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   Abstract—The power grid is undergoing a transformation from
synchronous  generators  (SGs)  toward  inverter-based  resources
(IBRs). The stochasticity, asynchronicity, and limited-inertia char-
acteristics  of  IBRs bring about  challenges  to  grid resilience.  Vir-
tual  power  plants  (VPPs)  are  emerging  technologies  to  improve
the  grid  resilience  and  advance  the  transformation.  By  judi-
ciously  aggregating  geographically  distributed  energy  resources
(DERs) as individual  electrical  entities,  VPPs can provide capac-
ity  and  ancillary  services  to  grid  operations  and  participate  in
electricity  wholesale  markets.  This  paper  aims  to  provide  a  con-
cise  overview  of  the  concept  and  development  of  VPPs  and  the
latest  progresses  in  VPP  operation,  with  the  focus  on  VPP
scheduling and control. Based on this overview, we identify a few
potential challenges in VPP operation and discuss the opportuni-
ties  of  integrating  the  multi-agent  system  (MAS)-based  strategy
into  the  VPP  operation  to  enhance  its  scalability,  performance
and resilience.
    Index Terms— Climate change, renewable energy resources, resilien-
ce, smart grids, virtual power plants (VPPs).
  

Acronyms

ADER Aggregate Distributed Energy Resource
BP Bilevel programming
CHP Combined heat and power
CT Controllable load
DER Distributed energy resource
DG Distributed generator
DVPP Dynamic virtual power plant
ERCOT Electric Reliability Council of Texas
ESS Energy storage system

EV Electrical vehicle
FC Fuel cell
FFR Fast frequency response
HVAC Heating, ventilating, and air-conditioning
GW Gigawatt
HA Heuristic algorithm
ICT Information and communication technology
IBR Inverter-based resource
KW Kilowatt
LP Linear programming
MARL Multi-agent reinforcement learning
MAS Multi-agent system
MDP Markov decision process
MG Microgrid
MILP Mixed-integer linear programming
MT Microturbine
MW Megawatt

NERC North  American  Electric  Reliability  Corpo-
ration

NLP Nonlinear programming
PCC Point of common coupling
PID Proportional-integral-derivative
PV Photovoltaic
RES Renewable energy resource
RL Reinforcement learning
RO Robust optimization
RoCoF Rate of change of frequency
SG Synchronous generator
SO Stochastic optimization
SoC State-of-charge
SRO Stochastic robust optimization
VPP Virtual power plant
WT Wind turbine

  

I.  Introduction

THE  power  grid,  once  dominated  by  traditional  syn-
chronous generators (SGs) such as nuclear, coal,  gas and

hydropower  systems,  is  experiencing  a  shift  toward  inverter-
based  resources  (IBRs)  due  to  the  increased  penetration  of
renewable  energy  resources  (RESs)  such  as  wind  and  solar
energy  [1]–[3].  IBRs  powered  by  solar  photovoltaic  (PV),
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wind,  fuel  cell  (FC)  and  battery  storage  resources  use  power
electronic devices to convert direct current power to alternat-
ing current power to be transmitted on the bulk-power system.
North American Electric Reliability Corporation (NERC) esti-
mates that approximately 860 gigawatts (GW) of IBRs will be
added to the grid over the next decade [4]. More than 67 GW
of  IBRs  are  planned  to  be  connected  to  Electric  Reliability
Council of Texas (ERCOT) by 2023 [5]. Road maps of reach-
ing 100% IBRs have been set up by system operators such as
Hawaiian Electric and National Grid Electricity System Oper-
ator [6].

Power systems with high IBR penetration levels face relia-
bility  and  resilience  challenges.  With  SGs  being  replaced  by
IBRs completely, power systems face significant challenges to
maintain  proper  inertia.  The  low inertia  may  lead  to  a  larger
frequency deviation and a higher rate of change of frequency
(RoCoF)  caused  by  similar  disturbances  and  supply/demand
imbalances [7],  which in turn can trigger undesired underfre-
quency  load  shedding  or  even  jeopardize  grid  reliability.
Power  systems  with  high  IBR  penetration  levels  may  also
experience larger voltage dips following disturbances. Fluctu-
ation  of  distributed  PVs  in  a  certain  geographical  area  may
result  in  more  oscillations  as  the  level  of  PV  penetration
increases  [8].  Extreme  weather  events,  cybersecurity  threats
and volatility in energy markets at all levels put intense strain
on  the  power  grid  [9].  As  observed  by  NERC,  the  current
trends indicate the potential for more frequent and more seri-
ous  long  duration  reliability  disruptions,  including  the  possi-
bility  of  national  consequence  events,  unless  reliability  and
resilience are appropriately prioritized [10].

Virtual  power  plants  (VPPs),  aggregations  of  distributed
energy  resources  (DERs),  have  been  recognized  as  new  and
promising  technologies  to  improve  the  grid  reliability  and
resilience and advance the grid transformation [9],  [11]–[13].
A VPP that leverages DER flexibility can perform as reliably
as  conventional  resources  and  contribute  to  resource  ade-
quacy at a similar scale [13]. Many countries around the world
such as the United States, Australia, Germany and China have
initiated VPP pilot projects. The global VPP market was val-
ued at  $3.37 billion  in  2022 and is  expected to  grow to  over
$12.27 billion in revenue by 2030 [14].

Research efforts have been made on VPP operation to facili-
tate grid transformation. Depending on the operation timescale
and the functionality of the VPP, these efforts mainly fall into
two  categories:  VPP  scheduling  and  VPP  control.  VPP
scheduling focuses on the steady-state operation and manage-
ment  for  power  market  in  the  hourly  and  daily  timescales,
while  VPP  control  focuses  on  the  dynamic  nature  and  tran-
sients in a faster timescale.

Despite recent progresses in research on VPP operation, sig-
nificant challenges still  exist.  The uncertainty and fluctuation
of RESs and the dynamic characteristics of VPP components
make  it  difficult  to  identify  accurate  and  appropriate  models
for  VPP  scheduling  and  control.  The  growing  number  of
DERs and the increasing capacity of VPPs have rendered the
centralized  architecture  inadequate  in  meeting  the  scalability
requirements of VPPs. As the VPP market attracts more VPP
aggregators, the need for cooperative and competitive perfor-
mance-guaranteed VPP operation has arisen. Additionally, the
cyber-physical  nature  of  VPPs  poses  great  challenges  to  the
resilience of VPP operation.

The  past  few  decades  have  witnessed  the  development  of
the  multi-agent  system  (MAS)-based  strategy  in  distributed
optimization,  control  and  learning  of  large-scale  systems
[15]–[21].  MAS-based theory is envisioned to empower VPP
operation with scalability,  performance and resilience. In this
paper, we will review the recent literature on VPP concept and
development and the latest progresses in VPP scheduling and
control.  Based  on  this  review,  we  identify  a  few  potential
challenges  in  VPP operation  and discuss  the  opportunities  of
integrating  the  MAS-based  strategy  with  VPP  operation  to
enhance its scalability, performance and resilience.

