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   Dear Editor,

This letter proposes to integrate dendritic learnable network archi-
tecture  with  Vision  Transformer  to  improve  the  accuracy  of  image
recognition. In this study, based on the theory of dendritic neurons in
neuroscience,  we  design  a  network  that  is  more  practical  for  engi-
neering to classify visual features. Based on this, we propose a den-
dritic  learning-incorporated  vision  Transformer  (DVT),  which  out-
performs  other  state-of-the-art  methods  on  three  image  recognition
benchmarks.

Introduction: Image  recognition,  as  an  upstream  task  of  many
computer vision problems, has very important research value. Many
studies focus on optimizing the architecture of the feature extraction
network to make it extract richer and more representative image fea-
tures. In the early stages of deep learning, the convolutions are sim-
ply stacked to build feature extraction networks. While effective, this
method had some limitations  such as  the  need for  large  amounts  of
data, long training times, and limited interpretability [1]. To address
these issues, researchers have introduced more effective and biologi-
cally  interpretable  structures.  The  use  of  residual  connections  [2],
densely connected blocks [3], and attention mechanisms [4] have all
been  explored  to  improve  the  performance  of  image  recognition
models.  These structures have proven to be successful in improving
accuracy,  reducing  training  time,  and  enhancing  interpretability.
More recently, the introduction of vision Transformer (ViT) has fur-
ther  improved  the  network  used  to  extract  image  features  [4].  ViT
decomposes  images  into  multiple  patches  and  processes  them
through  multiple  Transformer  layers,  allowing  the  network  to  cap-
ture  global  context  and  long-term dependencies  of  images.  Further-
more,  a  self-attention  mechanism  allows  the  model  to  focus  on  the
most  important  regions  of  images,  further  improving  its  efficiency
and accuracy.

However, another important aspect of the image recognition task is
seldom mentioned, i.e., how to effectively classify the extracted fea-
tures.  Most  of  the  aforementioned  studies  have  focused  on  using
multi-layer  perceptron  (MLP)  structures  for  feature  classification.
Despite  their  simplicity  and  effectiveness,  MLPs  still  have  limita-
tions, such as excessive parameter requirements and susceptibility to
overfitting [5].  They are  also less  suitable  for  handling high-dimen-
sional feature vectors in large-scale image recognition tasks. Inspired
by  the  evolution  of  visual  feature  extraction  networks,  developing
more  efficient  and  biologically  interpretable  classification  networks
has  the  potential  to  significantly  improve  image  recognition  accu-
racy. Thus, opening up new possibilities for computer vision applica-
tions.

Artificial neurons, inspired by their biological counterparts, play a

crucial role in shaping neural networks. The initial McCulloch Pitt’s
model  used  a  simple  linear  threshold  function  for  computation  [6].
MLP  architectures  later  addressed  the  issue  of  linear  inseparability
[7], and spiking neural networks introduced discrete pulse signals to
improve  computational  efficiency  [8].  However,  there  still  exists  a
considerable accuracy gap between current artificial neurons and bio-
logical  neurons.  Recently,  dendritic  neurons,  drawing  inspiration
from  neuroscience,  have  emerged  as  promising  alternatives.  With
their  architecture  incorporating  synapse,  dendrite,  and  soma  layers,
dendritic  networks  enhance  biological  interpretability  and  exhibit
superior performance in challenging tasks [5].

In this study, we propose a novel neural network architecture that
combines two biologically interpretable  networks for  neuroscientifi-
cally aligned image recognition. To ensure practicality, we carefully
design the synapse, dendrite, and soma layers of the dendritic neuron
as an artificial neuron model. By integrating the Vision Transformer
with our proposed dendritic network, we create DVT, a highly inter-
pretable  network.  Extensive  experiments  on  multiple  benchmarks
demonstrate  the  significant  performance  improvements  achieved  by
DVT compared to state-of-the-art methods in image recognition. The
accuracy results  in Fig. 1 depict  the performance of  peer  models  on
the CIFAR dataset, without pre-training weights. These findings indi-
cate the potential of DVT to advance computer vision and deepen our
understanding of visual perception mechanisms.
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Fig. 1. The accuracy comparison in CIFAR.
 

Related work:
1) Vision Transformer: It, a novel class of image feature extraction

networks,  overcomes  the  limitations  of  traditional  convolutional
operators  by  using  long-term  dependency-based  self-attention  to
extract  spatial  features  [4].  However,  despite  their  effectiveness  in
capturing global features, they still face issues such as computational
complexity [9], sensitivity to hyper-parameters [10], and data depen-
dency [11].  Besides,  enhancing their  expressiveness,  particularly  on
lower-resolution datasets, remains a significant challenge.

