  parameter  systems.  An  adaptive-critic-based  optimal
neuro control strategy was proposed for distributed parameter
systems in [89], where an approximate discrete dynamic pro-
gramming  was  used  for  the  problem formulation,  and  neces-
sary  conditions  of  optimality  were  derived.  By  using  proper
orthogonal decomposition and approximate dynamic program-
ming,  a  single-network-adaptive-critic  scheme  was  designed
(as a stabilizing state-feedback controller) to control the heave
dynamics  of  a  flexible  aircraft  wing  in  [90].  Based  on  the
empirical  eigenfunctions  (computed  from  the  Karhunen-
Loeve  decomposition  method)  and  neural  networks,  approxi-
mate  optimal  controller  designs  were  considered  for  dissipa-
tive  PDE  systems  [91]  and  one-dimensional  parabolic  PDE
systems [92]. Apart from optimal control designs, various RL-
based  methods  have  been  applied  to  address  other  types  of
control  problems,  including  an  off-policy  RL  method  devel-
oped  for  the  data-driven H∞ control  in  [93],  a  convolutional
RL  framework  proposed  for  distributed  stabilizing  feedback
controller  design in [94],  an off-policy integral  RL algorithm
proposed for dealing with the nonzero-sum game in [95], and
so  on.  Recently,  a  network-based  policy  gradient  RL  algo-
rithm  (i.e.,  the  proximal  policy  optimization)  was  compared
with  the  Lyapunov-based controllers  in  a  traffic  PDE system
[96],  and  the  RL  controller  showed  compatible  performance
with  the  Lyapunov-based  controllers,  especially  in  learning
(i.e.,  adaptation)  potential  under  changing and uncertain con-
ditions  while  the  training  time  was  long  and  convergence  of
the value function was not guaranteed. Moreover, a value-iter-
ation-based RL method was proposed for sensor placement in
the  spatial  domain  of  distributed  parameter  systems  in  [97].
Most  aforementioned  methods  first  lump distributed  parame-
ter  systems  (with  infinite-dimensional  state  spaces)  into
lumped  parameter  systems  (with  finite-dimension  state
spaces)  via  various  reduced-order  models  and  then  perform
the  RL-based  control  designs.  This  implies  that  these  RL-
based PDE control designs often depend on specific approxi-
mation  schemes  and  lead  to  approximate  control  laws  [98].
The  direct  RL-based  control  design  on  PDE  systems  consti-
tutes future work.  

D.  Fault Detection and Fault-Tolerant Control
This  section  examines  reinforcement  learning  (RL)  algo-

rithms used to  address  fault  detection  (FD) and fault-tolerant
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control  (FTC)  problems.  The  primary  objective  of  FD  is  to
detect  faults  and  determine  their  source  promptly.  FTC  is
designed  to  enable  the  system  to  persistently  function  in  the
presence  of  failures  while  maintaining  a  minimum  level  of
performance.  In  such  cases,  the  system  may  operate  at  a
reduced capacity compared to a fault-free scenario.

1)  RL-Based  Fault  Detection: Research  on  RL-based  FD
can  be  mainly  divided  into  model-based  and  data-driven
approaches [99], [100]:

a)  Model-based  RL  FD  methods  rely  heavily  on  accurate
mathematical  modelling  knowledge  [10].  As  part  of  this
approach,  diagnostic  models  are  constructed  to  analyze  the
system output and compare the state of the machine in terms
of health [9], [101], [102]. This approach is derived from the
traditional fault diagnosis.

b) The data-driven approach directly applies deep RL tech-
niques  for  encapsulated  processing of  the  acquired  signals  to
output  fault  identification  results,  as  shown  in  references
[103], [104]. This “end-to-end” approach directly realizes the
output  from input  to  target,  promoting  the  joint  optimization
of  feature  extraction  and  pattern  classification  parameters  in
multi-hidden-layer  networks.  This  approach  also  adopts  a
strategy  of  self-learning  to  automatically  discover  effective
features associated with the target in large datasets.