The references we selected mainly come from the databases
listed in Table I.  The remainder  of  this  paper  is  organized as
follows. Section II introduces the concept and development of
VPPs.  Sections  III  and  IV  review  the  problems  and  solution
methods in VPP scheduling and VPP control, respectively. In
Section V, we identify a few challenges in VPP operation and
propose a distributed framework for VPP operation using the
MAS-based  strategy.  Opportunities  for  enhancing  scalability,
performance  and  resilience  of  VPP  operation  are  discussed.
Section VI concludes the paper.  

II.  Virtual Power Plants
  

A.  Concept
A virtual power plant (VPP) is a virtual aggregation of het-

erogeneous  DERs  such  as  distributed  generators  (DGs),
energy storage systems (ESSs),  controllable loads (CTs),  and
electrical vehicles (EVs) that acts as a single entity to provide
capacity and ancillary services to grid operations and partici-
pates in electricity wholesale markets. A VPP can be regarded
as  an  aggregation  of  DER  technologies.  With  a  centralized
control  system,  aggregators,  utilities  or  grid  operators  can
remotely  and  automatically  adjust  DERs  to  provide  clean
energy,  reliability  and  grid  services  while  maintaining  cus-
tomer  comfort  and  productivity.  Through  a  combination  of
software  and  hardware,  VPPs  not  only  open  the  grid  to  a
whole  new  utility-scale  behind-the-meter  supply,  but  also

 

TABLE I 

Databases

Database Timeframe Keywords Reference type

Google Search 2020–2023 Virtual power plant Webpage

Web of Science 2000–2023 Virtual power plant Review paper

IEEE Xplore 2010–2023 Virtual power plant Journal paper; conference paper
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coordinate  geographically  distributed  and  heterogeneous
DERs  into  holistic  demand-flexible  resources  [22].  We  sum-
marize the evolution of the VPP concept and scope based on
Reference [23] and the latest literature as follows.

● 1997: Virtual utility [24];
● 2003: DER combination participating in the energy mar-

ket as a unique unit [25];
● 2007: Method for technical and commercial management

[26];
● 2008: Characteristics of DGs and CTs to characterize the

VPP [27];
●  2009:  Ancillary  services  through  the  management  of

DERs [28];
● 2011: VPP control with EVs [29];
●  2017:  Coordination  between  VPPs  and  system operators

[30];
● 2018: Management of a set of DERs [31];
● 2019: Dispatchable virtual unit offering ancillary services

to the network [32];
●  2020:  Management  based  on  the  virtual  cloud  concept

[33];
● 2021: Dynamic virtual power plant (DVPP) concept [34];
● 2022: Multiple VPPs volt/var control [35];
● 2023: VPPs as hybrid dynamical systems [36].  

B.  Differences Between Microgrid and VPP
Simlar  to  VPP,  a  microgrid  (MG)  is  another  choice  to

aggregate,  manage  and  deploy  DERs,  particularly  during  a
grid outage [37]–[44]. The U.S. Department of Energy defines
an  MG as  a  group  of  interconnected  loads  and  DERs  within
clearly  defined  electrical  boundaries  that  act  as  a  single  con-
trollable entity with respect to the grid. An MG can operate in
either the grid-connected mode or the islanded mode [23]. An
MG can  be  a  component  of  a  VPP [45].  Several  distinctions
between VPPs and MGs are shown in Fig. 1 and listed as fol-
lows.
 

VPP

~

Main grid

PCC

PCC MG 

DER

DER

DER

MG 

DERPCC

 
Fig. 1.     The relationship between VPPs and MGs.
 

●  VPPs  are  not  limited  by  geography  and  a  static  set  of
resources.

● VPPs cannot operated in islanded mode.
●  VPPs  generally  aim at  enhancing  the  competitiveness  of

the  resources  that  are  integrated  by  maximizing  its  profit,
while MGs focus on stable, reliable and resilient operation of
the resources within MGs.

● An MG can be connected to the main grid through a sin-
gle point of common coupling (PCC) but a VPP can use cloud
communication  to  control  DERs  located  at  multiple  PCCs
[46].  Therefore,  the  VPP  could  be  used  to  aggregate  DGs,
ESSs,  EVs,  entire  MGs,  demand  response  units  and  even
entire distribution stations across an interconnection [47].

● MGs typically participate in retail distributions but VPPs
can participate in wholesale markets.  

C.  VPP Components
In  general,  a  VPP  contains  distributed  energy  resources

(DERs),  information and communication technologies (ICTs)
and a management center as shown in Fig. 2.
 

System operator

VPP management center

ESS EV PV WT
Communication link

...

 
Fig. 2.     VPP components.
 

1) DERs: According to NERC, a distributed energy resource
(DER) is any resource on a distribution system that produces
electricity  [48].  In  a  VPP,  DERs  can  be  any  controllable  or
dispatchable  power  resource  that  can  respond  to  orders  from
the management center, adjusting its operational status such as
changing the active power output setpoint. Common DERs in
a VPP include distributed generators (DGs) such as combined
heat  and  power  (CHP)  units,  fuel  cells  (FCs),  microturbines
(MTs),  diesel  generators,  photovoltaics  (PVs),  wind  turbines
(WTs),  energy  storage  systems  (ESSs)  such  as  batteries,  fly-
wheels and superconducting magnetic energy storage, control-
lable  loads  (CLs)  such  as  electric  vehicles  (EVs),  heating,
ventilating  and  air-conditioning  (HVAC)  units,  and  micro-
grids (MGs).

2)  Information  and  Communication  Technologies  (ICTs):
Information Technology Industry Council defines ICTs as the
communications  networks  that  connect  all  parts  of  the  grid
including  operations,  service  providers,  customers,  distribu-
tion, and transmission by facilitating communications between
machines,  between  humans,  and  between  humans  and
machines [49]. In a VPP, ICTs mainly provide real-time mon-
itoring and communication functionalities including data mea-
surements  at  DERs,  data  communications  technologies  and
communications  networks  that  transmit  measurements,  data
and  control  signals  between  devices/DERs  and  the  manage-
ment  center.  Reference  [50]  provides  an  overview  of  VPP
communication  architectures  and  protocols.  Reference  [51]
proposes the integration of a VPP into grid services using IEC
61850 standard. Applications of 5G technology in VPP can be
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found in [52], [53].
3)  Management  Center: The  management  center  serves  as

the central hub of a VPP for information processing and deci-
sion making.  It  integrates the request  from the system opera-
tor and all the data collected at DERs via ICTs, performs data
analysis  and  decision  making,  and  sends  optimized  orders
such  as  active  power  setpoints  to  DERs  via  ICTs  to  ensure
that the VPP operates efficiently, economically and securely.  

