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   Abstract—In  recent  years,  a  large  number  of  approaches  to
constrained multi-objective optimization problems (CMOPs) have
been  proposed,  focusing  on  developing  tweaked  strategies  and
techniques  for  handling  constraints.  However,  an  overly  fine-
tuned  strategy  or  technique  might  overfit  some  problem  types,
resulting  in  a  lack  of  versatility.  In  this  article,  we  propose  a
generic search strategy that performs an even search in a promis-
ing  region.  The  promising  region,  determined  by  obtained  feasi-
ble  non-dominated  solutions,  possesses  two  general  properties.
First,  the  constrained  Pareto  front  (CPF)  is  included  in  the
promising  region.  Second,  as  the  number  of  feasible  solutions
increases or the convergence performance (i.e.,  approximation to
the  CPF)  of  these  solutions  improves,  the  promising  region
shrinks.  Then  we  develop  a  new  strategy  named  even  search,
which  utilizes  the  non-dominated  solutions  to  accelerate  conver-
gence  and  escape  from  local  optima,  and  the  feasible  solutions
under a constraint relaxation condition to exploit and detect fea-
sible regions. Finally, a diversity measure is adopted to make sure
that  the  individuals  in  the  population  evenly  cover  the  valuable
areas  in  the  promising  region.  Experimental  results  on  45
instances  from  four  benchmark  test  suites  and  14  real-world
CMOPs have demonstrated that searching evenly in the promis-
ing  region  can  achieve  competitive  performance  and  excellent
versatility  compared to 11 most  state-of-the-art  methods tailored
for CMOPs.
    Index Terms— Constrained  multi-objective  optimization,  even
search,  evolutionary  algorithms,  promising  region,  real-world  prob-
lems.
  

I.  Introduction

CONSTRAINED  multi-objective  optimization  problems
(CMOPs)  refer  to  optimization  problems  with  two  or

three  objective  functions  and  some  constraint  conditions,
which  widely  exist  in  real-world  applications  and  scientific
research, such as vehicle scheduling of the urban bus line [1].

In recent years, many research efforts have been devoted to
developing approaches for solving CMOPs [2]. Researchers in
the  multi-objective  optimization  field  have  proposed  many

new  constrained  multi-objective  optimization  evolutionary
algorithms  (CMOEAs),  most  of  which  focused  on  algorith-
mic  strategies  or  constraint-handling  techniques  (CHTs).
Regarding the algorithmic strategies, ignoring or relaxing con-
straints in an auxiliary problem to help the algorithm solve the
original  CMOP  [3],  [4]  and  balancing  the  optimization  of
objectives and satisfaction of constraints [5], [6] are both pop-
ular.  As  for  CHTs,  the ε-constrained  technique  [7],  [8],  the
penalty  function [1],  and new CHTs [9]  have been improved
to  handle  CMOPs  with  more  complex  features  by  utilizing
valuable  infeasible  solutions.  However,  as  pointed  out  in  the
experiments of [10] and according to the No Free Lunch the-
ory [11], a specific strategy or tailored technique, especially if
it  is  labor-intensively  designed  and  complicated,  might  over-
fit  some  problem  types1.  As  a  consequence,  these  methods
lack versatility and may be hard to use in real-world applica-
tions that are always subject to unknown features and difficul-
ties.

To overcome the above shortcomings, this work proposes to
conduct  an  even  search  in  the  promising  region  for  CMOPs.
To be more specific, the main contributions are as follows:

1) We propose an approach that  makes  use  of  the  obtained
feasible non-dominated solutions to define a promising region.
The  promising  region  has  two  properties.  First,  the  con-
strained Pareto front (CPF) must be included in the region no
matter  what  features  the  CMOP  has.  Thus,  searching  in  the
promising region helps search the CPF. Second, as either the
number  of  feasible  solutions  or  the  convergence  (i.e.,  the
approximation  degree  to  the  CPF)  improves,  the  promising
region  will  shrink.  Thus,  the  region  where  the  even  search
should  be  performed  becomes  smaller  and  is  more  precisely
defined.

2) We develop an even search method that utilizes valuable
solutions  located  in  the  promising  region  to  assist  the  search
for the CPF. Specifically, those non-dominated solutions with
good  convergence  and  diversity  are  used  to  accelerate  the
approximation  to  the  CPF  and  help  the  search  algorithm
escape  from local  optima.  Moreover,  those  feasible  solutions
under a constraint-relaxed condition with good feasibility and
diversity are used to exploit the detected and explore the unde-
tected  feasible  regions.  In  addition,  we  use  the  minimum
Euclidean distance between solutions as a measure to enhance
diversity.  In  this  way,  the  preserved  solutions  are  well-dis-
tributed  in  valuable  areas  in  the  promising  region  to  achieve

 
Manuscript received June 18, 2023; accepted July 25, 2023. This work was

partly  supported  by  the  National  Natural  Science  Foundation  of  China
(62076225). Recommended by Associate Editor Nian Zhang. (Corresponding
authors: Wenyin Gong and Yaochu Jin.)

Citation: F. Ming, W. Gong, and Y. Jin, “Even search in a promising region
for  constrained  multi-objective  optimization,” IEEE/CAA  J.  Autom.  Sinica,
vol. 11, no. 2, pp. 474–486, Feb. 2024.

F.  Ming  and  W.  Gong  are  with  the  School  of  Computer  Science,  China
University  of  Geosciences,  Wuhan  430074,  China  (e-mail:  feiming@cug.
edu.cn; wygong@cug.edu.cn).

Y.  Jin  was  with  the  Faculty  of  Technology,  Bielefeld  University,  North
Rhine-Westphalia  33619,  Germany.  He  is  now  with  the  School  of
Engineering,  Westlake  University,  Hangzhou  310030,  China  (e-mail:
jinyaochu@westlake.edu.cn).

Color  versions  of  one  or  more  of  the  figures  in  this  paper  are  available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2023.123792

  
1 Overfit  in  this  work  indicates  that  a  method  performs  extremely  well  on
some problems but unusable (i.e., cannot find a desirable number of applica-
ble solutions) on others.
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an  even  search.  Moreover,  a  simple ε-constrained  method,
containing only one parameter, is designed to evaluate the fea-
sibility under a constraint-relaxed condition.

3) Based on the above methods, we propose a new CMOEA
named constrained multi-objective optimization based on even
search (CMOES). CMOES contains two stages, the first stage
aims  to  find  feasible  non-dominated  solutions  and  approxi-
mate  the  CPF,  while  the  second  stage  conducts  the  even
search in the determined promising region.

Compared  to  most  existing  methods  in  the  constrained
multi-objective  optimization  community,  our  methods  have
the  following  two  features.  First,  since  the  CPF  must  be
included in the promising region for any CMOP, the strategy
to  search  in  the  promising  region  works  for  any  class  of
CMOPs.  Second,  our  proposed  even  search  method  contains
only  one  parameter  and  does  not  require  problem-specific
fine-tuning. The proposed methods are tested on 45 instances
from  four  benchmark  suites  with  very  different  features  and
difficulties and 14 real-world CMOPs with unknown features
and  difficulties.  Extensive  experimental  results  have  demon-
strated  that  searching  in  the  promising  region  can  achieve
competitive performance and excellent versatility compared to
11 most state-of-the-art CMOEAs.