2) Dendritic network: Inspired by the structure and function of reti-
nal ganglion cells [12], the dendritic network has been proposed as a
more  biologically  plausible  artificial  neuron  [5].  It  has  shown
remarkable results in various kinds of problems [13], [14]. However,
its sophisticated architecture requires efficient learning algorithms to
improve its performance [5], which presents an obstacle to its further
development. In light of this, we aim to optimize the architecture of
the  dendritic  network  to  enhance  its  practical  performance.  Specifi-
cally, we reinvent its synapse, dendrite, and soma layer to improve its
learning  stability  and  performance.  It  makes  the  dendritic  network
more practical for image recognition.

Methodology: In  this  study,  we  propose  DVT,  a  dendritic  learn-
ing-incorporated vision Transformer, aimed at enhancing the perfor-
mance  and  interpretability  of  image  recognition  tasks.  DVT  com-
bines  two  essential  components:  a  vision  Transformer  featuring
embedded  attention  mechanisms  and  a  dendritic  network  mirroring
real  neuronal  architecture.  The  vision  Transformer  extracts  more
comprehensive  and  representative  image  features,  while  the  den-
dritic  network  ensures  accurate  feature  classification.  The  overall
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framework of DVT is depicted in Fig. 2. Initially, the input image is
sliced into smaller patches, and linear projection and position encod-
ing are applied to each patch to preserve spatial information and opti-
mize  computational  efficiency.  These  processed  feature  maps  are
then fed into multiple stacked Transformer blocks, wherein the self-
attention mechanism enables the network to selectively focus on per-
tinent  information  and  suppress  irrelevant  noise.  Through  continu-
ous  fusion  and  amplification  of  receptive  fields,  DVT  efficiently
extracts  highly  representative  features  from  the  entire  image.  The
dendritic network, comprising three biomimetic layers (synapse, den-
drite,  and  soma),  takes  charge  of  the  final  feature  classification.  To
enhance its convergence·, we introduce a feature normalization oper-
ation  that  reduces  feature  discrepancies  and  overall  improves  net-
work performance.

m ∈ Rh×n×n

1)  Self-attention  mechanism:  It  plays  a  crucial  role  in  visual  fea-
ture  extraction  by  incorporating  local  and  global  information  to
obtain  more  representative  features  [4].  By  employing  multi-head
self-attention  and  stacking  multiple  Transformer  blocks,  the  robust-
ness  of  feature  extraction  is  enhanced.  However,  the  computational
cost  of  training  a  vision  Transformer  from  scratch  remains  a  chal-
lenge,  particularly  when  dealing  with  small-sized  datasets.  To  miti-
gate  this  issue,  we  propose  integrating  locality  self-attention  into
DVT,  drawing  inspiration  from  [15].  This  modification  effectively
captures  locally-focused  attention  contextual  information  through  a
self-masking  matrix  and  a  learnable  parameter γ.  This
adaptation improves the efficiency of DVT without compromising its
ability to capture relevant local information. Its formula is following:
 

z = A(q,k,v) = δ(m⊙ qkT
√
γ

)v (1)
 

m = Jn −∞In (2)
v ∈ Rh×n×d

A(·)
where q, k, and  are different feature vectors that obtained
by  linear  projection  of  input  data x.  Self-attention  integrates
them  via  scaled  dot-product. m is  a  all-ones  matrix  with  negative
infinity eigenvalues. It  is added to A to further deepen the ability of
the network to capture global features.

η(·)

2)  Dendritic  network:  Extensive  neuroscience  research  has
unequivocally  demonstrated  the  irreplaceable  nature  of  the  theoreti-
cal model of dendritic nerves. Moreover, numerous experiments con-
ducted  in  the  field  of  information  science  have  consistently  show-
cased  the  remarkable  capability  of  dendritic  networks  in  effectively
addressing nonlinear problems. Building upon this knowledge, in our
proposed  DVT,  we  integrate  a  feature  normalization  operation 
into  the  dendritic  network,  thus  aligning  it  more  closely  with  the
practical requirements of real-world engineering applications, i.e.,
 

yk =

m∑
i=1

d∑
j=1

δ(η(wk
i, jη(x) j +bk

i, j)) (3)

 

y = [y1,y2, . . . ,yc] (4)
 

η(x) =
x− x̄
√
σ(x)+ ϵ

θ+λ (5)

yk

δ(·)

η(·)

x̄ σ(x)

where x is  the  input  feature  of d dimension  and  is  the  predicted
probability  of  the tth  classification  target  by  the  network. c is  the
number  of  classes.  First,  normalized  inputs  are  mapped  to m den-
dritic branches through m sets of learnable parameters w and b, a pro-
cess  called  synaptic  connection.  Then,  feature  normalization  and
softmax  activation  function  are  performed  on  each  branch.
Finally, soma layer conception in neuroscience is applied in the net-
work to integrate all dendrites into the result. Notably, each y is asso-
ciated with one dendritic  neuron following (3),  and the synapses on
each branch are  independent  for  each neuron.  Such mutually  exclu-
sive  connections  are  considered  to  be  ubiquitous  in  neuroscience
[16], and they have also been proved to be the basis of efficient net-
work inference [17]. In proposed feature normalization , θ and λ
are  learnable  parameters, ϵ is  constant  to  prevent  the  denominator
from being 0,  and  are mean and variance of x, respectively.