D.  VPP Services
VPPs have the capability to incorporate DERs into electric-

ity  market  operations,  ancillary  services  market,  and  provide
management  and  support  services  for  the  distribution  and
transmission  grids  [54].  Ancillary  services  are  services  pro-
vided  by  generation,  transmission  and  control  equipments
which  are  necessary  to  support  the  transmission  of  electric
power  from  the  generator  to  the  consumer  [55].  These  ser-
vices help grid operators to maintain a reliable electricity sys-
tem. Examples of VPP ancillary services are active power and
frequency control and reactive power and voltage control [56].
The system frequency depends on active power balance. VPP
can fulfill the system operator’s request by providing an active
power  reserve  or  absorbing  extra  active  power.  The  voltages
of the system’s critical buses should stay within certain limits,
which  depend  on  reactive  power  balance.  VPP  can  support
voltage stability via providing or absorbing reactive power.  

E.  VPP Projects
Many  countries  around  the  world,  including  the  United

States,  Australia,  Germany  and  China,  have  initiated  VPP
projects.  The  global  VPP market  was  valued  at  $3.37  billion
in 2022 and is expected to grow to over $12.27 billion in rev-
enue by 2030 [14].

1)  United  States: Wood  Mackenzie,  a  global  energy
research  firm,  has  identified  563  VPPs  either  operating  or  in
development  in  the  United  States  in  2023,  with  California
having the highest concentration of VPPs in the country [57].

●  California:  Stem  is  one  of  the  leading  VPP  operators  in
California and has 2.5 GW of contracted storage assets under
management  across  14  different  VPPs.  In  2021,  Stem  dis-
patched  86  megawatts  (MW)  of  stored  energy,  which  is
enough  to  power  103000  Homes,  during  5-hour  flex  alert  in
California  [58].  Pacific  Gas  &  Electric  is  testing  VPPs  with
Tesla  and  Sunrun  to  ease  grid  stress  during  hot  summer
evenings  [59].  AutoGrid  deploys  a  utility-grade  VPP of  resi-
dential  batteries  in  Southern  California  to  support  grid
resilience  in  Southern  California  Edison’s  service  area  by
optimizing  the  operations  of  nearly  400  kilowatts  (KW)  of
battery  capacity  [60].  San  Diego  Gas  &  Electric  has  been
launching a VPP pilot project since 2022 [61].

●  New York:  Swell  is  working  with  Public  Service  Enter-
prise  Group Long Island  and  contractors  to  use  battery  man-
agement  software  to  remotely  discharge  home  batteries  and
provide relief to the electricity grid during times of stress [62].
A  $110  million  VPP project  facility  for  multifamily  residen-
tial  buildings  was  completed  in  New  York  and  will  be  used
for VPP projects [63].

●  Texas:  Texas  regulators  approved  the  Aggregate  Dis-
tributed  Energy  Resource  (ADER)  Pilot  Project.  The  pilot
allows  up  to  80  MW  of  capacity  from  assets  in  homes  and
businesses to bid into wholesale markets, run by grid operator
ERCOT.  ADER  consists  of  many  individual  sites  that  can
inject  or  withdraw  power  from  the  grid  in  response  to  an
ERCOT instruction.  Tesla  will  control  the  individual  Power-
wall  and use  individual  data  such as  home energy usage  and
data produced by Powerwall [64].

● Puerto Rico:  Sunrun has been establishing Puerto Rico’s
first  VPP.  It  will  aggregate  the solar  and battery storage sys-
tems  of  more  than  7000  customers  to  form  a  17  MW  VPP.
The company is aiming to dispatch the VPP in 2024 [65].

●  Hawaii:  Shifted  Energy  has  equipped  smart-water-heater
control  modules  in  over  3000  multifamily  condos  and  apart-
ment  buildings  on  the  islands  of  Oahu  and  Maui.  This  VPP
provides  the  utility’s  aggregated  capacity  of  up  to  2.5  MW,
delivering rapid grid support [66].

2) Australia: Australia Energy Market Operator has demon-
strated  the  capability  of  VPPs  for  contingency  frequency
ancillary  services  using  8  VPPs  with  a  total  capacity  of  31
MW. It is anticipated to operate a VPP with 700 MW capac-
ity  to  verify  the  potential  of  the  storage  systems  for  energy
management and ancillary services [67]. Simply Energy VPP
implemented over 1200 batteries in homes in South Australia
and  managed  up  to  6.5  MW  of  residential  energy  storage  to
provide ancillary services [68].

3)  Germany: Next  Kraftwerke  has  establised  a  VPP  com-
bining the flexibility of energy producers and consumers. The
Next Pool connects more than 2900 medium-scale and small-
scale  power-producing  and  power-consuming  units  with  a
capacity  of  1.9  GW using a  fully  automated  centralized  con-
trol system [69].

4)  China: China  is  accessing  its  VPP  capacity  through  its
first  VPP management center in Shenzhen with a capacity of
870 MW [70].  

III.  VPP Scheduling

The  aim  of  VPP  scheduling  is  to  coordinate  DERs  to  pro-
vide  a  certain  amount  of  power  resource  subject  to  their
capacity  constraints  in  a  collective  way,  while  optimizing
objectives  such  as  minimization  of  the  generation,  transmis-
sion,  distribution  and  maintenance  cost,  maximization  of  the
profit of VPP participation in energy market, maximization of
power  system performances  and  maximization  of  social  wel-
fare such as minimization of greenhouse gases.

VPP  scheduling  problems  are  mainly  formulated  as  con-
strained  optimization  problems.  Take  the  VPP  scheduling
problem  that  focuses  on  profit  maximization  in  a  day-ahead
market  as  an  example  [71].  In  the  day-ahead  market,  VPP
makes decision one day ahead on the levels of power of DERs
to maximize the profit of the VPP. The objective function can
be defined in terms of the revenues and costs of DERs as fol-
lows:
 

maximize
T∑

h=1

(
µhPGrid(h)−

∑
i

CDG
i (h)−

∑
j

CESS
j (h)

)
(1)
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s.t. Power balance constraint:∑
PDG

i (h)+
∑

PESS,c
j (h)−

∑
PESS,d

j (h)

= PGrid(h)+Pload(h)

DG capacity and ramp rate constraints:

PDG
i ≤ PDG

i (h) ≤ P
DG
i

rDG
i ≤ PDG

i (h)−PDG
i (h−1) ≤ rDG

i

ESS constraints:

0 ≤ PESS,c
j (h) ≤ uc

j(h)P̄ESS,c
j

0 ≤ PESS,d
j (h) ≤ ud

j (h)P̄ESS,d
j

uc
j +ud

j = 1

S OCESS
j (h) = S OCESS

j (h−1)+PESS,c
j (h)ηc

j

−
PESS,d

j (h)

