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   Dear Editor,

L1

L1

This  letter  concerns  the  parameter  tuning  problem  for  nonlinear
satellite buffer networks with communication delays, aiming to opti-
mize their stability properties under -gain. We first model the satel-
lite  buffer  networks  by  a  nonlinear  time-delay  positive  system  and
propose a novel characterization under which the nonlinear system is
asymptotically  stable  with  a  prescribed -induced  performance.
Then,  the  problem  of  finding  the  minimum-cost  parameters  is
reduced to  geometric  programming (GP),  which can be resolved by
convex optimization efficiently. The flexibility of GP allows simulta-
neous tuning of parameters in system state,  input,  and output matri-
ces.  A numerical  example is  presented to illustrate  the efficiency of
our proposed optimization framework.

Satellite  networks  are  critical  for  providing  communication  ser-
vices  to  remote  rural  areas,  disaster  response  teams,  and  military
operations  [1].  Besides,  the  emerging  concept  of  integrated  sensing
and communication (ISC) offers advantages over traditional satellite
networks  by  improving  data  collection,  transmission,  and  analysis
while  reducing  complexity,  power  consumption,  and  cost  [2].  To
reduce  the  communication  delay  and  loss  rate  of  satellite  networks
sensing  data,  buffer  management  is  necessary  to  store  and  forward
data packets between different components, such as satellites, ground
stations, and user terminals.

Before  their  employment  in  satellite  networks,  buffer  networks
play  a  critical  role  in  managing data  flows to  prevent  congestion  in
computer networks and IoT before their use in satellite networks [3].
The optimal design of buffer networks has been a hot research topic
for several decades, with various studies proposing different models
and  algorithms  for  minimizing  network  congestion  and  maximizing
throughput by tuning their parameters, such as flow size and routing
paths  [4].  One  of  the  earliest  studies  in  this  field  was  conducted  in
[5], who developed a model for analyzing the performance of buffer
networks.  Recent  research  has  studied  factors  influencing  network
performance, such as packet loss, throughput, and delay. In [6], non-
linear  optimal  buffer  allocation  approaches  were  proposed  for  qual-
ity of service (QoS) assurance in mobile networks. As confirmed by
simulations, the proposed methods minimize wasted data traffic and

improve resource optimization, leading to improved QoS.
The famous SpaceX’s Starlink project aims to provide high-speed

Internet  access  to  remote  areas  by significantly  increasing the  num-
ber  of  network  satellites.  It  remains  a  daunting  task  to  optimize  the
satellite network at such a massive scale. In this letter, we introduce
GP  for  optimizing  the  parameters  of  satellite  buffer  networks  with
communication  delay  and  nonlinear  characteristics.  GP  is  a  nonlin-
ear  optimization  technique  employing  generalized  posynomials  as
objective  functions  and  constraints  [7].  It  has  been  successfully
applied  in  diverse  areas,  including  the  chemical  industry,  network
power control  [8],  and resource allocation [9].  GP-based algorithms
are  efficient  and  robust  in  optimizing  resource  allocation  for  large-
scale networks.

L1

This  letter  introduces  a  convex  optimization  framework,  specifi-
cally GP, to tune the system parameters for nonlinear satellite buffer
networks.  The  main  contributions  are  twofold:  1)  A  necessary  and
sufficient criterion is first derived to characterize the -gain perfor-
mance for buffer networks modeled as nonlinear time-delay positive
systems;  2)  Based  on  the  obtained  input-output  performance  crite-
rion,  we  prove  that  the  problem  of  searching  the  minimum-cost
parameters can be reformulated into a GP one and solved by convex
optimization efficiently.
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Notations:  represents the set of all  real matrices. Let 1
represent a column vector with all elements equal to one.  or

 represents  a  real  vector v is  a  nonnegative  (positive)
vector  whose  elements  are  all  nonnegative  (positive).  or
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(positive) matrix. For two vectors  and ,  means 
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Problem statement: We consider an ISC network consisting of N
satellites  as  shown  in Fig. 1.  A  weighted  and  directed  graph

 is employed to depict the communication topology among
satellites,  where   and  represent  the  vertex
set  and  edge  set.  We  denoted  each  edge  (communication  link)  as

