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   Abstract—Although  many  multi-view  clustering  (MVC)  algo-
rithms with acceptable performances have been presented, to the
best of our knowledge, nearly all of them need to be fed with the
correct number of clusters. In addition, these existing algorithms
create  only  the  hard and fuzzy  partitions  for  multi-view objects,
which are often located in highly-overlapping areas of multi-view
feature  space.  The  adoption  of  hard  and  fuzzy  partition  ignores
the ambiguity and uncertainty in the assignment of objects, likely
leading to  performance degradation.  To address  these  issues,  we
propose  a  novel  sparse  reconstructive  multi-view evidential  clus-
tering  algorithm  (SRMVEC).  Based  on  a  sparse  reconstructive
procedure,  SRMVEC  learns  a  shared  affinity  matrix  across
views,  and  maps  multi-view  objects  to  a  2-dimensional  human-
readable chart by calculating 2 newly defined mathematical met-
rics for each object. From this chart, users can detect the number
of  clusters  and  select  several  objects  existing  in  the  dataset  as
cluster centers. Then, SRMVEC derives a credal partition under
the framework of  evidence theory,  improving the fault  tolerance
of  clustering.  Ablation  studies  show  the  benefits  of  adopting  the
sparse  reconstructive  procedure  and  evidence  theory.  Besides,
SRMVEC  delivers  effectiveness  on  benchmark  datasets  by  out-
performing some state-of-the-art methods.
    Index Terms—Evidence theory,  multi-view clustering (MVC),  opti-
mization, sparse reconstruction.
  

I.  Introduction

MULTI-view  clustering  (MVC)  aims  to  categorize n
multi-view objects into several clusters so that objects in

the  same  cluster  are  more  similar  than  those  from  different
ones [1], [2]. Objects are described by several views of data in
an  MVC  problem,  e.g.,  documents  originally  written  in
English as one view and their translations to French, German,
Spanish  and  Italian  as  4  other  views,  and  MVC  algorithms
often provide improved performance compared to single-view
clustering algorithms [3],  [4].  Therefore,  MVC has been suc-
cessfully  applied  to  various  applications  including  computer
vision [5], [6], social multimedia [7] and so on. Based on dif-
ferent philosophies, many MVC methods have been proposed
and can be classified into several categories [4], such as gen-
erative  methods  [8],  [9],  subspace-clustering-based  methods

[10],  deep-learning-based  methods  (e.g.,  a  novel  deep  sparse
regularizer learning model that learns data-driven sparse regu-
larizers  is  proposed in  [11]  to  cluster  multi-view data),  spec-
tral-clustering-based  methods  [12],  [13],  the  graph-learning-
based  methods  [14],  [15]  and  so  on.  Broadly  speaking,  the
above methods are concerned with solving the MVC problem
in a  way that  improves  either  efficiency or  clustering perfor-
mance, assuming that the correct number of clusters is known.

Motivations: However, estimating  the  number  of  clusters
for an MVC problem could be substantially more challenging
and urgent than grouping the objects [21]. Many state-of-the-
art  MVC  algorithms  suffer  from  performance  degradation
without setting the correct cluster number, which can be illus-
trated quantitatively through the following example. We run 5
MVC algorithms on the widely used YALE three-view dataset
[22] consisting of 15 clusters. The results in terms of normal-
ized  mutual  information  (NMI)  [23]  are  shown  in Fig. 1.  As
can be seen,  all  the counted algorithms have lower NMI val-
ues  when  they  are  not  fed  with  the  correct  cluster  number,
compared  to  the  results  shown  in  the  dotted  circle.  To  date,
there are several  techniques based on specific criteria to esti-
mate the number of clusters,  such as KL statistic [24], elbow
[25],  and gap statistics  [26].  Nevertheless,  these  used criteria
are served for single-view data. Extending these techniques to
MVC problems is not feasible, although multiple views can be
concatenated  into  a  single  high-dimensional  vector.  The  first
reason is  that  such concatenation  results  in  very  high-dimen-
sional feature vectors. Without an appropriate metric learning
process, the calculation of distance between these high-dimen-
sional vectors is definitely affected by the curse of dimension-
ality [27],  significantly  reducing  the  effectiveness  of  cluster
number  estimation.  Another  reason  is  that  the  estimation
result  may  be  biased  toward  a  view  (or  views)  that  yields  a
dominantly large number of features.

Moreover,  each  cluster  has  one  most  representative  object
(known as the cluster center), as discussed in [28]. These clus-
ter centers provide a variety of useful information in addition
to  directly  guiding  the  clustering  process.  For  instance,  the
power  supply  strategy  for  clients  within  the  same  cluster  is
frequently  designed  based  on  the  consumption  habits  of  one
typical customer (cluster center) in the electrical consumption
clustering analysis [29]. In this case, an overall solution to the
issues  affecting  all  objects  in  the  same cluster  may  be  found
through  the  analysis  of  a  cluster  center  [30].  Hence,  the  sec-
ond motivation to  identify  the  cluster  center  in  each cluster
of multi-view data is prompted. Besides, the hard/fuzzy parti-
tion  that  conventional  MVC  algorithms  generate  is  not  fine
enough,  especially  for  multi-view objects  in  heavily  overlap-
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ping regions. To enhance fault tolerance and clustering perfor-
mance, it is also a motivation to use a more fine-grained par-
tition to cluster multi-view data.

Technical  Issues: As shown in [17],  the common technical
challenge in MVC is to learn the affinity matrix, which is usu-
ally learned through the self-expression procedure [31], i.e.,
 

min
W(s)

p∑
s=1

∥X(s)−X(s)W(s)∥2F

+α

p∑
s=1

∥W(s)∥1+β
∑
t,s

∥W(s)−W(t)∥1 (1)

diag(W(s)) = 0, ∀s ∈ {1, . . . , p}
X(s) ∈ RDs×n

Ds

W(s) ∈ Rn×n

W(s)

W∗

W∗ W(s)

under the constraints , where p is
the  number  of  views,  is  the  data  matrix  of sth
view, n is the number of objects,  is the number of dimen-
sions of sth  view, α and β are  two regularization parameters,
and  is  the  affinity  matrix  of sth  view  to  be
learned.  After  learning  the  affinity  matrix  for  all  views,
the  affinity  matrix  of  the  entire  multi-view data  is  calcu-
lated  as  the  element-wise  average  [17],  [32].  The  similarity
between  intra-view  dimensions  can  not  be  held  consistent
before  and  after  self-expression,  because  these  self-expres-
sion  techniques  only  concentrate  on  maintaining  comparable
objects  with  similar  self-expression  outcomes  and  disregard
relevant  information  between  various  dimensions.  Besides,
calculating  as the element-wise average of all  is too
arbitrary  to  allow  all  views  to  share  a  consistent  affinity
matrix.  Thus,  the  first  technological  challenge is how to  cre-
ate  a  new  self-expression  objective  function  that  can  pre-
serve  the  relationships  between  intra-view  dimensions  and
allow  the  inter-view  data  to  share  the  same  affinity  matrix.
The second technical challenge is how to theoretically design
a  mapping  that  visualizes  the  properties  of  each  multi-view
object in order to discover the cluster centers after learning
the affinity matrix.

The credal partition is a novel way of partition proposed by
authors  of  [33],  [34],  where  the  memberships  of  objects  in
clusters  are  defined  using  mass  functions  [35]  in  the  frame-
work  of  evidence  theory  [36].  Its  formalization  allows  for  a
detailed description of the ambiguity and uncertainty in clus-
tering  membership,  making  the  credal  partition  particularly
appropriate for grouping those multi-view objects in overlap-
ping regions. Nevertheless, as almost all  of the current meth-

ods are created for single-view data, there is still a significant
gap  between  credal  partition  methods  and  MVC  [28].  The
third technical challenge is now brought up, i.e., how to struc-
ture the learning of a credal partition that can be nested with
the affinity matrix acquired from the multi-view self-expres-
sion.

Contribution: According  to  the  above  discussion,  a  novel
MVC algorithm, named sparse reconstructive multi-view evi-
dential  clustering  (SRMVEC),  is  proposed  to  simultaneously
solve the 3 problems rarely addressed in other MVC research,
namely, estimating the cluster number, identifying the cluster
centers  and  deriving  the  fine-grained  credal  partition.  The
contributions of this paper are three-fold:

1) Differently from problem (1), we formulate a new objec-
tive function associated with the related information between
intra-view  dimensions,  the  view  weights  and  the  reconstruc-
tion error, enabling multiple views to learn a consistent affin-
ity matrix directly;

2)  Based  on  the  learned  affinity  matrix,  the  multi-view
objects are mapped to a 2-dimensional chart  that  can be read
by humans using two mathematical metrics that we define for
each  multi-view  object.  Users  can  easily  obtain  the  cluster
numbers from this chart and recognize the objects that can be
chosen as the cluster centers;

3)  The derivation of  a  credal  partition is  reformulated with
the  help  of  the  discovered  cluster  centers  as  an  optimization
problem  integrated  with  the  learned  affinity  matrix,  com-
pletely  reflecting  the  (dis)similarity  between  any  two  objects
and enhancing SRMVEC performance.  