Experiment:
1)  Dendrite  and  learning  rate  analysis:  The  number  of  dendrite

branches directly influences the network’s ability to approximate the
objective  function  accurately.  Similarly,  the  learning  rate  signifi-
cantly  impacts  the  network’s  adaptability  and  learning  capacity.  In
this  study,  we  comprehensively  analyze  these  hyper-parameters  to
determine the optimal  DVT configuration.  We establish a  fair  base-
line by comparing our findings to the original ViT. To ensure a con-
sistent  evaluation,  all  methods  are  trained  for  100  epochs  using  the
AdamW optimizer. CIFAR10 is chosen as the dataset for this experi-
ment due to its universality in image recognition and the diversity of
images  it  contains. Fig. 3 presents  the  results,  where  the  number  of
dendritic  branches  is  denoted  as  0,  representing  the  original  ViT.
Remarkably,  incorporating  the  dendritic  network  significantly
improves  the  performance  of  DVT  across  various  learning  rates.
Through  extensive  experimentation  with  different  numbers  of  den-
dritic branches (ranging from 2 to 64), we observe that increasing the
number  of  branches  leads  to  better  results.  For  optimal  prediction
outcomes  across  different  problem domains,  we  recommend  setting
the number of branches within the range of 8 to 32. Additionally, we
find that a learning rate of 0.003 yields favorable outcomes for DVT.

2) Performance comparison: We evaluate the performance of DVT
against  state-of-the-art  methods  using  four  widely  recognized  and
challenging  datasets:  SVHN,  CIFAR10,  CIFAR100,  and  Tiny-Ima-
geNet.  The  compared  methods  include  VGG19  [18],  ResNet50  [2],
ViT [4], Swin [9], and CaiT [11], covering the classic CNN architec-
ture  and  the  latest  Transformer-based  neural  network.  Notably,  the
biological  interpretability  of  these  methods  has  shown  a  gradual
increase, transitioning from CNN to Transformer models. The results
presented  in Table 1 demonstrate  the  clear  superiority  of  DVT over
its peers. Notably, the advantages of DVT become more pronounced
as  the  classification  difficulty  of  the  datasets  increases,  reinforcing
our  conclusion  that  DVT  excels  at  approximating  complex  target
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Fig. 2. The framework of DVT to recognize image.
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functions.  Furthermore,  the  accuracy  of  each  model  increases  as  its
interpretability  improves,  highlighting  the  advantage  of  employing
biologically interpretable models for image recognition problems.

3)  Ablation  study:  We  delve  deeper  into  the  spatial  and  temporal
complexity  of  DVT.  It  exhibits  an  increased  number  of  learnable
parameters  and  higher  FLOPs  compared  to  the  original  ViT.  More
specifically,  we  introduce  a  linear  layer  between  the  extracted  fea-
tures  and  the  classification  outcomes.  As  presented  in Table 2,  the
sizes  of  the  added  linear  layers  are  160  and  576,  respectively.  The
parameters of the ViT-160 and the FLOP of the ViT-576 are almost
similar to those in the DVT. This allows us to perform comparisons
to highlight the performance advantages of DVT. The backbone net-
works of all model architectures are the same. Therefore, only learn-
able  parameters  and  FLOPs  of  their  classification  networks  are
counted.  Notably,  a  simple  stacking  of  linear  layers  and  increasing
their  size  not  only  fails  to  enhance  accuracy  but  also  leads  to
degraded network performance due to heightened learning difficulty.
In  contrast,  DVT  relies  on  a  sophisticated  architecture  to  perform
efficient  calculations  with  fewer  parameters,  thereby enhancing net-
work performance.
 

Table 2.  Ablation Study On IFAR10
Architecture Params FLOPs Accuracy

ViT 1.92 K 1.93 K 93.01

ViT-160 32.49 K 32.32 K 92.92

ViT-576 117.32 K 117.31 K 92.68

DVT 34.19 K 108.58 K 94.15
 
 

Conclusion: In this study, we introduce DVT, a dendritic learning-
incorporated  vision  Transformer,  specifically  designed  for  universal
image  recognition  tasks  inspired  by  dendritic  neurons  in  neuro-
science. The incorporation of a highly biologically interpretable den-
dritic architecture enables DVT to excel in handling complex nonlin-
ear  classification  problems.  Our  experimental  results  highlight  the
substantial  improvement  achieved  by  DVT compared  to  the  current
state-of-the-art  methods  on  four  general  datasets.  Moreover,  these
findings  affirm  our  hypothesis  that  networks  with  high  biological
interpretability  in  architecture  also  exhibit  superior  performance  in
image recognition tasks.
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Fig. 3. The analysis of dendrite and learning rate in CIFAR10.
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