The  remainder  of  this  article  is  organized  as  follows.  Sec-
tion II introduces the related work and backgrounds. Section III
elaborates on the proposed CMaDPPs. Then, experiments and
analysis are presented in Section IV. Finally, conclusions and
future research directions are given in Section V.  

II.  Literature Review and Motivations
  

A.  Preliminaries of CMOPs
Without  loss  of  generality,  a  CMOP  is  formulated  as  fol-

lows:
 

Minimize F(x) = ( f1(x), . . . , fm(x))T

s.t. x ∈ R
gi(x) ≤ 0, i = 1, . . . , p

h j(x) = 0, j = p+1, . . . ,q

(1)

x =
(x1, . . . , xn)T

x ∈ S S ⊆ Rn

gi(x) h j(x)

where m denotes  the  number  of  objective  functions; 
 is an n-dimensional decision vector; n is the num-

ber  of  decision  variables; ,  and  is  the  search
space.  and  are the i-th inequality and j-th equality
constraints, respectively. q denotes the number of constraints.

cv j(x)
For  a  CMOP,  the  degree  of  the j-th  constraint  violation

(denoted as ) of x is
 

cv j(x) =
{max(0,g j(x)), j = 1, . . . , p

max(0, |h j(x)| −σ), j = p+1, . . . ,q
(2)

where σ is a small enough positive value to relax the equality
constraints  into  inequality  ones.  The  overall  constraint  viola-
tion (CV) of x is calculated by
 

CV(x) =
q∑

j=1

cv j(x). (3)

CV(x) = 0A solution x is feasible if ; otherwise, it is infeasi-
ble.  

B.  Existing Approaches to CMOPs
Based  on  the  basic  ideas  and  foci,  existing  approaches  for

CMOPs could be roughly divided into three categories.
1) Using Auxiliary Evolution: The first category uses one or

more auxiliary problems to assist the evolution of the original
problem.  Generally,  this  kind  of  method  performs  well  on
those CMOPs whose CPF is the same as, part of,  or near the
unconstrained  Pareto  front  (UPF).  Liu  and  Wang  [3]  pro-
posed a two-phase algorithm that uses the first phase to solve
a  single-objective  optimization  problem  transferred  from  the
original CMOP to assist in solving the original problem in the
second phase.  Li et  al.  [4]  proposed  a  two-archive  algorithm
that uses a convergence-oriented archive to store feasible solu-
tions and pursue convergence and meanwhile uses a diversity-
oriented archive to store solutions with good diversity to assist
in  searching  the  objective  space.  Tian et  al.  [12]  proposed  a
new  coevolutionary  framework  that  evolves  a  population  for
the  unconstrained  helper  problem  to  assist  the  original  prob-
lem,  besides,  the  new framework  performs  independent  mat-
ing to avoid generating useless offspring. Jiao et al. [13] pro-
posed  a  multi-tasking  framework  that  conducts  an  auxiliary
task to search for the CPF in feasible regions derived from the
original problem through an ε-constrained technique.

2) Balancing Convergence and Feasibility: The second cat-
egory  solves  CMOPs  by  balancing  the  convergence  (i.e.,
approximation  to  the  CPF)  and  the  feasibility  (i.e.,  satisfac-
tion of constraints). Generally, this kind of method could per-
form  well  on  CMOPs  whose  feasible  regions  are  relatively
large  so  the  switches  of  preference  between  constraints  and
objectives  need  not  be  complicated.  Tian et  al.  [5]  proposed
an  auto-switched  two-stage  algorithm that  uses  one  stage  for
the unconstrained helper  problem and the other  for  the origi-
nal  problem  and  automatically  switches  between  these  two
stages according to the state of the population. Liang et al. [6]
proposed  utilizing  the  relationship  between  the  CPF  and  the
UPF by learning the distribution of the CPF and UPF to bal-
ance  convergence  and  feasibility.  Yu et  al.  [14]  proposed  to
dynamically  adjust  the  selection  preference  between  conver-
gence  and  feasibility  during  the  evolutionary  process  consid-
ering  the  state  of  the  current  population.  Ma et  al.  [15]  pro-
posed  a  new  fitness  evaluation  function  that  automatically
adjusts  the  weights  of  convergence  and  feasibility  according
to  the  current  population  state  to  balance  the  optimization  of
objectives and constraints.

3)  Utilizing  Infeasible  Solutions  by  CHTs: The  third  cate-
gory  utilizes  valuable  infeasible  solutions  by  improving  or
developing  new CHTs  to  assist  the  search  for  the  CPF.  This
kind  of  method  could  perform  well  in  dealing  with  CMOPs
with  complex  constraints  and  large  infeasible  regions.  How-
ever,  most  CHTs  were  labor-intensively  tailored,  and  thus,
they might be overfitting to some benchmark problems but not
applicable  to  others.  Zhou et  al.  [16]  proposed  an  infeasible
solutions  diversity  maintenance ε-constrained  handling
method that utilizes infeasible solutions with good diversity to
search in  the  objective  space.  Yuan et  al.  [9]  proposed using
valuable  infeasible  solutions  determined  by  a  comprehensive
criterion  that  evaluates  the  potential  value  of  each  infeasible
solution from different aspects. Fan et al. [7] proposed a push-
pull  search  framework  that  pushes  the  population  toward  the
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UPF by ignoring constraints in the pushing stage and pulls it
back to the CPF in the pull stage using an ε-consrainted tech-
nique. Ma and Wang [1] proposed a shift-based penalty func-
tion  that  first  shifts  the  positions  of  infeasible  solutions
according to the near  feasible  solutions,  and then,  the shifted
infeasible  solutions  are  penalized  based  on  their  constraint
violations. Sun et al. [8] proposed a new constraint relaxation
strategy  by  adopting  different  constraint  relaxations  in  feasi-
ble sub-population, semi-feasible sub-population, and infeasi-
ble sub-population.  

C.  Motivations
As  mentioned  above,  specific  and  complicated  strategies

and techniques might be suitable for some problem types but
not applicable to other types, resulting in a lack of versatility2.
If  we  need  to  solve  a  real-world  CMOP  whose  features  and
types  are  unknown,  it  is  hard  to  determine  which  strategy  or
technique  to  use.  Some strategies  and  techniques  might  even
be too complicated to use. Therefore, in this paper, we investi-
gated  the  properties  of  a  promising  region  and  the  effective-
ness of searching evenly in it for CMOPs, aiming to develop a
simple but versatile approach that could suit CMOPs with dif-
ferent features and challenges.

Fig. 1 illustrates the basic concepts of our proposed promis-
ing  region  definition.  As  shown  in Fig. 1(a),  if  we  obtain  a
feasible  solution,  the  non-dominated  region,  marked  as  the
region within the dashed lines, is named the promising region.
If we obtain more feasible solutions, the size of the promising
region  could  be  reduced.  In  the  following,  we  prove  that  the
CPF must be contained in the promising region.
 
f2

f1

f2

f1

CPF
Feasible non-dominated
solution
Feasible regions

CPF
Feasible non-dominated
solution
Feasible regions

Promising region Promising region

(a) (b)
 
Fig. 1.     Illustration of the proposed promising region concept. (a) Promising
region determined by one feasible non-dominated solution; (b) Promising
region determined by multiple feasible non-dominated solutions.
 