, where  and  represent the transmitter and
the receiver of the communication edge. The weight of edge  is
denoted as , representing the transmit rate. The adjacent matrix 
for  the  weighted  and  directed  graph  is  given  as: ,  if

 and  for  otherwise.  Define  in-neighborhood  set
and out-neighborhood set of satellite i as  and

. Furthermore, the network  has at least one
origin  with  in-degree  being ,  and  at  least  one  terminal  with  in-
degree  being .  Let  and  denote  the  observation  satellites
(space  telescopes)  and  terrestrial  receivers,  respectively.  Other  than 
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Fig. 1. Information flow in satellite buffer networks.
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that,  they are all  relay satellites.  The node i (satellite or receiver)  in
the dynamic buffer network satisfies
 

dxi

dt
=
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where  denotes  the data  amount  of  buffer  node i,  denotes
the data flow from satellite i to j,  and  represent the input data
of the observation satellite and the removal of processed data at  the
terminal receiver. Furthermore, , , and  satisfy
 

gout
i (t) = ϕi f (xi(t)), uout

i j (t) = ψiwi j f (xi(t))

uin
ji (t) = ψ jw ji f (x j(t−d))

ϕi > 0 i ∈ Vd ψi > 0 i ∈ V\Vd

f : RN → RN f (x) = [ f1(x1),
. . . , fN (xN )]T d ≥ 0

ϕi = 0
i <Vd ψi = 0 i ∈ Vd

z = [ f T (x), (αuin)T ]T α > 0
uin

uin
ji uin = αRΨ f (x(t−d)) R ∈ RM×N

Rℓi = weℓ i = eℓ(2) Rℓi = 0 i ∈ {1, . . . ,N}
ℓ ∈ {1, . . . ,M}

where  ( ) and  ( ) are constants, represent-
ing  the  data  processing  capability  and  the  transmission  power,
respectively. The function  is denoted as 

,  which  represents  the  data  compression  process. 
denotes  the  transmission  delay  between  satellites.  for  all

 and  for all .  The measurement output is defined
as  with  a  weight  constant  and  the M-
dimensional vector  is constructed by vertically stacking the flows

. We denote that  and  is defined as:
,  if ,  otherwise ,  for  all  and

.
δ = [ΦT ,ΨT ]TDefine , the nonlinear buffer network is written as

 

Σδ :
{

dx(t)/dt = A(δ) f (x(t))+Ad(δ) f (x(t−d))+B(δ)ω(t)
z(t) =C(δ) f (x(t))+Cd(δ) f (x(t−d))+D(δ)ω(t)

where
 

A(δ) = −diag(1T
N AGΨ)−Φ, Ad(δ) = AGΨ, C(δ) = [IN ,0M×N ]T

B(δ) = [I|Vo |,0(N−|Vo |)×|Vo |]
T , Cd(δ) = [0N , (αRΨ)T ]T , D(δ) = 0

x(t) = [x1(t), . . . , xN (t)]T , ω(t) = [ω1(t), . . . ,ω|Vo |(t)]
T

Φ = diag(ϕ1,ϕ2, . . . ,ϕN ) , Ψ = diag(ψ1,ψ2, . . . ,ψN ).
Definitions and lemmas:

v = (v1, . . . ,vn)
c > 0 a1, . . . ,an ∈ R h(v) = cva1

1 va2
2 · · ·v

an
n

z(v) z(v)
z(v) z(v)

Definition 1 (Monomial and posynomial): 1) Define positive vari-
able .  A  real  function h of v is  called  a  monomial  if

 and  exist  such  that ;  2)  The
function  is  called  a  posynomial  if  is  the  sum  of  finitely
many monomials; 3)  is called a generalized posynomial if  is
formulated in terms of  posynomials  by employing the operations of
maximum, addition, multiplication, and positive power.

f (·)Assumption 1: The function  satisfies the condition:
1) f (·) f (0) = 0

fi(·) i = 1,2, . . . ,nx

  is locally Lipschitz continuous and satisfy . Further-
more,  is strictly increasing for all .