S F(z)

Qr(z)
S F Qr(z)

2)  RL-Based  Fault-Tolerant  Control: Fault  tolerant  control
(FTC)  has  been  widely  developed  to  improve  the  perfor-
mance  of  industrial  systems in  the  face  of  unexpected  faults,
accidental events, and aging components. RL has emerged as
a novel approach for FTC, offering the advantage of requiring
fewer design efforts compared to traditional model-based and
learning-based  methods.  By  using  powerful  neural  networks
and  self-adjusted  methods,  RL-based  strategies  can  effec-
tively address problems such as disturbance elimination, refer-
ence tracking, and fault tolerance [105], [106]. In addition, RL
provides a  feasible  method for  learning in unknown environ-
ments with a large amount of prior data,  making it  a promis-
ing  approach  for  FTC in  complex  industrial  systems.  Recent
studies  have  reported  successful  results  in  RL-based  FTC,
including  FTC  tracking  control  of  MIMO  discrete-time  sys-
tems [107], [108], FTC design for a class of nonlinear MIMO
discrete-time systems [109], [110], and RL-based FTC for lin-
ear  discrete-time  dynamic  systems  [111],  [112].  These
promising  findings  suggest  that  RL-based  FTC  can  signifi-
cantly  benefit  industrial  systems,  and  further  research  in  this
area should be encouraged. To motivate a novel FTC perspec-
tive,  the  following  example  illustrates  the  principle  of  linear
model-based  FTC.  Taking  a  linear  time-invariant  (LTI)  sys-
tem as an example, a fault results in the difference (donated as

)  between the  nominal  plant  and the  faulty  counterpart.
Then,  a  separate  control  structure  can  be  equivalently
described where  is  a  filter  to  be  tuned by using  RL.  If

 does not  affect  the system stability,  tuning  is  suffi-
cient to tolerate the unpredictable faults.

Besides  these  advancements  and  possible  improvement
areas,  it  is  challenging  to  implement  RL  in  FTC  due  to  the
need  for  a  large  amount  of  training  data.  This  lack  of  effec-
tive  training  data  presents  a  significant  hurdle  for  RL-based

methods, making it challenging to design real-time agents that
can  handle  unforeseen  faults.  Another  challenge  to  imple-
menting these algorithms is the high false-positive alarm rates.
Overcoming  these  challenges  is  critical  for  successfully
implementing RL-based FD and FTC, which can improve sys-
tem  performance  and  reduce  downtime.  Therefore,  develop-
ing novel training acceleration methods to mitigate the impact
of  errors  and  improve  training  efficiency  is  a  worthwhile
research direction for RL-based FD and FTC.  

E.  Optimization
The  hierarchical  nature  of  industrial  processes  involving

multiple decision-making levels, such as process design, plan-
ning,  scheduling,  and  supply  chain,  presents  challenges  in
coordinating  decisions  within  each  level.  Traditionally,  these
problems were modelled as MILP or MINLP that are NP-hard
[113]  and  are  solved  using  computationally  expensive  opti-
mization  techniques  such  as  Branch  and  bound  and  cutting
plane methods [114].

RL has recently attracted attention to this domain as its uti-
lization  in  industrial  process  optimization  offers  several
advantages. First, industrial processes are inherently complex,
making the implementation of model-based optimization chal-
lenging  [115].  Whereas  RL  algorithms  learn  the  process
behaviour and optimal actions through continuous interaction
with  the  environment,  eliminating  the  need  for  a  process
model.  Moreover,  RL can  learn  from model  mismatches  and
compensate  for  them  in  their  actions,  leading  to  improved
decision-making  [116].  Additionally,  in  time-critical  indus-
trial processes, fast optimization is crucial for timely decision-
making [117]. RL offers the advantage of training an optimal
policy instead of  optimizing actions at  every time step.  Once
the  optimal  policy  is  found,  an  inexpensive  forward  pass
through the function can instantly generate an online solution,
leading to faster decision-making. Hierarchical or multi-agent
RL has also gained attention for its ability to model complex
systems and optimize decisions at  different levels of the pro-
duction process. Applying hierarchical RL to hierarchical and
combinatorial  optimization  problems  can  simplify  the  large-
scale  optimization  problem  into  smaller,  more  tractable  sub-
problems,  leading  to  improved  efficiency  and  effectiveness
[118].  Moreover,  the  design  of  RL  allows  for  the  incorpora-
tion  of  relevant  information  related  to  decision-making  that
may  be  hard  to  model  in  traditional  optimization  techniques,
providing flexibility in capturing important process dynamics.
Process  systems  engineering  (PSE)  communities  have  been
contributing  to  solving  some  of  the  decision-making  prob-
lems.  A  literature  review  on  a  specific  application  of  RL  in
supply  chain  management  can  be  found  in  [7].  Further,
Table III lists some significant RL applications in this domain.