First,  we  introduce  the  basic  definitions  of  constrained
multi-objective optimization.

x1 x2 ∈ S x1

x2 x1 ≺ x2

fi(x1) ≤ fi(x2) ∀ i ∈ {1, . . . ,m} fi(x1) < fi(x2) ∃ i ∈
{1, . . . ,m}

1)  Pareto  Dominance: For  two  solutions , .  is
said to Pareto dominate  (denoted as ), if and only if

 for  and  for 
;

∀ x⋆ ⊂
CPS ∄ x ∈ S ϕ(x) = 0 && x ≺ x⋆

2)  Constrained  Pareto  Set  (CPS): A  set  that  for 
,  such that ;

CPF = {F(x)|x ∈CPS }3) Constrained Pareto Front (CPF): .
PRThen,  given  is  the  point  set  of  the  promising  region

S
PR ∈ S, S ∈ S

determined by a solution x,  and  is  the point set  distributed
on the CPF. .

S < PRSuppose ,  i.e.,  not  all  CPF  is  in  the  promising
region.
∵ S < PR,
∴ ∃y ∈ S, x ≺ y,
∵ ∀ x⋆ ⊂CPS ∄ x ∈ S CV(x) = 0 & x ≺ x⋆,  such that ,
∴ ∄x, x ≺ y,
∴ they conflict with each other,
∴ S ∈ PR.
Therefore, if we can search evenly in the promising region,

the CPF could be obtained no matter how the feasible regions
distribute or what the relationship between CPF and UPF is. It
is important to note that the term even search (search evenly)
in this work means maintaining a set of well-spread solutions
in  the  promising  region  that  covers  as  many  of  its  areas  as
possible.

Fig. 2 provides an artificial scene where feasible regions are
discontinuous  and  randomly  distributed.  The  dot  represents
the old feasible solution and the star represents the new feasi-
ble non-dominated solutions. In Fig. 2(a), the old solution will
be  deleted  because  it  is  dominated  by  the  new feasible  solu-
tion.  In Fig. 2(b),  two more feasible  solutions  can be used to
determine the promising regions because they are all  feasible
and non-dominated  by  each  other.  As  shown in Fig. 2,  when
the  evolution  processes,  more  feasible  solutions  can  be
obtained  (i.e.,  the  situation  of Fig. 2(a))  and  the  convergence
of  these  solutions  can  be  improved  (i.e.,  the  situation  of
Fig 2(b)).  Then,  the  promising  region  shrinks  so  searching
evenly in it becomes easier as the evolution proceeds.
 

Promising region

New feasible non-
dominated solutions

Promising region

New feasible non-
dominated solutions

(a) (b)

f2

f1

f2

f1

 
Fig. 2.     Illustration of the variations of the promising region during the evo-
lutionary process. (a) Variation of promising region when the convergence of
feasible non-dominated solution improves; (b) Variation of promising region
when the number of feasible non-dominated solutions increases.
 

Based  on  the  above  considerations,  we  proposed  a  new
method that  conducts an even search in the promising region
for  handling CMOPs,  which will  be  detailed  in  the  next  sec-
tion.  

III.  Proposed Methods
  

A.  Determine Solutions in Promising Region

PR

In  this  part,  we  first  present  the  method  to  determine
whether  a  solution  is  in  the  promising  region.  As  illustrated
and proved in Section II-C, if  a solution is  not dominated by
the  obtained  feasible  solutions,  it  is  in  the  promising  region.
Therefore,  we  use  the  method  presented  in  Algorithm  1  to
achieve this. In our method, a vector  is initialized by ones

  
2 Evidence  can  be  found  in  Secion  IV,  where  we  perform  various  experi-
ments  to  test  performances  of  different  CMOEAs on  different  CMOPs.  The
results  clearly  reveal  that  some  CMOEAs  using  a  specific  or  complicated
strategy  (e.g.,  BiCo  and  MFOSPEA2)  perform  very  well  on  one  kind  of
CMOP but cannot handle other features of CMOPs.
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S S
F

S PR
S

F F

with  size  (Line  1).  Then,  for  every  solution  in ,  if  any
solution of the obtained feasible solution set  dominates the
solution in  (Line 4), its mark in  is set to zero (Line 5).
Therefore, those solutions in  marked ones are in the promis-
ing region. On the contrary,  solutions marked zero are not in
the  promising  region.  Since  the  input  of  this  procedure  con-
tains  the  obtained  feasible  solution  set ,  and  is  updated
every  generation  which  will  be  introduced  in  Section  III-D,
the shrink of the promising region can be achieved.

Algorithm 1 Identification of Solutions in PR

S FRequire:  (solution  set),  (obtained  feasible  non-dominated
solution set)

PROutput:  (the mark whether in PR)
PR←1:  Initialize the marks as ones;

F2: for each solution x in  do
S3: 　for each solution y in  do

x ≺ y4: 　　if  then
PRx← 05: 　　　 ;

6: 　　end if
7:  　end for
8: end for

A9: return 
  

B.  Even Search

S
P1

In this part, we introduce the proposed even search strategy
which is  presented in Algorithm 2.  This method aims to pre-
serve  valuable  solutions  well-spread in  the  promising region,
achieving an even distribution to assist the search for the CPF.
First, all solutions in the promising region are preselected to a
temporary solution set  (Lines 1 and 2). Then, the first pro-
portion of the population for the next generation  is selected
(Lines  3−9).  The  first  proportion  contains  non-dominated
solutions  with  a  good  degree  of  diversity.  The  diversity  is
guaranteed by deleting redundant solutions with smaller clos-
est  distances.  The closest  distance of any solution x is  calcu-
lated by
 

d = min
y∈S,y,x

dist(x,y) (4)

dist(x,y)where  is  the  Euclidean  distance  in  the  objective
space.

P2

Then,  the  second  proportion  of  the  population  for  the  next
generation  is  selected  (Lines  10−17).  The  second propor-
tion  contains  feasible  solutions  in  a  relaxed  manner.  The
relaxation factor ε is calculated as
 

εg =CVmax× (1− g
Gmax

)η (5)

CVmax
Gmax

CVmax

(1− g
Gmax

)
η = 2

(1− g
Gmax

)

where  is the maximum CV found by the population so
far; g is the current generation;  is the maximum genera-
tion, and η is a parameter to control the reducing speed of ε. In
this equation, only one parameter η is used. It is set to 2, and
the effectiveness of η will be studied in the experiments. The
design of ε includes  the  following underlying considerations.
Using  found so far can guarantee a large enough initial
value of ε. As the evolution proceeds,  reduces from
1 to 0. Moreover,  generates a gradually decreasing gra-
dient of ε related to . Therefore, at the earlier stage, ε

P1
P2

reduces  faster,  while  at  the  latter  stage, ε reduces  slower.
Therefore, at the earlier stage, ε is a large value to produce a
better exploration of feasible regions. Then, at the latter stage,
ε is a small value closer to 0 to ensure the exploitation of fea-
sible regions. With a relaxation factor, all solutions that have a
CV value no more than ε are preselected (Lines 10−12). Also,
redundant  solutions  with  low  diversity  are  deleted  (Lines
13−17). Finally, the closest distance values of  and the CV
values of  are used for mating selections (Lines 19 and 20).