II.  Related Work

Multi-View Clustering: Almost all the existing MVC algo-
rithms are designed to improve clustering performance or
efficiency after prespecifying the cluster number. Existing
MVC algorithms can be  generally  divided into  the  following
families [4]. The first one is generative algorithms to learn the
generative  models  generating  the  data  from  clusters,  such  as
the  multi-view  CMM  [37]  and  its  weighted  version  [9].
Another  research  line  called  discriminative  algorithms  pro-
poses to optimize the objective function to seek the clustering
result  directly.  As  shown  in  a  recent  survey  [4],  most  of  the
MVC  algorithms  are  discriminative.  They  can  be  further
divided into several groups, including the subspace-clustering-
based methods (e.g., PGSC [10] and CDMSC2 [38]), the spec-
tral-clustering-based  methods  (e.g.,  SMSC  [12],  SMSCNN
[13]  and  CGL  [39]),  the  NMF-based  methods  (e.g.,  MCLES
[40]),  the  kernel-clustering-based  methods  (e.g.,  MKCSS
[41]) and so on. Recently, more researchers increase attention
to  using  deep  learning  (e.g.,  a  differentiable  network-based
method named differentiable  bi-sparse  multi-view co-cluster-
ing  [42]  and  a  novel  differentiable  bi-level  optimization  net-
work for  multi-view clustering  [43])  or  graph learning meth-
ods  (e.g.,  clustering multi-view data  based on the  contrastive
consensus  graph  learned  by  a  convolutional  network  [1])  in
the  MVC  problem,  and  improving  the  scalability  and  effi-
ciency of MVC algorithms, such as OPLFMVC [44].

Estimating  the  Cluster  Number: The  single-view  cluster-
ing problem is the main focus of almost all estimation tech-
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Fig. 1.     Average  NMI  values  of  five  MVC  algorithms  with  different  num-
bers of clusters. The considered algorithms including AE2Net [16], MLRSSC
[17], MvWECM [18], SDMVC [19] and DeepNMF [20] are run 5 times.
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niques. The  literature  has  a  wide  variety  of  estimating  tech-
niques  (see,  for  instance,  [45],  [46]).  These  techniques  have
the same fundamental idea. They first establish a basic cluster-
ing method and a clustering criterion, continue experimenting
with  various  cluster  numbers,  and  then  choose  the  cluster
number u that best matches the ideal clustering criterion of the
target  dataset.  The  GAP  statistic  [26],  KL  statistic  [24],
DUNN metric [47], etc., are some of the often utilized criteria.
However,  the criteria  that  are employed are often established
using a metric between single-view objects.

Multi-View  Learning  Methods  Based  on  Evidence  Theory:
To the best of our knowledge, there are few evidence-the-
ory-based methods on multi-view data focusing on finding
the cluster  number in the MVC problem. Evidence theory
has been used in multi-view learning scenarios to improve the
performance  of  algorithms [48].  The  author  of  [49]  proposes
to  use  evidence  theory  to  classify  the  multi-view  medical
images  and  manage  the  partial  volume  effect.  In  [50],  an
architecture  based  on  a  generalized  evidence  processing  for
data  fusion  is  presented.  To  fuse  multi-view  information,  an
architecture based on a weighted fuzzy evidence theory is pro-
posed to assign evidence obtained from various classification
methods [51].  Differently from the above methods using evi-
dence  theory  to  combine  information,  recent  papers  focus
more on formulating uncertainty in the learning process. In the
problem  of  classifying  multi-view  samples,  authors  of  [52]
use evidence theory to model the uncertainty of the Dirichlet
distribution  obtained  from  a  certain  view,  aiming  to  flexibly
integrate  multiple  Dirichlet  distributions.  In  the  classification
process, the mass values correspond to the probabilities of dif-
ferent  classes  and  the  overall  uncertainty  is  also  modeled.
Dempster’s rule [36] is used to combine the information from
each  view  to  boost  the  classification  performance.  In  [53],
researchers  tackle  the  cross-modal  retrieval  problem  by
assigning a belief mass [36], [54] to each query and an over-
all  uncertainty  mass  based  on  the  collected  cross-modal.  In
[18],  the  authors  propose  an  evidential  c-means  multi-view
algorithm but ignore the detection of cluster number.  

III.  Preliminaries

Ω = {ω1,
ω2, . . . ,ωu}

2Ω∑
A⊆ΩmΩ(A) = 1 2Ω

A mΩ(A) > 0
mΩ(A)
A

A
mΩ(Ω) = 1

Evidence  Theory: Let  us  consider  a  variable ω taking  val-
ues  in  a  finite  set  called  the frame  of  discernment 

.  A  mass  function m (also  called  a  piece  of  evi-
dence)  is  defined  as  a  mapping  from  to  [0,  1]  such  that

,  where  is  the  power  set  of  Ω.  The  sub-
sets  satisfying  are  called  the focal  sets of m.
The  value  of  represents  a  share  of  a  unit  mass  allo-
cated  to  focal  set ,  and  which  cannot  be  allocated  to  any
strict  subset  of .  In  particular,  the  vacuous  mass  function
such that  corresponds to  total  ignorance about  the
value  of ω.  In  this  case,  the  Ω  in  the  brackets  is  a  focal  set
called ignorance focal set.

mΩAnother  equivalent  representation  of  a  given ,  named
plausibility function, is defined as
 

PlΩ(A) =
∑
A∩B,∅

mΩ(B) (2)

A⊆Ω Bfor  all ,  where  also  denotes  the  focal  sets.  Assume

mΩ1 mΩ2

⊕

that  there  are  two  mass  functions  and  on  the  same
frame of discernment Ω. Dempster’s rule [36], [55] (noted as

) is defined as
 

mΩ1⊕2(A) =
∑
B∩C=AmΩ1 (B)mΩ2 (C)

1−KΩ12

, A⊆Ω A , ∅ (3)

mΩ1⊕2(∅) = 0 mΩ1
mΩ2

and  to  combine  the  information  provided  by 
and , where
 

KΩ12 =
∑
B∩C=∅

mΩ1 (B)mΩ2 (C) (4)

mΩ1 mΩ2 Cis  the  degree  of conflict between  and ,  and  is  other
focal sets.

{x1,x2, . . . ,xn}
xi, i = 1,2, . . . ,n,
{x(1)

i ,x
(2)
i , . . . ,x

(p)
i } x(s)

i = (x(s)
i,1 , x

(s)
i,2 , . . . , x

(s)
i,Ds

) ∈ RDs×1,

s = 1,2, . . . , p, Ds

Ω = {ω1,ω2, . . . ,ωu} xi

mΩi
xi A

mΩi (A) MΩ = (mΩ1 ,m
Ω
2 , . . . ,m

Ω
n )

Credal  Partition: Consider  a  multi-view  dataset  consisting
of n objects  described by p views. Each object

 is  denoted  as  a  set  of  feature  vectors
,  where 

 is  a -dimensional  vector.  The  set  of u clus-
ters is denoted as the . When  can not be
assigned  to  the  clusters  with  certainty,  one  can  represent
ambiguous and uncertain cluster memberships by a mass func-
tion .  The  degree  of  support  for  the  proposition  that “the
true  cluster  of  object  is  in ” is  interpreted  as  the  mass
value . The n-tuple  is known as
a credal partition [33], which enables objects to be in a com-
posite cluster (defined as the union of several single clusters)

 

TABLE I 

Notation Table

Symbols Meaning

Ω Frame of discernment denoting various clusters
ωr A focal set denoting one cluster

KΩ Conflict between mass functions

n Number of objects

p Number of views

u Number of clusters

Ds Number of dimensions in sth view

xi x(s)
i/ The ith object/vector in the sth view of the ith object

MΩ Credal partition

W Affinity matrix

b(s)
t The tth dimension in the sth view

as View weight of the sth view

α/β Regularization parameter

δ Power exponent hyperparameter

Θ Frame of discernment denoting whether an object is a cluster
center

X(s) Data matrix in the sth view

D Distance matrix used to derive a credal partition

SSRMVEC The tth dimension in the sth view

ρ1 ρ2/ Two coefficients used to linearly vary the magnitude

b(s)
t The tth dimension in the sth view
ve MΩThe eth Parameter to be learned in 
χe veStep-size w.r.t.  in the learning process
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in  addition  to  being  contained  in  a  single  cluster.  We  give  a
specific example of the credal partition to show the better fault
tolerance of the credal partition.

MΩ = (mΩ1 ,m
Ω
2 ,m

Ω
3 ,m

Ω
4 )

Ω = {ω1,ω2,ω3} x1
x4

x1

mΩ1 ({ω1,ω2,ω3}) = 1

x4 mΩ4 (∅) = 1

x3

ω3 mΩ3 ({ω2,ω3}) = 0.5 x3

{ω2,ω3}
{ω2,ω3}

The 4-tuple  in Table II is an exam-
ple  of  a  credal  partition,  where .  Objects 
and  correspond  to  two  different  situations  of  maximum
ambiguity.  The  object  has  a  full  mass  assigned  to  Ω,  i.e.,
the .  This  reflects  total  ambiguity  in  the
assignment of this object, which means that it might belong to
any  of  the  subsets  of  Ω.  For  object ,  it  has  the ,
indicating  that  this  object  does  not  belong  to  any  of  these  3
clusters  and  is  an  outlier.  We  can  also  find  that  likely
belongs  to .  means  that  has  50% of
the  belief  belonging  to  the  cluster ,  where  50% is
“uncertainty” and the  composite  describes  the  ambi-
guity of this piece of information. Using the plausibility-prob-
ability transformation defined as [36]
 

pΩi (ωr) =
PlΩi (ωr)∑u
l=1 PlΩi (ωl)

,r = 1,2, . . . ,u (5)

xi ωr pΩi (ωr)
(pΩi (ω1), pΩi (ω2), . . . , pΩi (ωu))

the  credal  partition  can  boil  down  to  a  hard  partition  by
assigning each  to the cluster  with the maximum .
The  obtained  of  all  the  objects
can be seen as a soft partition.
 

TABLE II 

Ω = {ω1,ω2,ω3}A Credal Partition on 

Focal sets mΩ1 mΩ2 mΩ3 mΩ4
∅ 0 0 0 1
{ω1} 0 0.2 0 0

{ω2} 0 0.3 0 0

{ω3} 0 0 0.5 0

{ω1,ω2} 0 0.1 0 0

{ω2,ω3} 0 0 0.5 0

{ω1,ω3} 0 0.4 0 0

Ω = {ω1,ω2,ω3} 1 0 0 0

 
 

x2 ω2

mΩ2 (ω2) = 0.3 > mΩ2 (ω1) = 0.2
mΩ2 ({ω1,ω2}) mΩ2 ({ω1,ω3})
PlΩ2 (ω1) = 0.2+0.1+0.4 = 0.7 > PlΩ2 (ω2) = 0.3+0.1 =

0.4 x2 ω1
{ω1,ω2} {ω1,ω3}

x2

Focusing on , it seems to be in cluster  if users assign it
based  on .  However,  consider-
ing the  = 0.1 and  = 0.4,  users can
obtain 

. Thus,  should actually belong to cluster . The consid-
eration  of  composite  clusters  and  allows
users to assign  properly, which reflects the better fault tol-
erance of credal partition.  