ηd
j

S OCESS
j ≤ S OCESS

j (h) ≤ S OC
ESS
j (2)

PGrid(h) µh

CDG
i (h)

where  and  are  respectively  the  power  sold  to  the
market  and  the  energy  market  price  at  hour h,  and

CESS
j (h)

Pload(h) PDG
i (h)

PDG
i P

DG
i rDG

i rDG
i

PESS,c
i (h) PESS,d

i (h) S OCESS
j (h)

S OC
ESS
j S OCESS

j ηc
j ηd

j

P
ESS,c
j

P
ESS,d
j

uc
j(h) ud

j (h)

uc
j(h) = 1 ud

j (h) = 1

 are respectively the operation costs of the ith DG and
jth ESS at hour h,  is the load at hour h,  is the
output  of  the ith  DG at  hour h, , ,  and  are
respectively the minimum and maximum outputs and the min-
imum and maximum ramp rates  of  the  output  of  the ith  DG,

,  and  are  respectively  the
charge  and  discharge  powers  and  the  state-of-charge  of jth
ESS at  hour h, , ,  and  are  respectively
the minimum SOC, maximum SOC level, charging efficiency
rates  and  discharging  efficiency  rates  of  the jth  ESS, 
and  are  respectively  the  charging  and  discharging
power capacities of the jth ESS, and  are  are binary
values  that  respectively  represent  the  charging  and  discharg-
ing  status.  If ,  the jth  ESS  is  charging.  If ,
the jth ESS is discharging.

Optimization-based  methods  and  reinforcement  learning-
based methods are two categories of methods for solving VPP
scheduling problems. Literature on VPP scheduling is summa-
rized in Table II.  

A.  Optimization-Based Methods for VPP Scheduling
Optimization-based  methods  for  VPP  scheduling  include

 

TABLE II 

Literature on VPP Scheduling

References DERs Functionality Scheme Method

[72] CT, DG, ESS Profit maximization Centralized LP

[73] CHP, CT, ESS, PV, WT Cost minimization Centralized LP

[74] CT, ESS, PV, WT Cost minimization Centralized NLP

[45] MG Cost minimization Centralized MILP

[75] CL, EV, MT, PV Profit maximization Centralized MILP

[76] CT, DG, EV, HVAC, Profit maximization Centralized MILP

[77] CHP, ESS, MT, PV, WT Profit maximization Centralized MILP

[78] GT, PV, WT Profit maximization Centralized MILP

[79] CT, ESS, PV, WT Profit maximization Centralized MILP

[80] ESS, MT, PV, WT Profit maximization Centralized MILP

[81] CT, ESS, MG, PV, WT Profit maximization Centralized MILP

[82] CHP, ESS, RES, TS Profit maximization Centralized MILP

[83] CT Profit maximization Centralized MILP

[84] CL, ESS Profit maximization Centralized SO

[85] WT, PV, ESS, CT Profit maximization Centralized SO

[86] CL, ESS Profit maximization Centralized SRO

[87] CL, DG, ESS, EV Profit maximization Centralized BP

[71] CL, ESS, WT Profit maximization Centralized BP

[88] DR, ESS, FC, MT, WT, PV Cost minimization Centralized HA

[89] General DER model Non-dispatchable power minimization Centralized HA

[90] DG, ESS Profit maximization Centralized HA

[91] CT Profit maximization Centralized RL

[92] CL, DG, EV, ESS Cost minimization Centralized Safe RL

[93] CL, DG Profit maximization Centralized Deep RL

[94] MT, PV, WT Cost minimization Centralized Deep RL
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linear  programming  (LP),  nonlinear  programming  (NLP),
mixed-integer  linear  programming  (MILP),  stochastic  opti-
mization  (SO),  robust  optimization  (RO),  bilevel  program-
ming (BP) and heuristic algorithm (HA).

MILP  is  the  mostly  adopted  method  for  VPP  scheduling.
MILP  is  an  optimization  problem  with  both  integer  decision
variables and continuous decision variables. Two categories of
VPP scheduling problems can be solved via MILP. One cate-
gory  involves  integer  decision  variables  in  the  original  opti-
mization  problem.  For  example,  binary  variables  may  indi-
cate  a  link  status  between  two  specified  buses,  charge/dis-
charge status of an ESS, and on/off status of an MT [76]–[81].
The other category involves reformulation of the original opti-
mization problem into  an  MILP problem.  Certain  nonlineari-
ties  can be effectively managed by employing a  combination
of binary and real variables [75], [82], [95]. For example, the
cost of a DG is described by a quadratic function
 

CDG
i (t) = ai(PDG

i (t))2+biPDG
i (t)+ ci

ai bi ciwhere ,  and  are coefficients of the ith DG cost function
[45], [96]. This cost function can be linearized as a piecewise
linear  function  [97].  If  valve-point  effects  of  power  genera-
tion units and a nonlinear power flow model are incorporated
in  VPP  scheduling,  the  optimization  problem  (1)  becomes
nonconvex [98]. Relaxation and linearization methods can be
employed  to  convert  the  nonconvex  problem  into  a  convex
one [35], [71], [92], [99].

To address the uncertainties such as intermittent  renewable
energy output and market price, robust optimization (RO) and
stochastic  optimization  (SO)  are  two  common  methods.  In
RO,  uncertainty  is  modeled  as  a  bounded  set.  Then  the
scheduling  problem  is  expressed  as  a  minmax  problem.  The
optimal  scheduling  is  made  under  the  worst-case  realization.
Reference [83] formulates the VPP scheduling problem as an
RO,  which  is  transformed  into  a  computationally  tractable
MILP problem based on the piecewise linearization technique,
affine  decision  rule  and  duality  theory.  It  is,  however,  often
observed that the results of RO is too conservative for practi-
cal  operations.  To address  this  issue,  SO is  proposed.  In  SO,
uncertainties  can  be  modeled  as  stochastic  variables,  the  sta-
tistical  features  of  which  can  be  obtained  based  on  historic
data.  As  an  example,  wind  speed  is  commonly  represented
using the Weibull distribution [100]. In [84], uncertainties are
represented  by  a  finite  collection  of  scenarios,  constituting  a
discrete  approximation  of  the  probability  distribution  of
uncertain variables.  More recently,  a  combination of  RO and
SO,  referred  to  as  stochastic  robust  optimization  (SRO),  is
used  for  the  VPP  scheduling  problem  via  incentive  demand
response and solved by a tailored column-and-constraint gen-
eration algorithm [86].

A  bilevel  programming  (BP)  problem  pertains  to  the  case
where an optimization problem incorporates another optimiza-
tion  problem as  a  constraint.  VPP  scheduling  with  participa-
tion  in  multiple  markets  can  be  formulated  as  a  BP  problem
[71], [87], which can be reformulated and solved as a single-
level mathematical programming problem.