Algorithm 2 Even Search

S F
CVmax

Require: N (required size),  (candidate solution set),  (obtained
feasible solution set), g (current generation),  (maximum con-
straint violation found so far)

P FP1

FP2

Output:  (population for next generation),  (fitness values of
first  proportion  of  population),  (fitness  values  of  second  pro-
portion of population)

PR← P1:  Determine whether solutions of  are in promising region
by Algorithm 1;
S← PR = 12:  Preselect solutions satisfy ;
F← S3:  Perform fast non-dominated sorting on ;
P1← S F = 14:  Select solutions in  that satisfy ;

|P1 | > N5: while  do
D←6: 　  Calculate the closest distance between each solution to its
closest solution using (4);
x = argminx∈P1 Dx7: 　 ;

8: 　Delete solution x with minimum closest distance;
9: end while
ε←10:  Update the value of ε using (5);
CV←
S

11:  Calculate  the  constraint  violation  values  of  solutions  in
;
P2← S CV ≤ ε12:  Select solutions in  that satisfy ;

|P2 | > N13: while  do
D←14: 　  Calculate the closest  distance between each solution to
its closest solution using (4);
x = argminx∈P1 Dx15: 　 ;

16: 　Delete solution x with minimum closest distance;
17: end while
P←P1 ∪P218: 
−FP1← P119:  The closest distance values of ;
FP2← P220:  The constraint violation values of ;

P21: return 

P1

The  benefits  of  using  these  two  kinds  of  solutions  can  be
illustrated  in Fig. 3.  As  shown  in Fig. 3(a),  darker  diamonds
located on the UPF are preferred, so they could accelerate the
approximation to the CPF and help to jump out of local feasi-
ble regions. If the UPF overlaps with the CPF,  could even
help  to  find  feasible  solutions  on  the  CPF.  As  shown  in
Fig. 3(b), darker triangles are preferred. Therefore, those solu-
tions  near,  or  even  in,  the  detected  or  undetected  feasible
regions  could  be  preserved.  They  could  help  to  search  the
detected feasible regions and detect new feasible regions.

The  reasons  for  developing  such  a  method  are  as  follows.
First,  an  unknown  CMOP  might  have  a  very  large  objective
space, as well as a large promising region, so we have to fur-
ther  limit  the even search to  a  smaller  region.  That  is  to  say,
we  have  to  design  some  rules  that  preserve  valuable,  rather
than  all,  solutions  in  the  promising  region.  Second,  the  pre-
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ferred two kinds of solutions are both useful for detecting and
searching  the  CPF.  Third,  in  order  to  avoid  overfitting,  we
make these rules very simple and extensible.  

C.  Mating Selection

−FP1 FP2
P1 P2
P1

P2

In this part, we introduce the mating selection method based
on  the  tournament  selection  mechanism.  The  pseudo  code  is
presented  in  Algorithm  3.  As  mentioned  in  the  last  part,  we
output  and  as the criteria used in the mating selec-
tions  of  and ,  respectively.  Therefore,  in  the  mating
selection of , we select the solution with a larger closest dis-
tance  from  two  randomly  selected  solutions  each  time,  until
the  size  of  the  mating  pool  reaches N.  Similarly,  for ,  we
select  the  solution  with  a  smaller  CV  value  from  two  each
time until the size of the mating pool reaches N.

Algorithm 3 Mating Selection Based on Tournament

PRequire: N (required  size),  (candidate  solution  set), F (fitness
criteria)

MOutput:  (selected mating pool)
M←∅1: ;

|M| ≤ N2: while  do
x,y← P3: 　  Randomly select two solution from ;

Fx > Fy4: 　if  then
M←M∪y5: 　　 ;

Fx < Fy6: 　els if  then
M←M∪x7: 　　 ;

8: 　else
M← M9: 　　  Randomly add x or y to ;

10:　end if
11: end while

M12: return 

Selecting  non-dominated  solutions  with  better  diversity  as
mating parents could improve the search near the UPF. Also,
selecting relaxed feasible solutions with smaller CV values as
mating parents could enhance the search for feasible regions.
Besides,  the  Tournament  Selection  mechanism  that  uses  two
randomly selected solutions each time could enhance the pos-
sibility  that  worse  solutions  might  also  be  selected,  so  the
exploration ability could be enhanced.  

D.  Update the Archive
In  this  part,  we  introduce  the  method  used  to  update  the

archive  that  stores  obtained  feasible  solutions.  The  pseudo

code  is  presented  in  Algorithm 4.  The  archive  has  two func-
tions.  First,  it  is  used  to  store  obtained  feasible  solutions  to
determine whether solutions are in the promising region. Sec-
ond,  the  archive  is  used  as  the  final  output  solution  set  of
CMOES. Therefore, the archive must be updated at each gen-
eration  and  the  convergence  and  diversity  of  feasible  solu-
tions must be enhanced.

Algorithm 4 Update the Archive

P ARequire: N (required size),  (candidate solution set),  (archive
at last generation)

A FAOutput:  (archive  for  next  generation),  (fitness  values  of
archive solutions)

FN←

P

1:  Perform  the  non-dominated  sorting  using  constrained
dominance principle in NSGA-II and obtain the front number of
each solution in ;
A← P FN = 1 A2:  Add solutions in  that satisfy  to ;
|A| > N3: if  then
FA←

A
4: 　  Calculate the Crowding distance of NSGA-II  values of

solutions in ;
A, FA←5: 　  Delete  redundant  solutions  using  the  Crowding  dis-
tance  and  save  the  Crowding  distance  values  of  preserved
solutions;

6: end if
A, FA7: return 

P A

Based  on  the  above  considerations,  any  update  mechanism
of any MOEA that  balances convergence and diversity could
be  used.  In  CMOES,  we  use  the  mechanism  of  NSGA-II,  a
classical  and  simple  MOEA,  for  updating  the  archive.  Other
mechanisms could also be used as a substitute. In the strategy
of this paper, we first include all feasible solutions of the pop-
ulation . Then, if the size of  exceeds N, the redundant fea-
sible  solutions  with  worse  crowding  distance  values  are
deleted.  

E.  The Framework of CMOES

A
g > θ×Gmax

Based  on  the  above  methods,  we  introduce  the  framework
of CMOES. The general procedure of CMOES is presented in
the  flowchart  shown  in Fig. 4.  In  order  to  perform  the  even
search method, we need to first find feasible solutions. There-
fore,  the  proposed  CMOES  contains  two  stages.  In  stage  I,
CMOES evolves the population by a CMOEA and updates the
archive  by  the  obtained  feasible  solutions.  It  is  worth  noting
that  terminating  stage  I  has  two  conditions.  The  first  condi-
tion  indicates  that  stage  II  starts  when  at  least  one  feasible
solution  is  found  and  stored  in .  The  second  condition

 is designed to allocate more computing resources
to push the population to approximate the CPF. Then, in stage
II, we generate offspring sets for both the archive and the pop-
ulation. Since the archive contains feasible solutions, we gen-
erate offspring using it to better exploit feasible regions.

FP1 FP2 FA

The  pseudocode  of  CMOES  is  presented  in  Algorithm  5.
One  important  point  that  we  should  note  is  the  procedure  of
Lines 12−16. In order to provide criteria for mating selections
in  stage  II,  we  need  to  calculate , ,  and  at  the
beginning of stage II. Therefore, we use a flag s to control this
step.