IV.  Method: SRMVEC

The SRMVEC algorithm consists of two parts: identify the
cluster  centers and create a credal  partition for the remaining
objects,  which  are  introduced  in  Sections  IV-A  and  IV-B,
respectively.  

A.  Identifying the Cluster Centers
Basic  Idea: We  must  first  determine  the “possibility” that

each object  is  a  cluster  center  before we can detect  the num-
ber and locations of “cluster centers”. Such a “possibility” of a
“cluster  center” should  be  high,  and  its “separation” from
other “cluster centers” should be as strong as it can be. In light
of  this,  we  can  choose  those  objects  as  the “cluster  centers”
that  have  a  high “possibility” and  large “separation”.  It  is
worth  noting  that  a “cluster  center” refers  to  the  most  repre-
sentative  object  in  a  cluster,  rather  than  the  object  spatially
located around the geometric centroid of the cluster.

Specific Procedure: To mathematically propose the two def-
initions  of “possibility” and “separation”,  the  affinity  matrix
of  multi-view  objects  should  be  learned  first.  Following  the
idea that  data from various views come from the same latent
space, we define the learning of affinity matrix W as
 

min
W,as
α∥W∥1+

p∑
s=1

(as)δ(∥X(s)−X(s)W∥2F

+
1
2
β

Ds∑
t=1

Ds∑
h=1

g(s)
th ∥b

(s)
t W−b(s)

h W∥22︸                                   ︷︷                                   ︸
Related information between dimensions

)

(6)∑p
s=1 as = 1,∀as ≥ 0 as

b(s)
t /b

(s)
h ∈ R

1×n = (x(s)
1,t , x

(s)
2,t , . . . , x

(s)
n,t )
′/(x(s)

1,h, x
(s)
2,h, . . . , x

(s)
n,h)′

g(s)
th = exp(

−∥b(s)
t −b(s)

h ∥
2
2

2 )

b(s)
t b(s)

h
g(s)

th
∥b(s)

t W−b(s)
h W∥2

L(W,as)
Ŵ = 1

2 (W∗+ (W∗)T), W∗ = argmin
W

L(W,as)

under  the  constraints ,  where  is  the
weight  of sth  view, δ is  the  power exponent  hyperparameter,

 is  the

tth/hth  dimension  in  the sth  view and .
In  contrast  to  the  objective  function  defined  in  problem  (1),
not  only  the  view weight  learning is  considered,  but  also  the
learned affinity matrix is shared across all the views. The term
marked  as  the “Related  information  between  dimensions”
means  that,  any  2  dimensions  (  and )  having  strong
similarity (large ) in sth view, still maintain the substantial
similarity  (small )  after  the  reconstruction
process.  Denote  the  objective  function  proposed  in  problem
(6) as . The symmetric affinity matrix is calculated as

 where .  The solu-
tion to problem (6) is shown in Section V-A.

xi x j ŵi j > 0, j , i
P(xi) x j ∈ P(xi)

xi xl, l , j ŵil = 0
x j

xi
Θ = {Y,¬Y}

xi

¬Y

For every , those objects  with  are included
into  a  set .  Each  can  be  seen  as  being  more
similar to  than other objects  with . Thus, each

 can  provide  a  piece  of  information  (evidence)  concerning
the  possibility  of  becoming  a  cluster  center.  To  formulate
this  evidence,  a  new  frame  of  discernment  is
defined  to  discern  whether  is  a  cluster  center  (Y)  or  not
( ),  which is  different  from the previous Ω referring to the
set  of  clusters.  Then,  each  piece  of  evidence  can  be  formal-
ized as the following mass function:
 

mΘi j(A) =

exp(−γ2
i ŵ−2

i j ), A = Y

1− exp(−γ2
i ŵ−2

i j ), A = Θ
(7)

γi =
1
|P(xi)|

∑
x j∈P(xi)(ŵ

−1
i j )

|P(xi)| P(xi)
where  is  an  object-specific  hyperpa-
rameter and  is the cardinality of .

exp(·)
Remark 1 (Some explanations  about  (7)): We use the non-

linear function  because it has been widely used in other
literature about evidence theory (e.g., [56], [57]), and satisfies
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0 < exp(a) ≤ 1,a ≤ 0 mΘi j(A) = exp(−γ2
i ŵ−2

i j ), A = Y
xi

x j ŵi j
xi x j

x j xi
A = Θ

A = ¬Y ŵi j

xi

.  Equation 
implies that the support degree of  becoming a cluster center
provided by  increases with the increase of . Namely, the
stronger  the  similarity  between  and ,  the  more  support
provided by  for  to be a cluster center. The reason for set-
ting  the  condition  in  the  2nd  formula  to  instead  of

 is  that,  those  objects  with  small  should  provide
useless  (ignorant)  evidence  rather  than “harmful” evidence
preventing  from being a cluster center.

|P(xi)| mΘi jBy  combining  all  the  mass  functions  using  (3),
we give the following definition.

xiDefinition 1: For each , its possibility (Pos) of becoming a
cluster center is defined as
 

Posi = mΘi (Y) (8)

mΘi = ⊕x j∈P(xi)m
Θ
i j.where 

PosWe  can  choose  the  objects  with  high  as  the  potential
cluster centers based on Definition 1 and the fundamental idea
of  SRMVEC.  Next,  the “separation” between one  object  and
others must be measured using another different metric.

xiDefinition  2: The  separation  (Sep)  between  and  other
objects is defined as
 

S epi = min
x j∈P(xi):Pos j>Posi

ŵ−1
i j (9)

xi

S epi =maxx j∈P(xi) ŵ−1
i j

if  does not have the highest Pos among the dataset;  other-
wise, .

S ep Pos

Pos S ep

The two semantic terms “possibility” and “separation” have
now  been  formulated  as  two  metrics.  All  the  multi-view
objects  can  be  mapped  to  a  2-dimensional Sep-Pos chart,  as
shown in  the  middle  of Fig. 2,  by  using  and  as  the
horizontal  and  vertical  coordinates,  respectively.  The  cluster
centers  (colored  red),  which  are  clearly  separated  from  the
other  objects  because  of  the  high  and ,  can be  visu-
ally  identified  by  humans.  As  a  result,  the  cluster  number  is
also provided.

Remark  2: Why  do  we  use  the  way  of  evidence  combina-
tion (3) instead of simple addition or multiplication to fuse the

x j ∈ P(xi)
mΘi (Θ)∏

x j∈P(xi)[1− exp(−γ2
i ŵ−2

i j )] mΘi (Y)
Posi

information  provided  by  when  calculating  the Pos
in  (8)?  According  to  (3),  the  value  of  is  the  product

.  Thus,  the  mass  function 
(i.e., the ) can be calculated as
 

Posi = mΘi (Y) = 1−
∏
x j

[
1− exp(−γ2

i ŵ−2
i j )
]
. (10)

exp(−γ2
i ŵ−2

i j ) ψ(ŵi j)Denoting the  as ,  (10) can be expanded
as
 

Posi = (−1)|P(xi)|+1
∏
x j

ψ(ŵi j)+
∑
x j

ψ(ŵi j)+ py(ψ(ŵi j))

py(·)∑
x j ψ(ŵi j)

∏
x j ψ(ŵi j) ψ(ŵi j)

where  is  the  polynomial  function.  As  can  be  seen,  evi-
dence  combination  used  in  (8)  includes  the  addition

 and  multiplication  of .  This
means  that  using  evidence  combination  to  fuse  the  informa-
tion essentially considers both the additive and multiplicative
ways.  An  ablation  study  shown  in  Section  VI-B  further
demonstrates the benefit of using evidence combination.

Remark  3: Why  do  we  use  a  human  intervention  method
through the Sep-Pos chart  instead of  an  automatic  method to
detect the cluster centers? Because the clustering task is unsu-
pervised, there may not be a perfectly correct number of clus-
ters in some real-world application scenarios. Users can obtain
direct guidance on the clustering centers through the Sep-Pos
chart,  and can subjectively choose different  numbers of  clus-
ters  for  different  applications.  In  addition,  as  shown  in  Sec-
tion  VI-B,  the  correct  numbers  of  cluster  centers  are  always
easily  distinguished  on  the Sep-Pos charts  for  those  com-
monly used multi-view benchmark datasets.  