Finding optimal  solutions  for  some scheduling problems is
challenging.  Reference  [89]  points  out  that  certain  VPP  dis-
patch  problem is  NP-complete.  Heuristic  algorithms  (HA)  to
solve the VPP scheduling problems include teaching-learning-
based-optimization [88],  hill  climber [89] and particle swarm
optimization [90].  

B.  Reinforcement Learning-Based Methods for VPP Scheduling
Because of the model inaccuracy, uncertainties of RESs and

the nonlinear characteristics of DGs, traditional optimization-
based methods for VPP scheduling have high complexity and
may not be applicable to real-world situations. Reinforcement
learning  (RL)  has  been  adopted  in  VPP  scheduling  to  deal
with  these  challenges.  Comparative  studies  have  shown  that
RL methods provide better performance and incur lower time
costs [94], [101]. RL is used for solving the markov decision
process  (MDP)  problem  without  the  knowledge  of  the  envi-
ronment model. The MDP problem is a traditional representa-
tion  of  sequential  decision-making,  where  actions  influence
not only immediate rewards but also subsequent situations, or
states, and through those future rewards.

(S,A,P,r,γ) S
A

P(s′|s,a)
s′ ∈ S s ∈ S

a ∈ A P(s′|s,a) = pa
ss′ ,∀s, s′ ∈

S,a ∈ A ∑
s′∈S pa

ss′ = 1 s ∈ S
r(s,a) : S×A→ R

γ ∈ (0,1)
π : S×A→ [0,1]

π(a|s) = P(at = a|st = s)
π∗

An MDP is  defined by ,  where  the  sets  and
 are the state space and the finite action space, respectively.

The  transition  function  is  the  probability  of  transi-
tioning  to  state  when  the  current  state  is  and
action  is  taken.  We  denote 

 with  for  all .  The  reward
 denotes the reward received from the envi-

ronment when the current state is s and action a is taken. The
constant  is  the  discounting  factor.  A stochastic  pol-
icy  is a probability distribution over actions
for  each  state,  i.e., .  The  objective  of
RL is to find an optimal policy  that maximizes the expected
cumulative  discounted  rewards  within  the  infinite  horizon,
that is,
 

limsup
T→∞

E

[ T∑
t=0

γtr(st,at)|at ∼ π(·|st), s0

]
.

By appropriate setting of state, action and reward, the VPP
scheduling  problem  can  be  modeled  as  an  MDP  and  solved
via  RL.  Reference  [91]  proposes  an  RL  framework  to  solve
the demand response problem of a commercial building-based
VPP, where the state is the current load commitment, action is
the  demand  adjustment  ratio,  and  the  reward  is  the  utility
function,  and Q-learning  is  adopted  to  solve  the  problem.
Motivated  by  the  fact  that  the  traditional  RL  method  cannot
guarantee  the  safety  of  the  action,  [92]  proposes  safe  RL  by
including  safety  constraints.  As  a  result,  the  MDP  is  trans-
formed as a constrained MDP and solved by constrained soft
actor-critic  algorithm.  Reference  [93]  studies  the  incentive-
based  demand  response  to  reduce  the  bias  between  the  day-
ahead  forecast  and  the  actual  output  of  a  VPP.  The  system
state  includes  consumer’s  power  load,  load  elasticity,  real-
time price and the deviation amount between RES actual out-
put  and  day-ahead  bidding.  The  action  is  the  incentive  rate
and the reward is the net profit. To cope with large-scale data
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sets created by the continuous state, a deep neural network is
adopted to parameterize the state value function and the state-
action value function,  resulting in  Deep RL [93],  [94].  Com-
pared  with  the  traditional  heuristic  methods,  Deep  RL  with
offline training incurs lower time costs [94].  

IV.  VPP Control

Once a VPP is scheduled for power delivery, its control sys-
tem is responsible for sending commands to DERs to produce
the  desired  aggregated  power.  Nevertheless,  existing  litera-
ture  lacks  emphasis  on  the  development  and  implementation
of real-time control for VPP operations [47], [102]. To ensure
efficient  and  reliable  VPP  control,  the  transient  behaviors  of
VPPs  need  to  be  investigated.  Transients  following  faults,
large setpoint adjustments, or fluctuations in loads can poten-
tially  push  the  system  beyond  operational  thresholds,  result-
ing in instability, triggering protective devices, or violation of
equipment  ratings.  This  scenario  becomes  more  critical  in
power systems with high IBR levels [103]. However, only few
papers consider the dynamics and transients of DERs in VPP
control.

Literature  on  VPP  control  can  mainly  be  categorized  into
three  aspects:  power  setpoint  tracking,  frequency control  and
voltage  control.  Literature  on  VPP  control  is  summarized  in
Table III.  

A.  Power Setpoint Tracking

∑N
i=1 Pi(t)

P∗ Pi(t)
P∗i

The goal of power setpoint tracking is to make sure the total
power output of the VPP  tracks the VPP power set-
point . Ideally, the output of each DER  should track its
reference  setpoint .  These  setpoints  are  obtained  via  VPP
scheduling.

P∗
∑N

i=1 Pi(t)

Sandia  National  Laboratory  has  been  developing  and  vali-
dating a  real-time platform for  VPP optimization and control
with the aim at providing ancillary services [47], [102]. Refer-
ence [47] focuses on designing feedback controllers for VPPs
that align with energy market requirements and reserve objec-
tives.  If  there  exists  an  error  between  the  VPP  active  power
setpoint  and  the  actual  power ,  each  DER  will
receive a signal that is proportionally to the error and its con-

tribution ratio, that is,
 

∆Pi(t) =

P∗− N∑
i=1

Pi(t)

 P∗i∑N
i=1 P∗i

.

The new setpoint will be
 

P∗i,new(t) = P∗i +KP∆Pi(t)+KI

w
∆Pi(τ)dτ+KD

d∆Pi(t)
dt

KP KI KD

(P∗i (t)−Pi(t))

where ,  and  are  respectively  the  proportional,  inte-
gral  and  derivative  gains.  Another  power  setpoint  tracking
method  called  setpoint  modulation  is  proposed  in  [104].  The
power tracking error of ith DER  is used for the
new setpoint.  Under  the  assumption that  each DER is  stable,
the setpoint modulation approach ensures accurate tracking of
the  setpoint.  Note  that  in  the  design  of  controller  for  power
setpoint tracking [47], [102], [104], the dynamics of the VPP
is not considered and the transients are not investigated.  