 

UPF

Selected solutions
Discarded solutions
Obtained feasible non-
dominated solutions
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Obtained feasible non-
dominated solutions

(a) (b)

f2

f1

f2

f1

 
Fig. 3.     An illustration of the benefits of the proposed even search method.
In Fig. 3(a), the darker diamond solutions are preserved to accelerate the con-
vergence and jump out of local feasible regions; in Fig. 3(b), the darker trian-
gles are preserved to detect feasible regions.
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Algorithm 5 The Framework of CMOESPR

GmaxRequire: N (population size),  (termination condition), η (evo-
lutionary length for finding feasible solutions)

AOutput:  (final archive solution set)
P←1:  Generate the initial population randomly;
CVmax←2:  Calculate the maximum constraint violation of popula-
tion;
A←3:  Update the archive by Algorithm 4;
g←4:  Set the current generation zero;
s←5:  Set the current search stage zero;

g <Gmax6: while  do
g← g+17:   　 ;
|A| = 0 || g < η×Gmax8:   　if  then
P←9:   　　  Evolve the population by a CMOEA;
A←10: 　　  Update the archive by Algorithm 4;

11: 　else
s = 012: 　　if  then
s← 113: 　　　 ;
FP1,FP2←14: 　　　  Calculate the fitness of two proportions of the
population;
FA←15: 　　　  Calculate the fitness of solutions of the archive;

16: 　　end if
MA←

FA |A|
17: 　　  Tournament selection for the mating pool of arch-

ive based on  with size ;
OA←
MA

18: 　　  Generate  offspring  by  the  GA  operator  based  on
;

MP1←
FP1

19: 　　  Tournament  selection  for  the  mating  pool  of  the
first proportion of the population based on ;
OP1←
MP1

20: 　　  Generate  offspring  by  the  GA  operator  based  on
;

MP2←
FP1

21: 　　  Tournament  selection  for  the  mating  pool  of  the
second proportion of the population based on ;
OP2←
MP2

22: 　　  Generate  offspring  by  the  GA  operator  based  on
;

O←OA∪OP1 ∪OP223: 　　 ;
P, FP1, FP2←24: 　　  Update the population by Algorithm 2;
A, FA←25: 　　  Update the archive by Algorithm 4;

26: 　end if
CVmax←27: 　  Update  the  maximum  constraint  violation  value
found by the population;

28: end while
A29: return 

  

F.  Computational Complexity
O(mN2)The  computational  complexity  of  Algorithm  1  is 

since  the  maximum  size  of  the  archive  is N.  The  computa-

O(mN2)
O(N)2

O(N)
O(mN2)

O(mN2)

tional complexity of Algorithm 2 is  for the fast non-
dominated  sorting  and  for  calculating  the  closest  dis-
tance. The computational complexity of Algorithm 3 is .
The  computational  complexity  of  Algorithm  4  is  of
calculating  the  crowding  distance  by  NSGA-II.  In  summary,
the  computational  complexity  of  CMOES  is .  How-
ever,  as  the  procedure  runs  sequentially,  the  practical  time
complexity could be several times larger.  

G.  Remarks

P1 P2

The  proposed  CMOES  is  different  from  existing  multi-
stage-based  and  multi-population-based  CMOEAs,  which
adopt multiple stages and populations with different CHTs or
algorithmic  strategies.  More  specifically,  CMOES  is  not  a
multi-stage-based  CMOEA  because  the  former  stage  is
adopted  only  to  ensure  that  at  least  one  feasible  solution  is
obtained  to  determine  the  PR.  In  addition,  CMOES  is  not  a
multi-population-based CMOEA because  and  are used
to  maintain  two different  kinds  of  promising  solutions  found
in the PR, rather than two populations.

The proposed even search method is also different from the
ε-constrained technique (constraint relaxation), which ignores
constraints (i.e., CV) to some extent through a relaxation fac-
tor  and  prefers  solutions  with  better  convergence  (i.e.,  non-
dominated).  In  even  search,  all  solutions  with  a  CV  value
smaller than ε,  whether dominated or non–ominated, can sur-
vive. In addition, the even search method aims to enhance the
distribution  of  these  solutions  in  the  PR  to  explore  the  CPF.
This can provide a more comprehensive search than the con-
straint relaxation techniques.

Finally, CMOES is different from the methods in [10], [17],
which  both  use  constraint  relaxation  in  one  of  their  compo-
nents (population and archive). In CMOES, the proposed even
search  method is  adopted.  Although CMOES also  contains  a
factor ε, it is more simplistic and its function is different. It is
used in the even search to determine the second proportion of
promising  solutions.  Comparative  studies  are  conducted  and
presented in Section IV-F.  

IV.  Experimental Studies

This section presents the experimental studies, including the
settings,  results,  and  analysis,  on  CMOES.  All  experiments
were conducted on PlatEMO [18]3.  

A.  Experimental Settings
1)  CMOPs  for  Experiments: We  selected  four  benchmark
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Fig. 4.     The overall framework of the proposed CMOES.
 

  
3 Detailed discussions and analyses on all experimental results can be found in
the supplementary file at: https: //wewnyin.github.io/wenyingong/Publication/
CMOES-supp.pdf.
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CMOP test  suites  and  14  real-world  CMOPs to  test  our  pro-
posed CMOES. The four benchmarks include MW [19], LYO
[9],  LIR-CMOP  [20],  and  DAS-CMOP  [21].  The  14  real-
world test  problems are  the former 14 two-objective CMOPs
from  the  test  suite  for  the  IEEE  CEC  2021  Competition  on
Real-World Multiobjective Constrained Optimization [22]4.

2) CMOEAs for Experiments: In this paper, we selected 11
state-of-the-art  CMOEAs  for  comparison,  including  methods
belonging  to  all  three  categories  in  Section  II-B.  They  are
BiCo  [23],  CMOEA-MS  [5],  MFO  [13]  (the  MFO-SPEA2
instantiation),  ShiP  [1]  (the  ShiP-A  instantiation),  URCMO
[6],  C-TAEA  [4],  CCMO  [12],  ToP  [3],  DSPCMDE  [14],
NSGA-II-ToR [15], and CCEA [9].

3)  Parameter  Settings  and  Genetic  Operators: For  algo-
rithms  that  use  the  operators  of  GA,  the  simulated  binary
crossover (SBX) and polynomial mutation (PM) were adopted
with the following parameter settings:

pc = 1
ηc = 20

a) Crossover probability was ; distribution index was
;

pm = 1/n
ηm = 20

b)  Mutation  probability  was ;  distribution  index
was .

CR
For algorithms that use the operators of DE, the parameters
 and F in  the  DE  operator  were  set  to  1  and  0.5,  respec-

tively.

Emax Gmax
Emax/N σ = 10−4

The population size N was set to 100, the maximum evalua-
tion  was  100  000,  the  maximum  generation  was

. This work adopts  for the tested problems as
the relaxation for equality constraints. All other parameter set-
tings  of  the  comparison  methods  were  the  same  as  in  their
original  literature  (i.e.,  the  default  settings  in  PlatEMO).  The
parameters for our proposed methods include η used to calcu-
late ε, it is set to 2 and the influence of this parameter will be
studied in Section IV-E.

4)  Performance  Indicators: Inverted  generational  distance
based  on  modified  distance  calculation  (IGD+)  [24]  and
hypervolume (HV)  [25]  were  adopted  as  indicators  to  evalu-
ate  the  performance  of  different  algorithms.  IGD+  is  used
because  IGD  is  proved  Pareto  non  complaint  [24].  We  used
two indicators to achieve a sound and fair comparison [26].