B.  Deriving a Credal Partition

MΩ = (mΩ1 ,m
Ω
2 , . . . ,m

Ω
n ) mΩiz = mΩi (Az),

z = 1,2, . . . ,2u, Az

dil/dli xi xl

KΩil

After  detecting u cluster  centers,  we  then  derive  a  credal
partition , i.e., learn each 

 where  each  refers  to  a  cluster.  In
SRMVEC,  we  follow  the  idea  that  the  small  dissimilarity

 between  any  two  objects  and  should  be  coupled
with  the  low  conflict  between  the  corresponding  mass
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p = 3 Ŵ

SSRMVEC(v) MΩ

MΩ D = (di j) mΩi (A)

xi A

Fig. 2.     An illustrative workflow of SRMVEC. The dataset has  views colored green, yellow and red. The affinity matrix  is learned using the two-step
iterative algorithm, and then cluster centers are selected from the upper right corner of the Sep-Pos chart. Using the gradient-based algorithm presented in Sec-
tion V-B, stress function  (12) is minimized and the credal partition  is created. Concretely, the mass functions of n objects belonging to vari-
ous clusters (i.e., ) are determined as closely as possible to the calculated distance matrix . Each mass  is interpreted as a degree of believing
the proposition “the true cluster of object  is ”. The corresponding hard partition is also obtained using the plausibility-probability transformation defined
in (5).
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mΩi mΩl MΩ KΩil
mΩi mΩl xi

xl

functions  and  in a credal partition . The lower 
between  and  indicates the higher possibility that  and

 belong to the same cluster. The dissimilarity is calculated as
 

dil = dli =

p∑
s=1

a∗s∥X(s)ŵ·i−X(s)ŵ·l∥2 (11)

ŵ·i Ŵ a∗s
MΩ

n×n D = (dil)

where  is  the ith  column of  and  is  the  learned  view
weight  of sth  view.  The  credal  partition  being  compati-
ble with the  matrix , can be learned by minimiz-
ing the following stress function [33]:
 

SSRMVEC(MΩ,ρ1,ρ2) =
1
H

n∑
i=1

∑
l>i

(ρ1KΩil +ρ2−dil)2

dil
(12)

∀i,
∑2u

z=1 mΩiz = 1 KΩil =∑
B∩C=∅mΩi (B)mΩl (C) ρ1 ρ2

H =∑n
i=1
∑

l>i dil

under  the  constraints ,  where 
 (as  defined  in  (4)),  and  are  two

coefficients to be learned, and  is a normaliz-
ing constant.

Ŵ
xi

x j
xi

mΘi j(Θ)
xi

mΩi (Ω) MΩ

Extension  to  Graph-based  Multi-View  Learning  and  Other
Evidential  Multi-View  Learning  Methods: First,  we  highlight
that the performances of our method SRMVEC and the graph-
based  methods  depend  significantly  on  the  learned  similarity
coefficients  between  multi-view  objects.  In  other  words,  the
technique  of  learning  graphs  for  multi-view data  can  also  be
used in SRMVEC to learn the affinity matrix , and the pos-
sibility  of  each  object  becoming  a  cluster  center  can  then
still be calculated according to (7) and (8). Besides, evidence
theory  is  used  in  SRMVEC  to  both  fuse  information  from
multiple sources (fusing the degree of support provided by 
for  to  become  a  cluster  center)  and  to  describe  the  uncer-
tainty  in  the  learning  process  (e.g.,  in  (7)  denotes  the
degree  of  uncertainty  for  to  become  a  cluster  center,  and

 in  the  credal  partition  denotes  the  uncertainty  in
clustering membership). This means that the way we use evi-
dence  theory  can  be  extended  to  measure  the  uncertainty  of
the Dirichlet distribution for each view as done in [52] and to
fuse multi-view information as done in [51].  

V.  Optimization and Complexity Analysis

The optimization problem (6) and the minimization of func-
tion  (12)  are  solved  in  Sections  V-A  and  V-B,  respectively.
The  complexity  analysis  of  SRMVEC  is  shown  in  Section
V-C.  

A.  Solving Problem (6)
We design the following two-step interactive algorithm.

as
L(W,as)

Update W With  Fixed : We  first  rewrite  the  objective
function  of problem (6) as
 

p∑
s=1

(as)δ[∥X(s)−X(s)W∥2F+α2∥W∥1

+
1
2
β

Ds∑
t=1

Ds∑
h=1

g(s)
th ∥b

(s)
t W−b(s)

h W∥22] (13)

α2
∑p

s=1(as)δα2 = αwhere  is a constant with .
∥X(s) − X(s)W∥2F +

1
2β
∑Ds

t=1
∑Ds

h=1 g(s)
th ×Letting  us  denote 

∥b(s)
t W−b(s)

h W∥22+α2∥W∥1 Ks(W) as ,  we  have  the  following
transformation:
 

Ks(W) =
∥∥∥X(s)−X(s)W

∥∥∥2
F +α2 ∥W∥1

+βtr(WT (X(s))T L(s)X(s)W)

L(s) ∈ RDs×Ds = T(s)−G(s)

T(s) ∈ RDs×Ds G(s) = (g(s)
lk )

T(s) t(s)
ll =
∑Ds

k=1 g(s)
lk g(s)

lk = exp(
−∥b(s)

l −b(s)
k ∥

2
2

2 )

L(W,as)

where  is  a  Laplacian  matrix,
 is  a  diagonal  matrix  and  is  the

dimension similarity matrix of sth view. The lth diagonal ele-

ment  of  is , where .
Then,  a  proximal  gradient  method  can  be  adopted  to  handle
the non-smooth .

as
as

Update  With Fixed W: Ignoring the terms independent of
, problem (6) is transformed to

 

min
as

p∑
s=1

(as)δKs(W) s.t.
p∑

s=1

as = 1. (14)
  

SSRMVEC(MΩ,ρ1,ρ2)B.  Minimizing Function  in (12)

SSRMVEC(MΩ,ρ1,ρ2) MΩ ρ1 ρ2

We adopt the following gradient-based method to minimize
 with respect to ,  and .

Initialize  the  mass  functions  concerning  the u cluster  cen-
ters as
 

mΩ(r)(Az) = 1, Az = ωr

mΩ(r)(Az) = 0, otherwise
(15)

mΩ(r), (r) = (1), (2), . . . , (u)
mΩ

where , is the mass function about rth
cluster  center.  The  mass  functions  of  the  remaining
objects are initialized randomly.

∀i,
∑2u

z=1 mΩiz = 1To  release  the  constraints ,  we  use  the  fol-
lowing parameterization:
 

mΩiz =
exp(µiz)

2u∑
h=1

exp(µih)
(16)

mΩiz µiz
n2u+2 µ11, µ12, . . . ,

µ12u , µ21, . . . ,µ22u , . . . ,µn1, . . . ,µn2u ρ1 ρ2
v = (v1,v2, . . . ,vn2u+2)′

SSRMVEC(v)
ve,e = 1,2, . . . ,n2u+

2 χe

SSRMVEC(v)

and thus transform the learning of  to the learning of . In
this  way,  there  are  parameters  including 

,  and  need  to  be
learned.  Let  be  the  vector  of  these
parameters and  be the objective function. During
the  optimization  process,  each  parameter 
,  has  its  adaptive  step-size ,  which  is  depending  on  the

signs of derivatives between adjacent iterations and the evolu-
tion of .

SSRMVEC(v)
τ−1 χe

In the case where  has decreased between itera-
tions  and τ, the step-size  is updated by
 

χ[τ]
e =

 1.2χ[τ−1]
e , (

∂SSRMVEC(v)
∂ve

)[τ−1] · (∂SSRMVEC(v)
∂ve

)[τ] > 0

0.8χ[τ−1]
e , otherwise

(17)
χ[τ]

e χewhere  denotes  the  value  of  in τth  iteration.  If  the
derivatives  of  two consecutive  iterations  have  the  same sign,
the  step-size  is  raised;  otherwise,  it  is  decreased  since  the
learning  process  has  jumped  over  a  minimum.  The  corre-
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vesponding parameter  is updated by
 

v[τ+1]
e = v[τ]

e −χ[τ]
e (
∂SSRMVEC(v)

∂ve
)[τ]. (18)

SSRMVEC(v) τ−1 χeIf  has increased between  and τ,  all  are
decreased
 

χ[τ]
e = 0.5χ[τ−1]

e (19)
veand  is updated by

 

v[τ+1]
e = v[τ−1]

e −χ[τ]
e (
∂SSRMVEC(v)

∂ve
)[τ−1]. (20)

v[τ+1]
e

τ−1
It  indicates  that  is  changed  again  from  the  previous

( )th iteration.

Ŵ S ep Pos
Ŵ

S ep−Pos S ep
Pos

SSRMVEC
MΩ

MΩ

We summarize the SRMVEC algorithm in Algorithm 1 and
provide an illustrative flow chart in Fig. 2. In Algorithm 1, we
divide  the  whole  algorithm  into  4  steps,  i.e.,  1)  learning  the
affinity  matrix ,  2)  calculating  the  and  of  each
object  based on the obtained ,  3)  selecting the cluster  cen-
ters after mapping objects onto the  chart using 
and  as  horizontal  and  vertical  coordinates,  and  4)  mini-
mizing the stress function  to obtain the credal parti-
tion . In Fig. 2, the first 3 steps are included in the “Iden-
tify the cluster  centers” part  and the 4th step is  shown in the
“Create a credal partition ” part.

Algorithm 1 SRMVEC Algorithm

x1,x2, . . . ,xn δ = 2Input: Data objects , , α and β
MΩOutput: Credal partition 

Ŵ1: Learn the affinity matrix  by solving problem (6);
Pos S ep2: Calculate  and  for each object according to (8) and (9),

respectively;
3: Map the objects to the Sep-Pos chart and detect u cluster centers;

SSRMVEC(MΩ,ρ1,ρ2) MΩ4: Minimize  and obtain 
  

C.  Complexity Analysis

Ŵ O(n(
∑p

s=1 Ds)2+

(
∑p

s=1 Ds)n2) Pos S ep
O(nmax(|P(xi)|)+n logn+n)

SSRMVEC(MΩ,ρ1,ρ2) O((2u+2)n2)

O(n(
∑p

s=1 Ds)2+ (
∑p

s=1 Ds)n2+nmax(|P(xi)|)+
n logn + n+ (2u+2)n2) ∼ O(n(

∑p
s=1 Ds)2+ ((

∑p
s=1 Ds)+2u)n2)
ŵi j

Pos Ŵ
Ŵ ∈ Rn×n

O((
∑p

s=1 Ds)2+n2+2un)
O((
∑p

s=1 Ds)2) O(2un)
Ds×Ds G(s) = (g(s)

th )
MΩ

The complexity of SRMVEC is analyzed as follows. Firstly,
the  computation  time  of  learning  the  is 

.  Then,  the  calculation  of  and  for n
objects  needs  operations.  Fin-
ally,  to  minimize  the , 
operations have to be performed. Totally, the time complexity
of SRMVEC is 

 .
Since we do not need to consider the negative  when calcu-
lating , we can only store the positive elements in  in a
sparse  matrix.  Therefore,  the  space  complexity  of
SRMVEC  is  much  smaller  than ,
where  and  are  cost  by  storing  the

 dimension similarity matrices  and credal
partition .