B.  Frequency Control
Frequency response of a power system pertains to the abil-

ity to balance the generation and the load to maintain system
frequency within acceptable limits (around 60 Hertz in North
America).  Conventionally,  frequency  response  is  separated
into  four  categories:  inertial  response,  primary  control,  sec-
ondary control  and tertiary control  that  operate  over  multiple
time  scales. Fig. 3 illustrates  the  frequency  response  follow-
ing  a  contingency  event  that  causes  a  frequency  deviation.
Once  the  contingency  occurs,  the  energy  stored  in  rotating
masses  of  all  SGs  is  immediately  extracted  as  the  inertial
response  to  reduce  the  declining  in  frequency.  The  lowest
point  of  frequency  is  referred  to  as  the  frequency  nadir.  The
governor  response  serves  as  the  primary  control  that  occurs
within  the  first  few  seconds  and  aims  at  arresting  the  fre-
quency  decline  by  increasing  the  active  power  output.  The
automatic  generation  control  serves  as  the  secondary  control
that  occurs  within  tens  of  seconds  to  minutes,  restoring  the
frequency back to the nominal value by adjusting the operat-
ing  set-point  of  the  governors.  The  tertiary  control  involves
the reserve deployment, which typically operates within min-
utes  to  hours  and  supports  the  system operator  in  optimizing
resources and managing larger disturbances or fluctuations.

 

TABLE III 

Literature on VPP Control

References DER types Functionality Scheme Method

[47], [102] General DER model Power setpoint tracking Centralized PID

[104] General DER model Power setpoint tracking Centralized Setpoint modulation

[105] WT, PV, ESS Primary frequency control Centralized PID

[106] WT, PV, ESS Primary frequency control Centralized PID

[107] EV Primary frequency control Centralized Droop control

[108] EV, CT, CHP Secondary frequency control Centralized Model predictive control

[109] General DER model Frequency control Centralized Deep RL

[110] WT, hydro Fast frequency control Centralized Model-matching

[111] WT Fast frequency control Decentralized Model matching

[112] WT, PV, ESS Fast frequency control; fast voltage control Decentralized Multivariable control

[113] WT PV, ESS Fast frequency control; fast voltage control Decentralized Multivariable control
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Reference  [105]  studies  a  VPP  containing  ESSs,  WTs  and
PVs  and  the  influence  of  ESS  primary  frequency  control  on
the  transient  performance  of  power  systems.  For  basic  fre-
quency control, the frequency deviation is adopted as the mea-
surement of the feedback control of ESSs, WTs and PVs. For
coordinated control of ESSs and other DERs, a signal propor-
tional to the mismatch between the setpoint and the actual out-
put  of  the  VPP  is  integrated  into  the  local  control  of  ESS.
Coordinated  control  achieves  better  dynamic  responses.  Ref-
erence  [106]  extends  the  coordinated  control  of  [105]  to  all
DERs. Reference [107] studies a VPP comprising EVs for the
primary  frequency  response  and  demonstrates  enhanced  pri-
mary  frequency  response  through  the  involvement  of  EVs.
The  frequency  model  of  EV is  described  by  a  first-order  lag
transfer  function and the setpoint  of  EV is  adjusted based on
the  frequency  deviation .  Reference  [108]  formulates  the
secondary  frequency  control  problem  as  an  optimal  control
problem  and  solves  it  by  using  model  predictive  control.  In
[109],  the  dynamics  of  DER is  modeled  by  a  first-order  sys-
tem with input delay. Motivated by the fact that exact models
of DERs are hard to obtain, the regulation problem is formu-
lated as an MDP and solved via Deep RL. In the MDP formu-
lation,  the  state  contains  the  power  tracking  error,  the  actual
power  output,  the  residual  energy  and  the  bounds  of  regula-
tion  command,  the  action  corresponds  to  the  adjustment  of
regulation command, and the reward reflects the tracking error
and profit.

To address the decreasing in inertial response for low-iner-
tia systems with high RoCoF, a fast-acting response to chang-
ing frequency,  fast  frequency response  (FFR),  is  proposed to
enhance  the  grid  resilience.  FFR pertains  to  the  capability  of
certain  resources  to  increase  the  energy  supply  at  a  much
faster  pace  than  the  conventional  mechanical-based  primary
control. References [110]–[113] focus on the DVPP design for
FFR. Reference [34] describes the goal of DVPP as the coor-
dination of individual devices at the transmission grid level to
collectively meet the system operator’s criteria, while consid-
ering  the  individual  limitations  of  the  devices  involved.
DVPPs emphasizes  the  dynamic  ancillary  services,  including
fast frequency and fast voltage control. As a key enabling con-
cept  for  DVPPs,  heterogeneity  of  the  DERs  plays  a  crucial
role.  Heterogeneous  DERs  are  able  to  provide  aggregated
response beyond the capabilities of any individual DER alone
[114].  Reference  [110]  introduces  a  model-matching  method

FFCR(s)

to  design  a  variable-speed  feedback  controller  for  WTs  such
that  WTs  satisfy  a  desired  frequency  response.  Reference
[111]  proposes  a  decentralized  control  scheme  utilizing
dynamic participation factors. The desired frequency response
is  transformed  to  a  Bode  diagram  of  a  desired  function

. The controller for the ith DER is designed as
 

Ki(s) = ci(s)FFCR/Hi(s)
ci(s) Hi(s)∑

i ci(s) = 1,∀s ∈ C∑
i Ki(s)Hi(s)

where  is  the  dynamic  participation  factor,  is  the
model  of  the ith  DER  and .  Each  DER  is
able to adjust the participation ratio for FFR. FFR is achieved
by matching the aggregated loop-gain  of all par-
ticipating DERs.  

C.  Voltage Control
Analogous  to  frequency  control,  voltage  control  includes

primary, secondary and tertiary voltage control. Primary con-
trol  refers  to  automatic  voltage  regulators  of  individual
devices such as generators, synchronous condensers, static var
compensators.  These  controls  rely  on  local  information  and
measurements  to  act  within  few seconds.  Given  that  primary
control only relies on local data, the role of secondary control
is to enhance voltage stability at the transmission level by uti-
lizing  the  reactive  power  capabilities  of  the  main  generators
within the region. This is achieved by adjusting their terminal
voltage  setpoints  over  a  span  of  minutes.  Tertiary  control
commonly leverages an optimal power-flow program and acts
either on a 15-minute basis or in response to triggering events
[115].

References [112] and [113] incorporate fast voltage control
with  fast  frequency  control  design  of  a  dynamic  VPP  via  a
decentralized  multivarible  control  method.  A  desired  multi-
input  multi-output  specification  of  the  DVPP is  defined  by  a
target  transfer  matrix  linking frequency and voltage to  active
and  reactive  power.  This  multi-input  multi-output  specifica-
tion is then disaggregated within the DERs by adopting adap-
tive dynamic participation matrices.  

V.  Challenges and Opportunities
  

A.  Challenges
Most existing results on VPP operation are within a central-

ized framework, where the information of all DERs is sent to
the central hub of a VPP for information processing and deci-
sion making.  However,  the centralized VPP operation frame-
work faces significant challenges.