In terms of future work, providing any optimality guarantee
to  RL-based  solutions  is  an  open  problem.  Also,  there  is  an
opportunity  to  combine  RL  with  conventional  optimization
approaches to leverage the advantages of both techniques.  

V.  Discussion

Besides  these  developments  in  process  industries,  the  RL
literature  is  evolving  rapidly  in  various  fields.  To  accelerate
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this expansion safely and realistically, researchers and practi-
tioners  should  consider  RL’s  advantages,  limitations,  and
opportunities  while  examining  the  trends  and  new  applica-
tions.  This  section  discusses  these  crucial  topics  to  guide  the
reader.  

A.  Limitations and Advantages
The concept of autonomy tries to decipher decision-making,

especially during adverse situations. The nature of such situa-
tions is both sparse and sporadic in nature. Such scenarios are
usually  based  on  plants’ apparent  behaviours  unique  to  each
site/unit  operation.  Such  sparse  events  and  adverse  interac-
tions have led to potential loss of production and, in the worst
cases,  fatal  injuries.  Combined with the nature of  the scenar-
ios as well as their sparsity of occurrence, no standard operat-
ing procedures can streamline the experience an operator may
have in suitable countermeasures developed over time.

While  a  multitude  of  models,  such  as  soft  sensors,  estima-
tors,  and  forecasting,  have  been  successfully  developed  and
deployed,  their  usage  is  limited  to  normal  operations.  Fault
tolerance  or  prevention  is  rarely  inherently  a  part  of  their
design. Such a modal approach to the machine learning mod-
els  and  their  poor  adoption  of  sparse  scenarios  renders  them
impractical in capturing the operator’s instincts. This impracti-
cality is mainly owing to the fact that these models are mostly
spatial, limiting them in understanding the long-term implica-
tions of a decision. This segues into an opportunity to under-
stand the long-term impact of certain decisions. A time-tested
approach for  plant  optimization is  to  utilize  model  predictive
controllers  to  provide  appropriate  decisions  considering  the
states/measurements  from  the  unit  operation.  These  methods
heavily rely on the plant dynamics that are ever-changing and
nonlinear  in  standard  templates.  The  challenges  in  lineariza-
tion as well as the heavily invasive approach of plant perturba-
tions,  limit  this  approach  to  depend  on  plant  inertia.  These
issues render the inherent characters in the plant, which other-
wise are available in the plant data, useless.

RL,  as  a  tool  to  identify  and  understand  operator  instincts,
can ensure the preservation of operator instincts, which other-
wise  would  be  lost  with  the  personnel  over  time.  The
approach  involves  the  utilization  of  the  RL  platform  to
develop  a  data-driven  approach  to  understanding  the  long-
term implications of operator decisions. The approach can be
realized in  two steps.  The first  is  an imitation learning-based
approach,  which  aims  at  exploiting  the  operator  experience
using a one-to-one map of decisions from operator data. This
approach would allow the RL agent to comprehend the spatial
nature of the decisions. During this scenario, if an actor-critic
setup  is  utilized,  the  value  of  such  decisions  can  also  be
empirically assessed, and the critic can be calibrated. The sec-
ond and crucial step is to deploy the RL agent into an explo-
ration phase. Here, the decisions can be provided to the opera-
tors as recommendations. These recommendations can be con-
strained/flagged/validated by the operator. Based on the num-
ber of times the operator accepts the decision, further delibera-
tion of  such learning platforms can be  commenced.  Operator
intuition being a crucial part of industrial autonomy, RL pro-
vides a robust platform for learning such sparse information.  