O(2u)

Remark 4: Control the complexity. First,  the complexity of
SRMVEC  depends  heavily  on  the  number u of  clusters
because  it  has  the  complexity  of .  As  a  result,  it  seems
that  SRMVEC  is  too  complex  to  be  used  on  a  dataset  with
large u. To avoid this, we can ignore those composite clusters

|Az|
Az = {ω1,ω2,ω3} Az

O(2u) O( u2

2 )

with a cardinality larger than 2 except for the ignorance clus-
ter  Ω by limiting  the  forms of  the  initialized mass  functions,
because  most  of  these  clusters  are  uninformative  when u is
very  large.  Concretely,  we  can  restrict  the  cardinality 
(e.g., cardinality of  is 3) of each focal set 
(except for Ω) to less than 3. In this way, the exponential com-
plexity  is  reduced  to  and  SRMVEC  can  be
applied  to  datasets  with  large u.  This  simple  version  of
SRMVEC is denoted as SRMsim.

O((
∑p

s=1 Ds)2)

G(s)

b(s)
t

b(s)
t

In  addition,  we  can  also  reduce  the  in  both
time and space  complexity  by  computing the  simpler  dimen-
sion  similarity  matrices .  We  suggest  that  users  can  ran-
domly  select  half  of  the  total  (or  even  fewer)  dimensions  to
perform  similarity  calculation  with  every  dimension  in
each view. For example, in the sth view with 10 dimensions, 5
dimensions  are  randomly  selected  and  do  similarity  calcula-
tion for each . This simplified SRMVEC variant is denoted
as  SRMdim.  The  performances  of  SRMdim and  SRMsim are
shown in the Sections VI-B and VI-A, respectively.

Ŵ
Remark  5: Tuning α and β.  We  can  see  from  problem  (6)

that the setting of α and β influences the learning for . As a
result,  the  object  distribution  in  the Sep-Pos chart  is  in  turn
influenced by their setting. Users can alternately tune α and β
until the cluster centers can be visually recognized from other
objects in the Sep-Pos chart,  when the cluster centers are not
immediately  distinguishable.  The  tuning  for α and β is
instructed  by  the  chart.  The  distribution  of  the  objects  in  the
chart is changed as a result of the tuning of α and β. Users can
use  the  chart  as  a  guide  to  progressively  discover  the  cluster
centers.  In  Section  VI-C,  we provide  an  example  of  how the
tuning of α and β works.  

VI.  Experiments

{10−5,10−4, . . . ,100}

{
}

This  section  consists  of  3  subsections.  The  comparison
between  SRMVEC  with  other  SoTA  MVC  algorithms  is
shown in Section VI-A and detailed ablation studies are con-
ducted in Section VI-B to show the contribution of each com-
ponent in SRMVEC. The empirical convergence analysis, the
tuning  of  hyperparameters  and  visualization  of  clustering
results  are  shown  in  Section  VI-C.  The  ACC  [61]  and  NMI
are  used  to  evaluate  the  clustering  performances.  The  credal
partition created by SRMVEC is  converted into  a  hard  parti-
tion  according  to  (5),  and  then  we  calculate  the  ACC  and
NMI. In SRMVEC, the power exponent δ is fixed to 2, α and
β vary in . As summarized in Table III, the
used  benchmark  datasets  include  BBCSport,  Reuters,  COIL-
20,  WebKB2,  Digit,  3Source,  Wikipedia,  Yale,  Caltech101,
Reuters, Animal10 and CIFAR10, which are also widely used
in  other  related  references,  e.g.,  [17],  [44],  [62].  The  small
version  of  Reuters  is  denoted  as  Reuterss.  The  experiments
on  4  large  datasets,  i.e., Caltech101,  Reuters,  Animal10,
CIFAR10 , are performed on an Intel(R) Xeon(R) Gold 6230
CPU @ 2.10 GHz with 256 GB RAM, while the experiments
on other  datasets  are  performed on an Inter(R) Core(TM) i5-
7300HQ  @2.50  GHz  CPU  with  16  GB  RAM.  The  experi-
ments  concerning  the  deep-leaning-algorithm  are  performed
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on a NVIDIA Tesla A100.  

A.  Comparison Experiment
Comparing  Algorithms: SRMVEC  is  compared  with  14

SoTA MVC algorithms, including 2 subspace clustering algo-
rithms  (MSSC  [63]  and  MLRSSC  [17]),  MvWECM  [18]
based on evidence theory, CGL [39] based on spectral cluster-
ing,  MKCSS  [41]  based  on  Kernel  Clustering,  MCLES  [40]
based on non-negative  matrix  factorization and 8 deep-learn-
ing algorithms (AE2Net [16], DeepNMF [20], MvDSCN [64],
DEMVC  [65],  DMJCT  [66],  MFLVC  [60],  SAMVCH  [67]
and SDMVC [19]).

Experimental Set-Up: We adopt the provided code of these
algorithms and the hyperparameters are tuned as suggested in
the  original  papers  to  generate  the  best  results.  We  feed  the
correct number of clusters to the comparing algorithms.

In Table VII, the ACC and NMI values are reported. Com-
pared  with  the  2  subspace  clustering  algorithms  (MSSC  and
MLRSSC), SRMVEC has significantly better performance on
most  datasets.  It  is  because  that  SRMVEC  can  learn  a  more
precise affinity matrix than them, as discussed in the ablation
study.  The  better  performance  achieved  by  SRMVEC  com-
pared  to  the  CGL,  MKCSS  and  MCLES  may  be  due  to  the
guidance  from the  detected  cluster  centers  in  the  partitioning
process.  Because  MvWECM  performs  a  weighted  average
calculation  of  the  partition  matrix  of  each  view to  obtain  the
final partition matrix and the correlation between views is not
reasonably considered, SRMVEC has better performance. One
can  also  find  SRMVEC  achieves  statistically  higher  ACC/
NMI  values  than  the  8  deep-learning  algorithms  (AE2Net,
DeepNMF, MVDSCN, DEMVC, DMJCT, MFLVC, SAMV-
CH and SDMVC) on 57.2 % (110/192) cases, and SRMVEC
is  defeated  by  these  deep-learning  algorithms  on  3.12%
(6/192)  cases.  It  suggests  that  the  credal  partition  created  by
SRMVEC  has  better  fault  tolerance  than  the  hard  partitions,
although the deep-learning algorithms may be able to obtain a
more  reasonable  representation  of  multi-view  data.  In  sum-
mary,  SRMVEC  is  statistically  superior  to  the  other  algo-

rithms  in  70.2% (118/168)  and  68.5% (115/168)  cases  in
terms of ACC and NMI, respectively.

{
}

O((
∑p

s=1 Ds)2)

O(n2) O(n3)

{ }

Because  the  deep-learning  algorithms  are  performed  on
GPU,  we  only  report  the  running  time  of  SRMVEC  and  the
remaining  comparing  algorithms  in Table VIII.  MvWECM
and  SRMVEC  consider  focal  sets  with  the  same  form  when
deriving  a  credal  partition.  For  a  fair  comparison,  the  time
spent on detecting the cluster centers through human interven-
tion is  not  accounted for in SRMVEC. Compared to MSSC,
MLRSSC,  MCLES,  MvWECM ,  SRMVEC  consumes  more
time on the Reuters  and Yale  datasets  with high-dimensional
views due to the  complexity. SRMVEC is more
efficient with larger datasets (e.g., Animal10) that have fewer
dimensions, as its complexity of  is lower than the 
complexity  of  other  algorithms.  Besides,  SRMVEC  requires
slightly  more  time  than  the  lower-complexity  c-means-based
MvWECM algorithm on Yale, Reuters, CIFAR  datasets.

{
} {

}
O(2u)

Comparision Result Between SRMVEC With its Simple Ver-
sion SRMsim: As  shown  in  the  caption  of Table III,  we  run
SRMsim instead  of  SRMVEC  on  the COIL20,  Yale,  Calte-
ch101,  CIFAR10,  Animal10  datasets  that  have 20,  15,  101,
10, 10  clusters, to avoid the heavy complexity with respect to

 (as discussed in Remark 4). In this section, we compare
SRMsim and SRMVEC on the other 7 datasets.  The compari-
son results are shown in Fig. 5.

One  can  see  that  SRMVEC  has  better  performance  than
SRMsim (in terms of ACC and NMI) on all the datasets except
for WebKB20 with 2 clusters, because SRMVEC degenerates
to  SRMsim when  the  dataset  has  only  2  clusters.  In  addition,
the simplified SRMsim consumes less time than the SRMVEC
algorithm. On the Digit dataset with 10 clusters, SRMsim costs
nearly  one-third  of  the  time  of  SRMVEC.  On  the  Retuers
dataset, SRMVEC (1958.4 s) consumes more than 3 times the
running time of SRMsim (563.2 s), but only obtains the 0.007
improvement  in  terms of  ACC/NMI.  This  shows that  even if
we  follow the  strategy  provided  in  Remark  4  to  simplify  the
form of credal partition, i.e., retaining only the clusters with a

 

TABLE III 

Benchmark Datasets. We Run SRMsim Instead of SRMVEC on the {COIL20, Yale, Caltech101, CIFAR10, Animal10} With a
Larger Number of Clusters, as Discussed in Remark 4 on Caltech101, Only the Single Clusters and Ω are Considered

Dataset
Number of Number of dimensions in various views

Objects Clusters 1st 2nd 3rd 4th 5th

BBCSport 116 5 1991 2063 2113 2158 −
Reuterss 600 6 21 526 24 892 34 121 15 487 11 539

COIL20 1440 20 30 19 30 − −

WebKB2 1051 2 1840 3000 − − −

Digit 2000 10 216 76 64 − −

3Source 169 6 3560 3631 3068 − −

Wikipedia 2866 10 128 10 − − −

Yale 165 15 4096 3304 6750 − −

Caltech101 9144 101 4096 2000 2048 − −

Reuters 18 758 6 21 526 24 892 34 121 15 487 11 539

Animal10 28 000 10 4096 2000 2000 − −

CIFAR10 60 000 10 4096 2000 2048 − −
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cardinality lower than 3 and the ignorance cluster, the cluster-
ing performance does not degrade significantly, but much run-
time is saved. On the datasets with many clusters in real-world
scenarios,  SRMsim allows  users  to  obtain  a  fast  clustering
result.  