First, there is no scalable model for the dynamic response of
a  VPP.  A VPP is  composed  of  several  heterogeneous  DERs,
each possessing its own capacity and dynamics. Traditionally,
a  VPP  acts  as  the  representative  for  DERs,  providing  the
information  of  individual  DERs  such  as  costs  and  dynamics
parameters  to  the  system operator.  The increasing number  of
DERs  adds  complexity  to  the  integration  and  dispatch  of
DERs.  From the  perspective  of  the  system operator,  it  is  not
viable to model each DER. Understanding the capabilities for
frequency and voltage support, as well as transient response at
the  PCC,  is  necessary.  Although  the  aggregation  models  for
DERs  within  a  VPP  have  attracted  research  interest  in  the
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Fig. 3.     Frequency response following a contingency.
 

 336 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 2, FEBRUARY 2024



energy  market  and  system  operation  in  steady-state  mode
[116]–[120], few results aim at finding the equivalent models
of the dynamic responses of DERs [121]–[124]. However, all
these aggregated models [121]–[124] are formed in a central-
ized way which may not reflect the real-time change of local
DERs  and  may  be  unable  to  meet  the  scalability  need  of  a
VPP.  Second,  as  the  VPP  market  attracts  more  aggregators,
the need for cooperative and competitive performance-guaran-
teed VPP operation has arisen. Currently, no results are avail-
able  on  VPP  operation  with  performance  guarantees.  Third,
the  cyber-physical  nature  of  VPPs  poses  great  challenges  to
the resilience of VPP operation. The communication network
may  not  be  reliable  due  to  time  delay,  attacks  and  failures.
Reference  [105]  shows  that  VPP  control  cannot  tolerate  a
large time delay (> 100 ms) in low-bandwidth (< 5 Mbps) net-
works. Thus, research gaps exist in VPP opeation with scala-
bility, performance and resilience guarantees.  

B.  MAS-Based Distributed VPP
A distributed framework for VPP operation using the multi-

agent  system  (MAS)-based  strategy  is  promising  to  address
those challenges, as shown in Fig. 4. When contingency hap-
pens,  the  system  operator  will  estimate  the  initial  power
imbalance and send it to the VPP center. DERs within a VPP
are  connected  via  physical  links  as  well  as  cyber  links.  The
physical network may differ from the cyber network. A tradi-
tional centralized VPP requires all  DERs to send information
such  as  voltage,  frequency,  and  power  to  the  control  center.
The  control  center  then  performs  centralized  computing  and
broadcasts signals to all DERs. However, the centralized VPP
is  inefficient  for  VPPs with  hundreds  of  thousands  of  DERs.
Instead, in a fully distributed VPP framework, only a subset of
DERs  exchange  information  with  the  VPP  center  and  other
DERs  only  exchange  information  with  neighboring  DERs.
Such a distributed framework for VPP operation with scalabil-
ity and extendibility is modeled as an MAS.
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Fig. 4.     A distributed VPP operation framework.
 

An MAS is composed of multiple intelligent agents operat-
ing  in  an  environment  to  address  challenges  that  are  beyond
the  individual  agents’ capabilities.  With  the  increase  of  the

quantity and the complexity of components and the amount of
data  produced  in  an  MAS,  the  distributed  scheme  is  more
desirable than the centralized scheme. In a distributed frame-
work  of  MASs,  agents  only  utilize  the  local  information
obtained  through  the  underlying  communication  network  to
complete  global  tasks.  Various  distributed  algorithms  have
been introduced for MASs to achieve diverse objectives such
as consensus [15], flocking [125], coverage control [126], for-
mation  control  [127],  optimization  [128],  [129]  and  learning
[130].

Distributed  optimization  and  control  methods  have  been
studied  and  applied  to  various  problems  in  power  systems.
Reference [131] provides an overview of the existing research
on distributed algorithms applied to the optimization and con-
trol of power systems. Reference [132] discusses the artificial
intelligent  applications in microgrid energy management sys-
tems  and  introduces  future  work  areas  of  applying  artificial
intelligent techniques to VPPs. Reference [133] discusses the
online optimization methods in power systems. However, only
a  few  results  are  available  on  distributed  VPP  operation,  as
summarized in Table IV.

For distributed VPP scheduling, the economic dispatch and
voltage  regulation  problems  in  a  direct-current  distribution
system are formulated as a multi-objective optimization prob-
lem  [134].  A  distributed  primal-dual  subgradient  method  is
proposed  to  solve  this  multi-objective  optimization  problem
and  determine  the  current  injection.  Each  DER  obtains  the
global information in a distributed way via forward and back-
ward  communication.  A  double-consensus  based  distributed
optimization  method  is  introduced  in  [135]  to  deal  with  the
VPP scheduling problem. The global variables (the multiplier
and  the  power  mismatch)  are  determined  locally  and  shared
among their neighbors using consensus algorithms. Reference
[136] studies distributed dispatch of DERs for frequency sup-
ports via active power sharing and voltage regulation. Because
of  the  high  resistance/reactance  ratio  of  lines  in  distribution
networks, changes in active power of DERs can also give rise
to  voltage  concerns.  Two  optimization  problems  are  solved,
where one aims at minimizing supplying active power and the
other aims at minimizing the overall voltage mismatch and the
cost associated with the reactive power support. In [137], volt-
age  control  is  achieved  through  the  manipulation  of  reactive
power supplied by distributed VPPs within a subtransmission
network.  Individual  load  buses  independently  monitor  their
bus  voltages.  Should  a  voltage  violation  identified,  all  VPPs
are  simultaneously  activated  to  provide  the  required  reactive
power  assistance.  Suppose  that  each  bus  has  a  VPP  and  the
reactive  power  change  for  each  VPP  is  equal.  Distributed
algorithm is proposed to calculate each bus sensitivity. Then,
an  average  consensus  mechanism  is  employed  to  determine
the  reactive  power  adjustment  required  for  each  VPP,  based
on the calculated sensitivities. Reference [35] proposes a fully
distributed  control  solution  for  active  distribution  networks
consists  of  several  VPPs  with  the  aim  of  network  loss  mini-
mization  and  voltage  profile  optimization.  The  fully  dis-
tributed method relies on a consensus-based alternating direc-
tion method of multipliers, where global variables are updated
locally via consensus.
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For distributed VPP control, [138] proposed distributed con-
trol  algorithms  for  DGs  in  a  VPP  based  on  the  consensus
mechnisim such that the total power outputs of DGs tracks the
desired power while minimizing the cost. The dynamics of the
DG is a first-order stable linear time-invariant system. Refer-
ence [139] designs a dynamic distributed clustering algorithm
to cluster batteries into different VPPs based on their  capaci-
ties  and  demands.  Then,  SoC  balancing  is  applied  within
VPPs.  Such  a  dynamical  VPP  is  better  than  fixed  VPPs  in
terms  of  power  loss  and  battery  life.  A  similar  method  is
adopted in [140] to form heterogeneous VPPs based on power
requirements.