B.  Trends and New Applications
Classical control theory often utilizes an average cost func-

tion as shown in (1). On the other hand, most of the RL imple-
mentations  utilize  episodic  learning  even  if  they  are  finally
used  for  continual  processes.  Since  the  optimal  policies  in
episodic  problems  can  significantly  differ  in  continual  pro-
cesses, an emerging research topic is continual learning [127].
In  this  setting,  the  agent/learner  utilizes  non-discounted  vari-
ables,  similar  to  the  classical-control-theoretic  applications.
Moreover, safe learning techniques showed promising results
in  the  robotics  and  control  fields  [84],  [128].  These  tech-
niques  update  the  actor  and  critic  functions  based  on  the
parameter  and  system  constraints.  In  addition  to  these
advancements,  multi-agent  methodologies  [129]  and  agents
that  utilize  human  feedback  to  improve  their  policies  [130]

 

TABLE III 

RL Applications in Process Optimization, Planning and Scheduling

Application Environment Objective Action Algorithm

Water treatment [119] Dynamic model COD reduction in the effluent Dilution rate DDPG

CSTR [120] CSTR model
Maximize real-time profit while
accounting for changing environmen-
tal conditions

Reactant flowrate and heat input A2C

Electrical and heating [116] Integrated energy system Optimize operating costs under
uncertainties

Heat conversion and power distribu-
tion ratio PPO

Biopharmaceutical chro-
matography [121] Simulator and experiment Maximize product yield and purity Flowrate Q learning

Oil sands bitumen extraction
[118] High-fidelity PSV model

HLA: improve bitumen recovery
LLA: setpoint tracking, sanding pre-
vention

HLA: controlled variable setpoint
LLA: manipulated variables output

Hierarchical
A3C

Industrial mixing [122] Experiment Minimize mixing variance Flowrate DQN

Waterflooding optimization
[123]

Matlab Reservoir Simulation
Toolbox

Maximize total oil production with
minimum cost Manipulates water injection rates Q learning

Dynamic sensor planning
[124]

Experimental oil & gas
testbed

Infer two phase flow rates with mini-
mum cost Dynamically deploy sensors Deep Q learn-

ing
Chemical production
schedulling [125] Small single stage reactor Design production schedule for a

planning horizon with minimum cost Dynamically assign production A2C

Computer aided synthesis
planning [126] Reaxys database Find synthesis routes with minimum

steps and eco-friendly solvents Retrosynthetic disconnection Monte-Carlo
tree search
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can  speed  up  learning  and  improve  exploration  and  inter-
pretability  of  the  control  system  by  incorporating  human
expertise and knowledge. This interaction can also help over-
come data  availability  limitations  and  uncertainty  in  the  pro-
cess  by  incorporating  the  intuition  and  experience  of  human
operators. Overall, applying RL in complex process industries
can lead to more efficient,  reliable,  and sustainable processes
with improved performance and reduced operational costs.  

C.  Opportunities and Future Prospects
1)  RL  Applications  in  Educational  Settings: The  relative

recency  of  using  RL  in  real-life  applications,  particularly  in
process  industries/engineering,  created  a  need  for  qualified
engineers equipped with such ML expertise typically not cov-
ered  by  the  engineering  curriculum.  Only  computer  science
departments  teach  RL  and  deliver  qualified  computer  scien-
tists to join the demanding market. However, using ML tools
in  the  process  industry  requires  targeted  knowledge  in  spe-
cific  engineering  domains.  Hence,  engineers  and  expert-
domain matters are more suited to use RL theory and tailor it
for  every  application  independently.  Therefore,  engineering
students should be educated and trained with RL to apply it in
process  industries.  However,  teaching  such  specialized  and
advanced ML tools  (RL)  in  the  classroom without  pedagogi-
cal  applications  has  been  considered  a  challenge,  and  some
experimental applications were proposed in [131].

2)  Fault  Detection,  Tolerance,  and  Recovery: Industrial
fault  recovery is crucial for the safe and reliable operation of
systems.  While  this  survey  presents  promising  RL-based
approaches  for  fault  detection  and  tolerant  control,  there  is  a
need  for  resilient  agents  to  recover  from  unsafe  operations.
For example, a malfunctioning sensor or actuator in a chemi-
cal plant can lead to catastrophic accidents. Designing an RL-
based  fault  recovery  agent  that  adjusts  parameters,  reroutes
flows, or safely shuts down systems can greatly benefit  plant
operations. By leveraging RL’s ability to learn and make intel-
ligent decisions, these agents enhance reliability and safety in
Industry  5.0.  Future  research  should  focus  on  effective  RL
fault  recovery  strategies,  considering  interconnected  compo-
nents and potential cascading effects. Integrating RL into fault
recovery  achieves  greater  fault  tolerance,  ensuring  continued
operation,  minimizing  unexpected  events,  enhancing  system
reliability,  and  promoting  safe  human-machine  collaboration
in Industry 5.0.