B.  Ablation Studies
Benefits  of  the  Sparse  Reconstructive  Procedure  (6)  and

Evidence  Combination  (8): We  compare  the  performance  of
estimating the cluster numbers between SRMVEC with its 14
variants. In each variant, we tune finely the α and β using the
strategy provided in Remark 5. Concretely, we consider

Ŵ
● 2 variants  SRMSSC and SRMLR replacing the learning of

affinity matrix  through solving problem (6) with the meth-
ods  used  in  [63]  (i.e.,  solving  problem (1))  and  [17],  respec-
tively;

Ŵ●  4  variants  where  the  affinity  matrix  is  replaced  with

the similarity matrix calculated used in [58], [59] (denoted as
SRMmco1 and SRMSMP,  respectively),  and is  calculated based
on the features learned in [19] (SRMSDM) and [60] (SRMMFL);

●  2  variants  SRMg1 and  SRMg2 adopting  the  graph-based
adjacency  matrix  according  to  the  methods  used  in  [68]  and
[69], respectively;

α∥W∥1
●  The  variant  SRMnos adopting  the  objective  function  in

problem (6) but ignoring the item ;
min
W,as

[
∑p

s=1(as)δ×
(∥X(s)−X(s)W∥2F)+α∥W∥1]

Ŵ

● The variant SRMnod only minimizing the 
 but  ignoring  the  related  informa-

tion between dimensions when learning ;

as
1
p

● The variant SRMa discarding the learning of view weights
 and assigning weight  to each view;

Posi =
∑

x j mΘi j(Y) Posi =
∏

x j mΘi j(Y)
● 2 variants SRM+ and SRM× using the additive and multi-

plicative  ways,  i.e.,  and ,
rather than the evidence combination (defined in (3) and (8))

 

TABLE IV 

Number of Clusters Estimated by Different SRMVEC Variants. The Incorrect Cluster Numbers are
Shown in Parentheses. The Accuracy Shown in the Last Column is the Proportion of

Datasets Where the Correct Cluster Numbers are Found

BBCsport Reuterss COIL20 WebKB2 Digit 3Source Wikipedia Yale Caltech101 Reuters Animal10 CIFAR10 Accuracy

SRMSSC 5 6 (23) 2 10 6 10 (16) (95) 6 (9) 10 66.7%

SRMLR 5 6 20 2 (9) 6 10 15 (87) 6 10 (7) 75%

SRMg1 (4) 6 (22) 2 10 6 (9) 15 (115) 6 10 10 66.7%

SRMg2 5 (5) 20 2 (9) 6 10 (14) (112) (7) (8) 10 50%

SRMnos 5 6 20 2 (8) (5) (8) 15 101 6 (9) 10 66.7%

SRMnod 5 6 (18) 2 (9) (4) (12) 15 (84) 6 (8) (9) 41.7%

SRMa 5 6 (19) 2 10 6 (13) (14) 101 6 10 10 75%

SRM+ 5 (5) (16) 2 10 6 10 15 (88) (5) (8) 10 8.3%

SRM× (4) 6 (17) 2 10 (5) 10 15 (99) (4) (9) 10 50%

SRMdim 5 6 (18) 2 10 6 10 15 (89) 6 10 10 83.3%

SRMSMP 5 6 20 2 10 6 10 15 (104) 6 10 10 91.7%

SRMMFL 5 (5) 20 2 (9) 6 (8) 15 (95) 6 10 10 66.7%

SRMSDM 5 6 20 2 10 6 10 15 101 6 10 10 100%

SRMVEC 5 6 20 2 10 6 10 15 101 6 10 10 100%
 

 

TABLE V 

ACC and NMI (MEANstd. deviation) Values of SRMmco1, SRMSMP, SRMMFL, SRMSDM That Calculate the Affinity Matrix Based
on the Methods Proposed in [19], [58]–[60]. The Best Results are Bold and Underlined

ACC BBCsport Reuterss COIL20 WebKB2 Digit 3Source Wikipedia Yale Caltech101 Reuters Animal10 CIFAR10
SRMmco1  .713 .011  .734 .013  .843 .018  .769 .010  .321 .032  .756 .016  .622 .029  .833 .023  .445 .017  .451 .028  .526 .018  .698 .024

SRMSMP  .705 .019  .749 .029  .869 .031  .781 .033  .342 .021  .757 .019  .613 .022  .853 .023  .421 .017  .479 .027  .524 .011  .710 .026

SRMMFL  .743 .024  .729 .017  .880 .011  .784 .033  .332 .019  .787 .029  .606 .038  .874 .019  .451 .024  .463 .023  .531 .031  .699 .039

SRMSDM  .749 .019  .751 .028  .872 .037  .797 .009  .341 .018  .782 .024  .625 .031  .868 .028  .438 .015  .469 .014  .531 .027  .702 .019

SRMVEC  .764 .038  .766 .015  .894 .011  .805 .013  .354 .017  .799 .020  .632 .035  .874 .031  .460 .019  .479 .023  .540 .028  .713 .029

NMI

SRMmco1  .582 .012  .549 .015  .901 .021  .520 .012  .257 .029  .663 .018  .570 .026  .721 .021  .419 .013  .418 .022  .487 .011  .657 .025

SRMSMP  .562 .020  .566 .031  .940 .029  .542 .031  .281 .017  .671 .016  .558 .025  .745 .019  .408 .014  .467 .025  .502 .011  .678 .024

SRMMFL  .605 .041  .552 .020  .951 .008  .555 .018  .273 .022  .691 .018  .547 .021  .763 .021  .431 .015  .452 .020  .502 .029  .656 .035

SRMSDM  .610 .018  .583 .026  .947 .035  .560 .010  .285 .017  .679 .022  .566 .031  .751 .028  .407 .014  .455 .014  .504 .026  .675 .019

SRMVEC  .621 .036  .598 .036  .963 .012  .571 .008  .298 .021  .703 .013  .581 .031  .763 .020  .443 .018  .467 .019  .515 .023  .689 .033
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x j ∈ P(xi)to fuse the information provided by ;

b(s)
t

● The variant SRMdim using the strategy to control the com-
plexity discussed in Remark 4, i.e.,  choosing only half of the
total dimensions in the sth view to perform similarity calcula-
tion for each .

Accuracy =
66.7 Accuracy = 75

The cluster numbers estimated by different SRMVEC vari-
ants  are  shown  in Table IV,  from  which  one  can  see  that
SRMVEC can estimate  the  true  number  of  clusters  on  all  12
datasets. Comparing SRMVEC with SRMSSC and SRMLR, we
can  find  that  these  two  variants  only  achieve 

% and % respectively  whereas  SRMVEC
detects  the  correct  cluster  numbers  on  all  the  12  datasets.  It
indicates  that  the  affinity  matrix  learned  from  the  sparse
reconstructive  procedure  is  more  precise  than  those  from the
standard self-expression methods used in [17] and [63]. Com-
pared  to  SRMg1 and  SRMg2 that  use  the  graph-based  adja-
cency matrices, SRMVEC is still the best one because it con-
siders the related information between dimensions within each
view when learning the affinity matrix. In addition, the affin-
ity matrix learned by SRMVEC is not obtained by doing ele-
ment-averaging  calculation  for  the  affinity  matrix  from  each
view, but is obtained through a joint learning process.

ℓ1

After  ignoring  the  related  information  between  dimensions
in  problem (6),  the  SRMnod only  finds  the  correct  number  of
clusters  on 5 datasets.  Thus,  considering the related informa-
tion between intra-view dimensions in the learning of affinity
matrix can substantially improve the performance of estimat-
ing the cluster numbers. One can also find that the  term in
the objective function of problem (6) is also essential, because
SRMnos only estimates the true cluster  number on 7 datasets.
Focusing  on  SRMa,  this  variant  also  shows  weaker  perfor-
mance  than  SRMVEC,  indicating  the  critical  role  of  view
weight learning.

x j ∈ P(xi)

Besides, we can see that SRMVEC outperforms both SRM+
and  SRM×.  It  demonstrates  that  combining  the  information
supplied  by  using  the  evidence  combination  is

G(s)

{
}

S ep Pos

preferable  to  utilizing  the  additive/multiplicative  methods.
Such an observation supports  the finding outlined in Remark
2.  In  10 datasets,  the  SRMdim algorithm can identify  the  true
number of clusters. This finding suggests that, in the majority
of situations, reducing the computation of the dimension simi-
larity  matrices ,  as  demonstrated  in  Remark  4,  does  not
significantly  degrade  the  performance  of  estimating  the  clus-
ter  number.  Focusing  on  the  4  variants SRMmco1,  SRMSMP,
SRMMFL,  SRMSDM ,  only SRMSDM can find the correct num-
ber  of  clusters  on  all  datasets.  This  suggests  that  calculating
the  affinity  matrix  based  on  the  methods  proposed  in
[58]–[60] is  not suitable for probing cluster centers using the
definitions  and .