Z
A d(ai,z j)

Suppose  is  a set  of uniformly distributed points on CPF
and  is the solution set. In IGD+,  is calculated as

 

d(a,z) =

√√√ M∑
k=1

(max {ak − zk,0})2 (6)

then, IGD+ is calculated as
 

IGD+(Z,A) =
1
|Z|

|Z|∑
j=1

min
ai∈A

d(ai,z j) (7)

d(ai,z j)where  is the Euclidean distance between a and z.
A smaller IGD+ value indicates a better performance.

zr A

HV [25] measures the volume or hypervolume of the objec-
tive space enclosed by the obtained solution set and the prede-
fined reference point , HV of a solution set  can be formu-
lated as
 

HV(A) = VOL
(
∪[z1,zr

1]×, . . . ,×[zm,zr
m]
)

(8)

VOLwhere  indicates  the  Lebesgue  measure.  A  larger  HV
value indicates better performance obtained.

10 000

(1.1,1.1, . . . ,1.1)

 uniformly  distributed  points  were  sampled  on  the
true CPF for the calculation of IGD+ according to [12]. As for
HV,  the  objective  values  were  first  normalized,  and  then,

 was adopted as the reference point in the nor-
malized objective space.

30

0.05

5) Statistical  Analysis: Each algorithm executed over  inde-
pendent  runs on each test instance. The mean and standard
deviation  values  of  IGD+  and  HV  were  recorded.  The
Wilcoxon rank-sum test with a significance level of  was
employed  to  perform  the  statistical  analysis.  Additionally,
“+”, “−” and “=” were used to  show that  the results  of  other
algorithms  were  significantly  better  than,  significantly  worse
than,  and  statistically  similar  to  those  obtained  by  our  meth-
ods to the Wilcoxon test, respectively.  

B.  On Benchmark CMOPs
This  part  presents  the  results  and  analyses  of  benchmark

CMOPs.  A  short  summary  of  the  statistical  results  is  pre-
sented  in Table I.  In  the  Supplementary  file,  more  detailed
explanations and analyses are provided.

1)  On  DAS-CMOPs: DAS-CMOPs  are  featured  as
adjustable difficulties on convergence, diversity, and feasibil-
ity,  which  tests  the  versatility  and  generic  ability  of  an  algo-
rithm.  The  statistical  results  on  HV  and  IGD+  obtained  by
CMOES and other CMOEAs are recorded in Tables S-II and

 

TABLE I 

A Summary of Statistical Results of HV and IGD+ on All Benchmark and Real-World Problems

CMOES vs (+/−/=) BiCo CMOEA-MS MFO-SPEA2 ShiP-A URCMO C-TAEA CCMO ToP DSPCMDE NSGA-II-ToR CCEA

DAS-CMOP
HV 0/7/2 1/7/1 0/9/0 0/9/0 1/7/1 0/8/1 2/5/2 0/9/0 0/9/0 0/9/0 2/7/0

IGD+ 0/7/2 1/6/2 0/8/1 0/9/0 1/8/0 0/9/0 1/5/3 0/9/0 0/9/0 0/9/0 1/7/1

LIR-CMOP
HV 0/14/0 2/12/0 0/14/0 4/10/0 1/7/6 0/14/0 1/12/1 0/14/0 2/7/5 0/14/0 2/12/0

IGD+ 0/14/0 2/12/0 0/14/0 5/9/0 1/8/5 0/13/1 1/12/1 0/14/0 3/8/3 0/14/0 2/12/0

LYO
HV 0/3/5 0/7/1 0/6/2 0/8/0 1/7/0 0/8/0 1/7/0 0/7/1 0/7/1 0/8/0 3/3/2

IGD+ 0/3/5 0/7/1 0/5/3 0/8/0 1/7/0 0/8/0 1/7/0 0/7/1 0/7/1 0/8/0 3/3/2

MW
HV 6/5/3 0/10/4 7/2/5 4/6/4 4/5/5 4/9/1 2/2/10 0/13/1 1/13/0 0/14/0 0/8/6

IGD+ 6/4/4 0/10/4 5/1/8 7/5/2 3/5/6 5/7/2 2/2/10 0/13/1 0/13/1 0/14/0 3/7/4

RW-MOP HV 1/5/8 2/9/3 2/3/9 3/5/6 3/5/6 3/9/2 2/7/5 4/4/6 2/10/2 3/11/0 2/9/3
 

  
4 Dimensions of m and n of the selected benchmarks are reported in Table S-I
in the Supplementary file.
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S-III in the Supplementary file. The results show that CMOES
outperformed  all  other  methods  on  DAS-CMOP1  to  DAS-
CMOP6,  while  CMOEA-MS,  CCMO,  URCMO,  and  CCEA
outperformed  CMOES  on  DAS-CMOP7,  DAS-CMOP8,
DAS-CMOP9,  and  DAS-CMOP7-8,  respectively.  The  feasi-
ble  and non-dominated solution sets  obtained by CMOES on
each instance of  DAS-CMOPs with the median IGD+ values
among 30 runs are presented in Fig. S-I in the Supplementary
file. It is apparent that CMOES had finally found the CPF and
achieved good diversity in each instance. To further compare
the  results,  we  depicted  feasible  and  non-dominated  solution
sets  obtained  by  all  methods  on  DAS-CMOP3  and  DAS-
CMOP9 in  Figs.  S-2  and  S-3  in  the  Supplementary  file,  res-
pectively. It could be found that most of the methods in com-
parison  could  not  handle  these  two  CMOPs  well.  Although
DSPCMDE  could  find  the  CPF  of  DAS-CMOP3,  it  per-
formed poorly on DAS-CMOP9. Similarly, although URCMO
performed  well  on  DAS-CMOP0,  it  performed  poorly  on
DAS-CMOP3.  However,  CMOES  could  only  find  most  of,
not all, the feasible regions on DAS-CMOP7-9, and the diver-
sity  performances  were  not  very  good.  The  reason  could  be
that in our update strategy of the archive (which is used as the

final output), the crowding distance of NSGA-II was adopted,
but  it  is  not  very  suitable  for  three-objective  problems.  In
addition,  a  three-objective  space  is  much  larger,  and  achiev-
ing  an  even  search  is  much  harder.  Nevertheless,  CMOES
could solve all instances of DAS-CMOPs, demonstrating that
it  has  the  best  versatility. Fig. 5(a)  presents  the  convergence
profile  on  IGD+  of  CMOES  and  other  methods  on  DAS-
CMOP1.  Compared  to  other  methods,  CMOES  obtained  not
only  fast  convergence  speed  but  also  the  best  final  IGD+
value.