3) Complex Systems and Holistic Designs: This survey has
identified  that  previous  research  has  predominantly  focused
on using RL to improve individual levels in the control hierar-
chy, as shown in Fig. 1. However, this approach fails to con-
sider  the  interconnectedness  of  multiple  levels  in  most  pro-
cess industries, which can significantly impact the overall per-
formance  of  the  control  system.  To address  this  issue,  future
research should focus on developing advanced RL algorithms
that can optimize the control system design by considering the
interactions  between  multiple  levels  of  the  process  control
hierarchy.  Moreover,  integrating  reinforcement  learning  into
Industry  5.0  holds  immense  potential  for  advancing  process
control  and  automation.  New  evaluation  metrics  and  bench-
marks should be developed to assess the performance of algo-

rithms in  more  realistic  and  complex  industrial  settings.  Pur-
suing  these  research  directions  can  improve  process  control
systems’ efficiency,  reliability,  and  sustainability  and  enable
the transition toward autonomous and intelligent  manufactur-
ing.

4)  Autonomous  Control  Systems: Designing  sequential
interactions in the control hierarchy can be complex and chal-
lenging.  Due  to  limited  considerations,  the  traditional  appro-
ach  of  using  programmable  logic  controllers  (PLCs)  may
compromise process optimality and safety.  To address this,  a
better  alternative  is  to  define  higher-level  objectives  and
explore  various  scenarios  comprehensively,  enhancing  both
safety and optimality. Implementing hard constraints requires
process  knowledge  and  models  while  incorporating  expert
information into system identification methodologies leads to
successful  applications.  Data-driven  methods  face  challenges
with extensive training time, but this can be mitigated through
offline  pre-training,  model-based  RL  agents,  long  historical
data,  or  sparse  agents.  Smooth  transitions  during  shutdown
and startup  phases  are  crucial  for  handling  nonlinear  dynam-
ics.  Commissioning  an  autonomous  process  automation  sys-
tem is a complex task that requires collaboration across disci-
plines.  RL  implementations  offer  an  efficient  trial-and-error
approach,  automating  the  sequence  design  process,  reducing
design  times,  optimizing  control  system design,  and  improv-
ing  process  performance  with  speed  and  accuracy.  This  inte-
gration  of  reinforcement  learning,  autonomous  control  sys-
tems,  and  Industry  5.0  presents  opportunities  for  advanced
process automation, enabling efficient and adaptive control in
complex industrial environments.

5) Cyber Attacks: RL can be used to mitigate cyber attacks
or  enhance  cyber  security.  However,  several  types  of  chal-
lenges need to be addressed when deploying RL agents. These
challenges  include  the  security  and  privacy  challenges  of
cyber-physical  systems,  the  unpredictability  and  modelling
challenges  of  human  behaviour  when  mitigating  human-
related vulnerabilities,  the challenges of  handling system and
performance  constraints  in  the  learning  process,  and  improv-
ing  the  learning  speed.  Moreover,  non-stationary  environ-
ments  should  also  be  considered  in  cyber  systems.  The  suc-
cess  of  RL algorithms  depends  heavily  on  accurate  and  con-
sistent  feedback  from  the  environment.  However,  such  feed-
back is  challenging to guarantee under various cyber attacks,
such  as  denial-of-service  (DoS)  attacks,  jamming  attacks,
spoofing attacks, data injection attacks, data poisoning attacks,
test-item attacks, etc. To understand RL under cyber attacks, it
is  necessary  to  understand  the  attacking  behaviours  and  how
specific  attacks  influence  the  learning  results  of  RL.  For
example, designing learning rules requires further design con-
siderations  in  the  presence  of  cyber  attacks.  Otherwise,  the
learning  results  (e.g.,  the  policy  parameters)  could  be  cor-
rupted  due  to  adversaries  causing  misleading  information
(e.g.,  the  reward,  measurement,  and  control  signals)  since  a
naive  agent  might  not  be  able  to  notice  the  attacks  [132]–
[134].  Although  several  research  articles  address  adversary
detection  and  mitigation  through  RL  solutions  [135]–[137],
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deploying  RL  agents  in  process  industries  requires  further
research for robustness and safety [138].
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