We next further explore whether the affinity matrix learned
by the proposed sparse reconstruction method is more appro-
priate for creating the credal partition. The ACC and NMI val-
ues of the 4 variants are shown in Table V, where the matrix
D calculated by (11) is replaced with the affinity matrices cal-
culated  in  [19],  [58]–[60].  Note  that  the  same  initialization
strategy shown in Section V-B is used in these 4 variants. As
can  be  seen,  SRMVEC  has  better  performance  than  these  4
variants  except  for  Yale  and  Reuters  datasets.  In  particular,
SRMVEC  has  higher  ACC  and  NMI  on  all  datasets  than
SRMSDM which  has  the  same  performance  in  finding  cluster
centers. This suggests that the affinity matrix learned through
solving  problem  (6)  is  more  suitable  for  generating  a  credal
partition.

D = (di j)

Benefits of Identifying the Cluster Centers and Adopting the
Credal  Partition  Computed  by  Minimizing  Function  (12): In
this  experiment,  we  compare  the  performances  of  grouping
objects between SRMVEC and its 5 variants. Treating the dis-
tance matrix  (calculated based on (11)) and the true
cluster number as input, the variants include

●  SRMKFC that  derives  a  fuzzy  partition  through  kernel
fuzzy c-means (KFCM);

● SRMSC and SRMKKM that  derive  hard  partitions  through

 

TABLE VI 

ρ1 ρ2

ACC and NMI (MEANstd. deviation) Values of Different SRMVEC Variants. Each of the Variants is Run 20 Times. SRMSC and
SRMKKM Derive Hard Partitions. SRMKFC Creates a Fuzzy Partition. SRMnoc Initializes the Credal Partition Randomly

Instead of Using the Way Shown in (15). SRMnor Ignores the Learning of Coefficients  and  in Function (12)

ACC BBCsport Reuterss COIL20 WebKB2 Digit 3Source Wikipedia Yale Caltech101 Reuters Animal10 CIFAR10
SRMSC  .709 .015  .421 .017  .761 .025  .695 .023  .295 .013  .702 .021  .565 .018  .756 .018  .412 .012  .401 .023  .488 .011  .639 .029

SRMKKM  .674 .023  .432 .027  .753 .017  .725 .041  .310 .009  .723 .031  .513 .026  .821 .029  .435 .009  .398 .021  .479 .014  .688 .016

SRMKFC  .651 .054  .657 .021  .746 .021  .708 .029  .271 .023  .742 .023  .497 .020  .836 .016  .422 .016  .450 .019  .503 .010  .671 .011

SRMnoc  .721 .013  .713 .012  .841 .021  .729 .017  .346 .011  .710 .011  .606 .016  .843 .021  .451 .013  .421 .021  .527 .009  .691 .027

SRMnor  .653 .024  .685 .019  .729 .017  .754 .020  .341 .015  .752 .019  .617 .033  .832 .005  .407 .016  .444 .013  .509 .019  .678 .022

SRMVEC  .764 .038  .766 .015  .894 .011  .805 .013  .354 .017  .799 .020  .632 .035  .874 .031  .460 .019  .479 .023  .540 .028  .713 .029

NMI

SRMSC  .498 .009  .347 .018  .852 .027  .416 .021  .241 .012  .614 .019  .522 .013  .689 .020  .405 .013  .396 .022  .429 .011  .601 .025

SRMKKM  .548 .037  .356 .017  .849 .014  .485 .029  .270 .010  .626 .025  .501 .017  .721 .018  .421 .010  .400 .021  .418 .015  .657 .018

SRMKFC  .482 .041  .530 .020  .820 .008  .463 .018  .201 .022  .643 .018  .481 .021  .749 .021  .409 .015  .437 .020  .505 .008  .640 .012

SRMnoc  .574 .027  .563 .009  .952 .015  .524 .016  .245 .012  .654 .019  .546 .029  .752 .008  .430 .013  .409 .022  .510 .010  .663 .025

SRMnor  .512 .031  .523 .012  .824 .013  .551 .013  .263 .016  .671 .005  .553 .026  .721 .009  .399 .015  .456 .013  .493 .018  .654 .022

SRMVEC  .621 .036  .598 .036  .963 .012  .571 .008  .298 .021  .703 .013  .581 .031  .763 .020  .443 .018  .467 .019  .515 .023  .689 .033
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spectral clustering (SC) and kernel k-means (KKM);
●  SRMnoc that  initializes  the  credal  partition  randomly

instead of using the way shown in (15), meaning that the gen-
eration of a credal partition in SRMVEC is no longer guided
under the information provided by the detected cluster centers;

ρ1 ρ2

KΩi j di j

● SRMnor that ignores the learning of coefficients  and 
in  (12).  Thus,  SRMnor can  not  reduce  the  magnitude  gap
between  the  value  and  through  linear  variation.  In
SRMnor,  the  detected  cluster  centers  are  the  same as  those  in
SRMVEC.

We report the average ACC and NMI values of these algo-
rithms in Table VI, where the best results are bold and under-
lined.  First,  SRMVEC  achieves  the  highest  ACC  and  NMI
values  on  all  12  datasets.  More  specifically,  the  performance
differences between SRMVEC and two hard-partitioning vari-
ants (SRMSC and SRMKKM) are more pronounced on Reuterss
and  Reuters,  which  has  high-dimensional  views  and  more
multi-view objects  are  located  in  the  overlapping  areas.  This
result confirms that the credal partition improves the fault tol-
erance  of  SRMVEC,  i.e.,  describes  the  ambiguity  and uncer-

 

TABLE VII 

ACC, NMI (MEANstd. deviation) and Running Time (in Second) of Different Algorithms. The ●/○ Indicates Whether SRMVEC is
Statistically Superior/Inferior to a Certain Comparing Algorithm Based on the Paired t-Test at a 0.05 Significance

Level. The Statistics of Win/Tie/loss are Shown in the Last Column of the First 2 Sub-Tables. To Save Space, Each
Dataset is Represented as the 3 Letters of the Corresponding Name

ACC BBC Reus COI Web Dig 3So Wik Yal Cal Reu Ani CIF

MSSC  .764 .03  .540 .01●  .822 .01●  .754 .01●  .344 .01  .752 .01●  .597 .02●  .812 .02●  .421 .02●  .395 .02●  .489 .01●  .654 .01●

MLRSSC  .689 .01●  .654 .02●  .845 .01●  .652 .02●  .342 .02  .746 .02●  .604 .01●  .667 .01●  .439 .02●  .361 .02●  .502 .01●  .660 .01●

AE2Net  .697 .01●  .709 .01●  .851 .01●  .740 .01●  .296 .00●  .724 .01●  .545 .04●  .684 .03●  .454 .02  .421 .01●  .498 .01●  .698 .01

DeepNMF  .721 .01●  .724 .02●  .870 .01●  .693 .01●  .309 .02●  .709 .01●  .562 .01●  .665 .02●  .449 .02●  .435 .02●  .510 .01●  .699 .01

MVDSCN  .731 .00●  .721 .01●  .885 .00  .761 .00●  .284 .00●  .785 .00  .574 .01●  .867 .02  .437 .00●  .450 .01●  .521 .02●  .683 .01●

CGL  .717 .00●  .698 .00●  .819 .00●  .740 .02●  .313 .01●  .698 .02●  .604 .02●  .780 .02●  .421 .00●  .408 .01●  .488 .02●  .634 .02●

MKCSS  .647 .01●  .723 .02●  .798 .02●  .724 .02●  .274 .02●  .710 .01●  .560 .01●  .653 .01●  .390 .02●  .291 .01●  .401 .03●  .602 .01●

MCLES  .680 .00●  .747 .01  .820 .02●  .736 .01●  .302 .01●  .675 .02●  .572 .01●  .705 .01●  .404 .01●  .421 .01●  .435 .01●  .636 .01●

MvWECM  .734 .00  .729 .01●  .865 .00●  .791 .00●  .321 .00●  .768 .00  .620 .01  .856 .02  .413 .02●  .410 .03●  .467 .00●  .597 .01●

DEMVC  .741 .00  .739 .01●  .884 .01  .799 .01  .344 .00●  .780 .02  .619 .01  .820 .01●  .454 .00  .482 .00  .531 .02  .712 .01

DMJCT  .739 .02●  .752 .01  .889 .00  .781 .00●  .350 .02  .763 .01●  .606 .01●  .865 .02  .443 .00●  .472 .02  .510 .01●  .695 .01●

MFLVC  .752 .02  .710 .01●  .879 .00●  .818 .01○  .351 .02  .765 .02●  .632 .01  .832 .00●  .451 .01  .459 .00●  .511 .02●  .705 .01

SAMVCH  .731 .02●  .751 .01  .880 .00  .812 .02  .345 .02  .761 .01●  .618 .01  .859 .00  .449 .01●  .475 .01  .530 .00  .726 .01○

SDMVC  .729 .02●  .760 .02  .888 .01  .814 .02  .330 .02●  .779 .02  .613 .01●  .853 .02●  .455 .01  .485 .01  .529 .00●  .711 .01

SRMVEC (ours)  .764 .04  .766 .02  .894 .01  .805 .01  .354 .02  .799 .02  .632 .04  .874 .03  .460 .02  .479 .02  .540 .03  .713 .03

win/tie/loss 10/4/0 10/4/0 9/5/0 10/3/1 9/5/0 10/4/0 10/4/0 10/4/0 10/4/0 10/4/0 12/2/0 8/5/1

NMI BBC Reus COI Web Dig 3So Wik Yal Cal Reu Ani CIF

MSSC  .621 .01  .375 .03●  .941 .01●  .534 .02●  .285 .01  .663 .01●  .565 .00  .752 .01  .372 .01●  .381 .02●  .453 .02●  .606 .00●

MLRSSC  .578 .01●  .506 .02●  .951 .01  .507 .01●  .280 .01  .652 .02●  .571 .02  .603 .01●  .391 .02●  .342 .01●  .444 .00●  .619 .01●

AE2Net  .586 .01●  .557 .01●  .925 .01●  .540 .01●  .242 .02●  .630 .01●  .521 .01●  .702 .03●  .405 .02●  .459 .00  .461 .01●  .659 .02●