2)  On  LIR-CMOPs: LIR-CMOPs  are  featured  as  large
infeasible regions that propose difficulties for an algorithm to
locate  very  feasible  regions,  especially  for  those  feasibility-
preferred CMOEAs. Tables S-IV and S-V in the Supplemen-
tary  file  present  the  statistical  results  on  HV  and  IGD+
obtained  by  CMOES  and  other  methods,  respectively.  The
results  show  that  ShiP-A  performed  better  than  CMOES  on
LIR-CMOP1-4,  DSPCMDE  performed  better  on  LIR-
CMOP5-6  and  LIR-CMOP7,  and  some  CMOEAs  performed
better  on  LIR-CMOP13-14.  For  three-objective  LIR-
CMOP13-14, the reasons are the same. To further investigate
the results, we depicted the feasible and non-dominated solu-
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Fig. 5.     The convergence profiles on IGD+ of CMOES and other methods on DAS-CMOP1, LIR-CMOP11, LYO4, and MW11 with the median IGD+ values
among 30 runs.
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tion  sets  obtained  by  CMOES  on  each  instance  of  LIR-
CMOPs  with  the  median  IGD+  values  among  30  runs  in
Fig. S-4 in the Supplementary file. Also, we depicted the fea-
sible  and  non-dominated  solution  sets  obtained  by  all  meth-
ods in Fig. 6. It is apparent that CMOES had found only some
parts  of  the  CPF  on  LIR-CMOP1-4  and  the  better  indicator
results  on  LIR-CMOP5-10 were  because  CMOES could  find
the  CPF  impeded  by  the  large  infeasible  regions.  Although
CMOES  outperformed  most  of  the  methods  in  comparison,
these results reveal that the effectiveness of CMOES in deal-
ing  with  CMOPs  with  very  small  feasible  regions  has  to  be
improved.  In  summary,  CMOES  could  handle  LIR-CMOPs
with large infeasible regions because the even search method
could  explore  the  objective  space  where  the  small  feasible
regions  locate. Fig. 5(b)  presents  the  convergence  profile  on
IGD+ of CMOES and other methods on LIR-CMOP11. Com-

pared to other methods, CMOES obtained the best final IGD+
value.

3) On LYOs: LYOs are a set of special benchmark CMOPs
that  the  initial  population  arises  in  the  complex  infeasible
regions  below  the  CPF  in  the  objective  space.  Therefore,  it
proposes difficulties  for  an algorithm to make use of  infeasi-
ble solutions to search back to the CPF. The statistical results
on  HV  and  IGD+  obtained  by  CMOES  and  other  CMOEAs
are  reported  in  Tables  S-VI  and  S-VII  in  the  Supplementary
file.  CCEA  and  CMOES  obtained  the  best  overall  results,
except  that  only  URCMO  performed  better  on  LYO2.  Most
CMOEAs in comparison could not handle LYO5-8, except for
CCEA  and  CMOES.  However,  CMOES  performed  worse
than CCEA, an algorithm proposed for the LYOs. To further
analyze  the  results,  we  depicted  the  obtained  final  solution
sets  by  CMOES on  all  instances  with  the  median  IGD+ val-
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Fig. 6.     Feasible  and  non-dominated  solution  sets  obtained  by  CMOES  and  other  methods  on  LIR-CMOP8  with  the  median  IGD+  value  among  30  runs.
(a) Contains the results of BiCo, CMOEA-MS, MFO-SPEA2, ShiP-A, URCMO, and C-TAEA; (b) Contains the results of CCMO, ToP, DSPCMDE, NSGA-II-
ToR, CCEA, and CMOES.
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ues among 30 runs in Fig. S-6 in the Supplementary file, and
the obtained solution sets  by all  methods on LYO6 in Fig. 7.
From Fig. 7 we can see that only BiCo, CCEA, and CMOES
could find the CPF. From Fig. S-6 in the Supplementary file it
can be found that CMOES could not find all the segments of
the  CPF  on  LYO7-8.  Since  the  distribution  of  feasible  and
infeasible  regions  was  not  given  in  LYO,  it  can  be  only
inferred that the reason is few or no offspring could be gener-
ated in the sparse and blank areas when dealing with LYO7-8.
Nevertheless,  CMOES  performed  well  on  this  special  test
suite compared to most state-of-the-art CMOEAs, demonstrat-
ing the effectiveness of CMOES in using valuable solutions in
the promising region. Fig. 5(c) presents the convergence pro-
file on IGD+ of CMOES and other methods on LYO4. Com-
pared to other methods, CMOES obtained the best final IGD+
value.  Additionally,  the  extremely  bad  performances  of
CMOEA-MS,  MFO-SPEA2,  and  CCMO  also  demonstrate
that  these  CMOEAs  using  a  specific  or  complicated  strategy
lack versatility.

4)  On  MWs: MWs  are  featured  as  four  relationships
between the CPF and the UPF, which comprehensively repre-
sent  the  problem types  in  terms  of  the  position  and  distribu-
tion  of  the  CPF  relative  to  the  UPF.  However,  according  to
our experimental experience, MWs lack difficulties in the dis-
tribution of infeasible regions. Therefore, ignoring constraints
could well assist the search for the CPF for most instances of
MW,  especially  the  Type-I  to  Type-III  problems.  However,
these constraint-ignoring-assisted CMOEAs performed worse
in  dealing  with  Type-IV  problems.  Therefore,  as  the  statisti-
cal  results  reported in Tables S-VIII  and S-IX in the Supple-
mentary  file  reflected,  those  CMOEAs  using  a  constraint-
ignored auxiliary problem (BiCo, CMOEA-MS, MFPSPEA2,
and CCMO) performed well. Besides, although MFO-SPEA2
and BiCo performed extremely  well  on  MWs,  they  also  per-
formed extremely poorly on DAS-CMOPs, LIR-CMOPs, and
LYOs.  This  indicates  that  some  advanced  approaches  lack
versatility but overfit some kinds of problems. To further ana-
lyze the results, we depicted the obtained final solution sets of
CMOES on all instances of MW in Fig. S-8 in the Supplemen-
tary  file.  It  can  be  found  that  CMOES  finally  obtained  very
good  results  in  terms  of  both  convergence  and  diversity,
except that it could not find the CPF segment in a very small
feasible region on MW10. Fig. 5(d) presents the convergence
profile on IGD+ of CMOES and other methods on MW11. It
can be found many state-of-the-art CMOEAs could solve this
problem very well.

5)  Summaries  and  Conclusions: The  results  of  these  four
benchmark  suites  show  the  following  phenomena.  BiCo  and
MFO-SPEA2  performed  very  well  on  the  MW  test  suite  but
extremely  poorly  on  the  other  three.  CCEA  performed  very
well on the LYO test suite but performed poorly on the others.
ShiP-A performed very well on LIR-CMOP1-4 but poorly on
other  instances  of  LIR-CMOPs,  also,  it  performed  well  on
some  Type-I,  Type-II,  and  Type-III  instances  (MW2,  MW6,
MW10, and MW13) of MW but performed poorly on others,
especially on Type-IV instances. Therefore, these methods are
somehow  overly  fine-tuned  and  overfitting.  As  we  analyzed

above, although CMOES could not achieve the best indicator
values, it  can find the CPF and obtain good distribution on it
in  the  face  of  most  instances,  especially  DAS-CMOPs  with
adjustable  and  multiple  features.  It  can  be  concluded  that
searching in the promising region can achieve the best versa-
tility.  

C.  On Real-World CMOPs
In  this  part,  we  present  the  experiment  on  real-world

CMOPs.  We  selected  the  former  14  two-objective  CMOPs
from the IEEE CEC 2021 Competition on Real-World Multi-
objective  Constrained  Optimization  test  suite  in  this  experi-
ment.  It  should  be  noted  that  the  features  and  difficulties  of
these  problems are  unknown,  and  they  include  CMOPs from
very  different  application  fields.  Since  the  true  CPFs  are
unknown,  IGD+  is  not  applicable,  so  only  HV  is  used.  The
statistical results of HV are reported in Table S-X in the Sup-
plementary  file.  It  could  be  seen  that  CMOES generally  out-
performed  all  the  other  methods  except  for  ToP.  Also,  they
obtained the largest number of best results (four) among these
14  instances.  From  the  results,  we  could  draw  the  following
three conclusions. First, different algorithms perform very dif-
ferently  among  various  CMOPs.  Second,  without  complex
strategies  or  techniques,  CMOES  and  ToP  performed  better
than  those  with  complex  strategies  and  techniques  on  real-
world  problems.  Third,  although  different  algorithms  per-
formed differently, CMOES generally obtained better versatil-
ity.  