The  distributed  clustering  of  batteries  in  [139]  and  [140]
belongs to distributed VPP formation. The goal of VPP forma-
tion  is  to  form a  VPP  considering  its  sitting  and  sizing  (see,
for  example,  [141]–[143]  for  centralized  VPP  formations).
More  specifically,  distributed  VPP  formation  involves  deter-
mining the suitable size of  a  VPP and the optimal  placement
of DERs for operation in a distributed manner.  

C.  Opportunities
The study on distributed VPP operation is still in its infancy.

Few results  are available on distributed VPP control  and dis-
tributed  VPP formation.  Theories  of  distributed  optimal  con-
trol,  differential  graphical  game,  resilient  control,  delay-miti-
gation  control  and  multi-agent  reinforcement  learning
(MARL)  all  offer  opportunities  to  promote  scalable,  optimal
and resilient VPP operation.

Distributed  operations  of  VPPs  rely  on  the  consensus
method [35], [135]–[140]. However, consensus does not nec-
essarily  impose  optimality.  For  a  cooperative  MAS  where
agents  have  a  common  interest,  distributed  optimal  control
theory  is  proposed  to  solve  optimal  decision-making  prob-
lems [16]. On the other hand, differential graphical game the-
ory provides  solutions  for  agents  that  have conflicts  of  inter-
est  among  themselves,  for  example,  when  individual  agents
aim  to  optimize  their  own  performance  indices  [17].  Perfor-
mance-guaranteed  distributed  operation  of  VPPs  still  need
investigation.

Although  the  lack  of  central  coordination  brings  about
robustness  against  single-point  failures,  the  high  dependence
on  local  coordination  may  render  an  MAS  vulnerable  to
attacks and failures in the cyber and physical layers including

Byzantine  agents,  denial-of-service,  actuator  faults,  sensor
noises  and  communication  delays.  The  challenge  lies  in  the
design of resilient algorithms to identify attacks, suppress the
impact and then prevent attacks.  Mean-subsequence reduced-
type algorithms have been developed to improve the resilience
of MASs to withstand adversarial  attacks [18].  Delay-mitiga-
tion  control  methods  such  as  low  gain  feedback  [144]  have
been validated to be effective in dealing with MASs subject to
time  delay  [145].  A  distributed  Cauchy-kernel-based  maxi-
mum  correntropy  filter  is  designed  for  state  estimation  of
large-scale  systems suffering  from hybrid  attack  model  com-
posed of denial-of-service attacks and deception attacks [146].
Distributed  proportional-integral-observer-based  control  is
proposed  to  achieve  vehicle  platooning  in  the  presence  of
replay  attacks  [147].  Distributed  VPP  operation  with  resili-
ence assurance should be considered.

The  growing  complexity,  heterogeneity,  uncertainty  and
volatility  of  components  in  a  VPP  pose  new  challenges  to
model-based control and operation methods. RL-based mech-
anisms are promising to mitigate the shortcomings of model-
based  methods  [148].  However,  most  RL-based  methods  are
in a centralized scheme. The multi-agent reinforcement learn-
ing  (MARL)  framework  provides  a  distributed  scheme.
MARL endows  agents  with  the  intelligence  of  learning  opti-
mal  behaviors  by  interacting  with  an  unknown  and  complex
environment.  MARL  refers  to  both  theoretical  developments
and solution methods. Research on MARL theory focuses on
developing scalable, robust, efficient and safe algorithms with
theoretical guarantees. On the other hand, the implementation
of MARL focuses on formulating problems that can be solved
using  off-the-shelf  MARL  methods.  Research  on  MARL  for
VPPs  is  still  in  an  early  stage  because  of  two  reasons.  First,
MARL  theory  has  many  unsolved  problems  and  most  exist-
ing  results  on  MARL  lack  theoretical  guarantees.  Second,
MARL  has  not  been  well-customized  for  VPP  applications.
The formulation of control and operation problems in VPPs in
a MARL setting still needs investigation.

The  design  of  MARL  methods  for  VPPs  should  take
resilience  and  efficiency  into  consideration.  Reference  [149]
reveals  the  vulnerability  of  consensus-based  MARL  algo-
rithms  to  adversary  attacks.  To  mitigate  the  influence  of
adversary attacks,  a resilient  distributed Q-learning algorithm
is proposed. Then, an event-triggered communication strategy

 

TABLE IV 

Literature on Distributed VPP Operation

References DER types Operation Functionality Method

[134] Genearl DER model Scheduling Cost minimization and voltage support Primal-dual subgradient

[135] DG, ESS, CT Scheduling Profit maximization Consensus

[136] General DER model Scheduling Frequency and voltage support Consensus

[137] General DER model Scheduling Voltage support Consensus

[35] PV Scheduling Voltage support Consensus

[138] General DER model Control Cost Minimization; active power tracking Consensus

[139] ESS Control Voltage control and SoC balancing Consensus

[141] PV, ESS Control Voltage control and SoC balancing Consensus
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is combined with resilient distributed Q-learning to guarantee
the  resilience  and  communication  efficiency  of  MARL  [21].
However,  research  is  needed  to  investigate  efficient  and
resilient MARL algorithms for VPP operations. A well-devel-
oped MARL theory tailored for VPP operation has the poten-
tial  to  overcome  the  limitations  of  model-based  methods  in
dealing with model inaccuracy and uncertainties, while ensur-
ing scalability, performance, and resilience.  

VI.  Conclusions

VPPs are developing at a fast pace to meet the grid transfor-
mation  requirements  and  to  cope  with  climate  change  chal-
lenges.  This  paper  reviews  the  concept,  development  and
global  markets  of  VPPs.  With  the  increasing  penetration  of
DERs  and  the  advances  in  ICTs,  the  concept  of  VPPs  has
emerged to coordinate DERs in a more flexible and manage-
able way.

Global developments of VPPs, along with practical projects,
drive research efforts towards achieving optimal, reliable and
efficient VPP operation. These research efforts in VPP opera-
tion  are  categorized  into  VPP  scheduling  and  VPP  control.
The  former  focuses  on  steady-state  operation  and  manage-
ment for power markets in hourly and daily timescales, while
the  latter  focuses  on  the  dynamic  nature  and  transients  in  a
faster timescale.

It is observed that the majority of efforts on VPP operation
have  fallen  into  a  centralized  framework.  This  paper  identi-
fies several challenges faced in the centralized VPP operation.
In  particular,  there  is  a  lack  of  scalable  modeling  for  VPP
operation,  and  the  centralized  framework  lacks  scalability,
performance and resilience guarantees.

Prompted  by  this  observation,  we  discusses  the  opportuni-
ties  for  enhancing  the  scalability,  performance  and  resilience
of VPP operation by integrating MAS-based strategies such as
distributed  optimal  control,  differential  graphical  game,
resilient control, delay-mitigation control and MARL.
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