DeepNMF  .613 .01  .549 .00●  .937 .00●  .509 .01●  .252 .01●  .615 .01●  .540 .01●  .745 .01  .424 .02●  .389 .01●  .482 .01●  .654 .01●

MVDSCN  .616 .02  .556 .00●  .940 .00●  .550 .02  .240 .00●  .690 .01  .534 .00●  .797 .00○  .387 .00●  .401 .01●  .435 .02●  .641 .01●

CGL  .609 .01  .527 .01●  .860 .00●  .532 .01●  .261 .00●  .598 .02●  .526 .01●  .754 .02  .339 .02●  .376 .01●  .449 .02●  .588 .01●

MKCSS  .481 .01●  .560 .03  .892 .02●  .513 .00●  .239 .00●  .657 .01●  .523 .00●  .740 .01●  .345 .02●  .199 .01●  .351 .00●  .500 .01●

MCLES  .607 .01●  .571 .02  .921 .02●  .527 .01●  .259 .00●  .626 .01●  .542 .01●  .725 .01●  .351 .02●  .399 .02●  .399 .01●  .540 .01●

MvWECM  .592 .01●  .549 .01●  .941 .01●  .559 .01  .269 .01●  .681 .01  .546 .01●  .752 .01  .387 .02●  .349 .02●  .422 .03●  .531 .01●

DEMVC  .606 .00●  .588 .01  .920 .01●  .542 .01  .269 .01●  .688 .02  .564 .01●  .749 .01  .437 .01  .464 .01  .510 .02  .669 .01●

DMJCT  .615 .01  .590 .01  .945 .00●  .530 .00●  .290 .01  .678 .00●  .563 .01●  .724 .01●  .429 .02  .449 .02●  .487 .02●  .685 .01

MFLVC  .612 .01  .575 .01●  .937 .01●  .597 .02○  .283 .01  .688 .01  .581 .01  .742 .02●  .428 .01●  .441 .00●  .491 .01●  .695 .01

SAMVCH  .603 .02●  .580 .01  .951 .00  .579 .01  .284 .02  .692 .01  .562 .01●  .750 .01  .415 .01●  .457 .01  .501 .00●  .711 .01○

SDMVC  .577 .01●  .587 .02  .949 .02●  .583 .01○  .287 .03  .674 .02●  .554 .02●  .734 .01●  .431 .02  .461 .01  .446 .00●  .695 .01

SRMVEV (ours)  .621 .04  .598 .04  .963 .01  .571 .01  .298 .02  .703 .01  .581 .03  .763 .02  .443 .02  .467 .02  .515 .02  .689 .03

win/tie/loss 8/6/0 8/6/0 12/2/0 8/4/2 8/6/0 9/5/0 11/3/0 7/6/1 11/3/0 10/4/0 13/1/0 10/3/1
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ρ1 ρ2
dil

KΩil
ρ1 ρ2

tainty in the cluster  memberships of multi-view objects more
appropriately. As discussed in Section III, the credal partition
allows  the  objects  to  be  contained  in  the  composite  clusters
rather  than  only  in  the  single  clusters.  The  benefit  of  using
credal  partition  can  also  be  demonstrated  when  comparing
SRMVEC with the fuzzy-partitioning SRMKFC.  One can find
that  SRMVEC  always  has  the  best  performance  when  it  is
compared  with  SRMnoc.  This  demonstrates  that  the  perfor-
mance of  credal  partition can be directly improved under  the
guidance  of  the  information  in  the  detected  cluster  centers.
Furthermore,  the comparison between SRMVEC and SRMnor
also  shows  that  the  learning  of  the  coefficients  and  is
critical.  This is because the magnitude difference between 
and the conflict  becomes large after losing the linear vari-
ation provided by  and , and then the gradient-based algo-
rithm  used  to  minimize  the  function  (12)  often  falls  into  a
local minimum.  

C.  Specific Behaviors of SRMVEC

β = 1×10−3

1×10−5

{α,β}

{α,β}

An Example About Tuning α and β: As discussed in Remark
5, we give an example about tuning hyperparameters α and β
in Fig. 3. The objects in the upper-right corners of the Sep-Pos
charts are not easily distinguishable from the other objects in
the leftmost sub-figures. The choice of cluster centers appears
to be challenging and unrealistic. We then fix the 
and gradually turn up the α from . Observing the Sep-
Pos charts (shown in the 2nd and 3rd columns) generated by
each group of , some objects (cluster centers) are gradu-
ally  separated  from  other  objects.  In  a  determined  hyperpa-
rameter  configuration,  fixing  one  of  the  and  tuning  the
other  one  always  allow  users  to  estimate  the  correct  cluster
numbers.

Empirical Convergence Analysis: We first show the conver-

|Lτ+1(W,as)−Lτ(W,as)| (τ+1)

|Lτ+1(W,as)−Lτ(W,as)|

SSRMVEC(MΩ,ρ1,ρ2)
SSRMVEC(MΩ,ρ1,ρ2)

SSRMVEC(MΩ,ρ1,ρ2)

SSRMVEC(MΩ,ρ1,ρ2)

SSRMVEC(MΩ,ρ1,ρ2)

gence  plots  of  solving  problem  (6)  in Figs. 4(a.1)−4(a.4),
where  the  vaule  between th
and τth  iterations  is  presented.  As  can  be  seen,  the  conver-
gence of the two-step iterative algorithm proposed in Section
V-A  is  illustrated  by  the  gradual  decrease  in  the  value  of

 between  two  adjacent  iterations.
We  also  provide  the  convergence  plots  of  minimizing

 in Figs. 4(b.1)−4(b.4),  where  the  value
of  in  every  iteration  is  shown.  It  is
apparent  that  the  difference  value  of 
between  2  adjacent  iterations  gradually  decreases  to  0,  illus-
trating  the  convergence  of  the  gradient-based  algorithm  pro-
posed  in  Section  V-B.  As  the  optimization  procedure  pro-
ceeds, the ACC of SRMVEC also generally increases. On the
BBCSport, Reuters and COIL20 datasets, 
always decreases slowly, then rapidly, then slowly again, indi-
cating  that  the  solution  of  minimizing 
goes from the flat  region to the sharp region,  and then to the
flat region.

Visualize the Clustering Results: In Fig. 6, we visualize the
clustering  results  on  the  4  datasets  using  the  t-SNE  method
[70],  where  the  Euclidean  distances  between  objects  are
replaced  by  the  distances  calculated  according  to  (11).  After
visualization,  the  objects  clearly  form  reasonable  clusters  on
the 2-dimensional figures, and the selected cluster centers are
also in reasonable locations.  It  illustrates that  one cluster  can
indeed  be  represented  by  a  representative  cluster  center
selected according to the basic idea proposed in this paper.  

VII.  Conclusion

This  paper  proposes  a  novel  sparse  reconstructive  eviden-
tial  clustering  algorithm  named  SRMVEC.  By  using  a  2-
dimensional chart and human interaction, the number of clus-

 

TABLE VIII 

Running Time (in Second) of 7 Non-Deep-Learning Algorithms on {Yale, Caltech101, Retuers, Animal10, CIFAR10}
Datasets. MvWECM and SRMVEC Consider the Same Forms of Focal Sets

Time Yale Caltech101 Reuters Animal10 CIFAR10

MSSC 1.43 218.72 858.39 3587.3 8854.2

MLRSSC 2.57 298.54 842.32 4126.2 9532.1

CGL 9.09 184.71 2247.2 3021.7 6874.1

MKCSS 4.81 341.09 2954.2 6542.7 10259

MCLES 1.93 289.31 948.23 4875.2 8521.3

MvWECM 3.53 187.23 1687.3 3521.1 6713.2

SRMVEC (ours) 4.71 172.31 1958.4 3357.2 7012.5
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Fig. 3.     An example of tuning α and β on 3Source and dataset. From the leftmost Sep-Pos charts to the rightmost Sep-Pos charts, the cluster centers become
easier to be distinguished from the other objects.
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ters can be quickly determined. This may be the first attempt,
as  far  as  we  are  know,  to  estimate  the  number  of  clusters  in
the MVC problem. Moreover, SRMVEC improves the cluster-
ing  by  creating  a  credal  split  that  takes  into  account  more
ambiguity  and  uncertainty  in  the  assignment  of  multi-view
objects. The sparse reconstructive technique, evidence theory,

and  the  discovered  cluster  centers  are  proven  to  be  advanta-
geous  for  SRMVEC.  The  great  clustering  performance  of
SRMVEC is  demonstrated  by  experiments  on  12  benchmark
datasets. When other MVC algorithms need to detect the num-
ber of clusters but have no prior knowledge of the data being
studied, SRMVEC can also be used as a precursor step.
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Fig. 4.     The  value  of  in  each  iteration  (a.1)–(a.4).  As  the  optimization  algorithm  proeeds,  the  value  of 
decreases gradually. The  value and ACC of SRMVEC in each iteration (b.1)–(b.4). The  and ACC are colored red
and green. As the gradient-based algorithm proceeds, the  value decreases gradually and the ACC increases.
 

 

NMIAC C

0

0.2

0.4

0.6

0.8

1.0

A
C

C
/N

M
I

SRMsim
SRMVEC

BBC Reus Web Dig 3So Wik Reu
BBC

Reu s
Web Dig 3S

o
Wik Reu

BBC
Reu s

Web Dig 3S
o

Wik Reu

R
un

ni
ng

 ti
m

e 
(s

)

SRMsim
SRMVEC

(a) ACC or NMI

104

102

100

(b) Running time (s)
 
Fig. 5.     Comparision between SRMsim and SRMVEC in terms of ACC, NMI and running time. On the 7 datasets, SRMsim has slightly worse clustering perfor-
mance than SRMVEC but consumes less running time. Each dataset is abbreviated by its first 3 letters.
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Fig. 6.     Clustering results visualized by using t-SNE on 2 datasets. The found cluster centers are marked by red crosses and are in suitable locations.
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