D.  Ablation Studies on the Effectiveness of Even Search
In this part, we present the ablation study conducted to ver-

ify  the  effectiveness  of  our  proposed  even  search  method.
First, we created two variants as follows

1) CMOESP1: Only the first proportion of the population is
preserved and evolved in mating and selection;

2) CMOESP2: Only  the  second  proportion  of  the  popula-
tion is preserved and evolved in mating and selection.

The  results  on  HV  and  IGD+  on  the  four  benchmarks  are
presented in Tables S-XI–S-XVIII  in  the Supplementary file.
In  summary,  we  could  draw  the  same  conclusion  as  men-
tioned  in  Section  II-B.  Preserving  only  the  first  proportion
performed  better  on  CMOPs  whose  CPF  is  close  to  or  con-
tained  by  the  UPF,  on  the  contrary,  preserving  only  the  sec-
ond proportion performed better on CMOPs whose CPF is far
from the UPF, especially LYOs.

Gmax/2

Then,  we  depicted  the  distributions  of  the  second  propor-
tion  of  the  population  at  the  middle  stage  of  evolution  (i.e.,

)  in  dealing  with  DAS-CMOP1,  DAS-CMOP5,  LIR-
CMOP1,  LIR-CMOP11,  LYO1,  and MW13 with  the  median
IGD+ values among 30 runs in Fig. 8. From these figures, we
could  see  that  the  second  proportion  of  the  population  had
even  distributions  near  all  segments  of  the  CPF  on  DAS-
CMOP1 and DAS-CMOP5. Also, it covered the most promis-
ing  regions  that  contain  the  CPF  on  LIR-CMOP1  and  LIR-
CMOP11. It should be noted that LIR-CMOP1 is rather diffi-
cult due to the very small feasible region (long and thin line).
It  reached  the  CPF from several  directions  and  finally  found
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all  segments of the CPF on LYO1. It  also had good distribu-
tion  near  all  regions  that  the  CPF  is  in  on  MW13,  including

,  the  CPF  segments  covered  by  very  small  feasible
regions. In summary, the second proportion of the population
could cover most of the CPF segments and help to detect new
feasible  regions  in  dealing  with  these  CMOPs  with  very  dif-
ferent  features  and  challenges,  revealing  that  our  proposed
even search method is versatile and robust.

Therefore,  from  the  above  results  and  analysis,  we  have
demonstrated  the  effectiveness  of  the  proposed  even  search
method. The first proportion of the population could enhance
the  convergence  and  suit  some  kinds  of  CMOPs,  while  the
second could help to solve other kinds of CMOPs.  

E.  Parameter Analyses

1/2 1 3/2

1/2

Since our proposed methods contain two important parame-
ters, η used to calculate ε and θ used to control  the length of
the former stage, we also conducted experiments on studying
the sensitivity of these parameters. Specifically, we changed η
to , , ,  and 3 respectively,  instead of 2 in the original
setting,  to  study the effectiveness of  the proposed ε under  an
incremental  ( ),  steady  (1),  gently-decreasing  (3/2),  and
rapidly-decreasing  (3)  gradient.  The  statistical  results  on  HV
and IGD+ on the four benchmarks are presented in Tables S-
XIX–S-XXVI in the Supplementary file.

η = 2
η = 2 η = 3

η = 2

η = 2

For DAS-CMOPs and LIR-CMOPs,  is  the most  suit-
able  setting  for  most  cases.  For  LYOs,  and  per-
form similarly while  has better general performance. For
MWs, a larger ε is also more suitable for those instances with
very  small  feasible  regions  (MW2,  MW6,  MW10,  and
MW13).  However,  is  more  suitable  for  LIR-CMOPs.
This also demonstrates the announcement that a specified and
complicated  technique  might  overfit  some  problems,  and  a
simple strategy or technique is more applicable for real-world
applications.

θ = 2For  DAS-CMOPs,  is  the  best  setting,  For  LIR-
CMOPs,  a  smaller θ results  in  a  shorter  former  stage  and
longer even search stage, bringing better performance on LIR-
CMOP1-4  which  has  the  smallest  feasible  region,  revealing
that our proposed even search strategy can enhance the perfor-
mance when the feasible regions are considerably small.  The
setting of θ does not have a significant influence on LYOs and
MWs.  

F.  Comparison With Constraint Relaxation-Based CMOEAs
In this  part,  the proposed CMOES is  compared to the con-

straint relaxation-based CMOEAS in TriP [10] and PPTA [17]
to prove the superiority of even search. HV and IGD+ results
on benchmark problems are reported in Table S-XXVII in the
Supplementary  file.  Trip  and  PPTA  outperformed  CMOES
only on LIR-CMOP1-6,  whose feasible regions are consider-
ably  small.  Similarly,  TriP  can  only  outperform  CMOES  on
MW  instances  with  very  small  feasible  regions.  Meanwhile,
CMOES outperformed them in almost all the other instances,
from which the following two observations can be made. Trip
and  PPTA  both  adopt  a  fine-tuned ε-constrained  technique,
which  can  enhance  the  performance  on  several  special
instances but  fail  to  adapt  to  different  kinds of  problems.  On
the  contrary,  CMOES,  which  uses  only  simplistic  designed
techniques and a general even search method, has better versa-
tility.  

V.  Conclusions and Future Work

In this article, we proposed to search evenly in the promis-
ing region to solve CMOPs. We investigated that the promis-
ing  region  contains  the  CPF  and  has  good  properties.  Then,
we designed an even search method that utilizes two kinds of
valuable solutions to search evenly in the promising region for
the  CPF.  A  new  CMOEA,  termed  CMOES,  is  developed
based  on  simple  strategies  and  techniques,  and  the  experi-
ments have demonstrated the effectiveness and the best versa-
tility  of  our  proposed  methods  on  both  benchmark  and  real-
world  CMOPs.  The  results  prove  that  a  specified,  especially
complicated,  strategy  or  technique  might  overfit  some  prob-
lems with specific properties, resulting in a lack of versatility.
On the contrary, methods that use simple strategies and tech-
niques  could  be  more  applicable  to  real-world  problems
whose features and difficulties are unknown.

However,  the  proposed  CMOES  also  has  some  limitations
that need to be improved. The ineffectiveness of the proposed
CMOES  on  LYO7-8  needs  further  investigation.  It  indicates
that  the  proposed ε-constrained  technique  is  still  sensitive  to
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Fig. 8.     The  distributions  of  the  second  proportion  of  the  population  at  the
middle stage of evolution in dealing with DAS-CMOP1, DAS-CMOP5, LIR-
CMOP1,  LIR-CMOP11,  LYO1,  and  MW13  with  the  median  IGD+  values
among 30 runs.
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the parameters and design. Besides, how to better locate feasi-
ble regions while searching evenly in the promising region is
expected  referring  to Fig. 8(f),  especially  when  dealing  with
CMOPs with very small  feasible  regions.  Furthermore,  using
machine learning techniques to achieve an even search in the
promising region is worth trying [27]–[29]. Last but not least,
extending  the  even  search  method  to  other  types  of  multi-
objective optimization problems to enhance the performances
of existing algorithms is also valuable [30], [31].

The  codes  of  CMOES  can  be  obtained  from  the  authors
upon request.
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