2) xi→∞ fi(x)→∞ i = 1,2, . . . ,nx When , , for all .
A(δ) Ad(δ) B(δ) C(δ) Cd(δ) D(δ)Assumption 2: , , , , ,  satisfy:

1) H(δ) = diag
(
r1(δ),r2(δ), · · · ,rnx (δ)

)
Ā(δ) = A(δ)+H(δ)

δ r1(δ),r2(δ), . . . ,rnx (δ)

 A  matrix  function  exists
such  that  each  element  of  is  either  zero  or  a
posynomial  of ,  where  diagonals  are  mono-
mial.

2) Ad(δ) B(δ) C(δ) Cd(δ) D(δ)
δ

 Each element of , , , , and  is either zero
or a posynomial of .

s1(δ) s2(δ), . . . , sl(δ)
∆

Assumption 3: There exist posynomials ,   such
that the constraint set  satisfies
 

∆ =
{
δ ∈ Rnδ |δ ≻ 0, s1(δ) ≤ 1, s2(δ) ≤ 1, . . . , sl(δ) ≤ 1

}
.

f (·)
Σδ A(δ) Ad(δ)

B(δ) C(δ) D(δ)

Lemma 1 [10]: For any vector-valued function  satisfying 1) of
Assumption  1,  system  is  positive  if  is  Metzler  and ,

, , and  are nonnegative.
Σδ

L1

By  Lemma  1,  it  follows  that  the  system  is  positive  if  the
Assumptions 1 and 2 hold. Then, the definition of -gain is recalled.

L1
Σδ L1

γ > 0 ∥z∥L1 ≤ γ ∥ω∥L1 ω ∈ L1

Definition 2 ( -gain): For an asymptotically stable nonlinear posi-
tive  system  with  zero  initial  conditions,  the -gain  denotes  the
smallest  such that  holds for all .

Σδ L1

Main results: We  first  provide  a  characterization  on  the  stability
of system  with -gain.

L1 Σδ
Σδ

Theorem  1  ( -gain  of  system ):  Suppose  that  Assumptions  1
and 2 hold, the following conditions are equivalent for system :

1) Σδ L1 Positive  system  is  asymptotically  stable  with -gain  less
than γ;

2) p ∈ RN
+ There exists a positive vector  such that

 

(A(δ)+Ad(δ))T p+ (C(δ)+Cd(δ))T 1 ≺ 0 (2)
 

BT (δ)p+DT (δ)1 ≺ γ1. (3)

(δ)
Σδ

Proof (Sufficiency):  In the following analysis of input-output per-
formance, the notation “ ” may be omitted for simplicity. First, by
(2) and [10, Theorem 1], it  follows that system  is asymptotically
stable.  Then,  we  introduce  the  following  Lyapunov  functional  to
investigate the input-output gain performance:
 

φ(x(t)) = xT (t)p+
w t+d

t
f T (x(τ−d))AT

d pdτ. (4)

Σδ φ(x(t))According to system , the derivative  satisfies
 

φ̇(x(t)) = ( f T (x(t))AT + f T (x(t−d))AT
d +ω

T (t)BT )p

+ ( f T (x(t))− f T (x(t−d)))AT
d p

= f T (x(t)) (A+Ad)T p+ωT (t)BT p. (5)
Under zero initial conditions, it follows that:

 

∥z∥L1 =
w +∞

0
zT (t)1dt

=
w +∞

0

(
f T (x(t))CT + f T (x(t−d))CT

d +ω
T (t)DT

)
1dt

=

[w +∞
0

f T (x(t)) (C+Cd)T dt+
w +∞

0
ωT (t)DT dt

]
1. (6)

HLet functional  be presented as follows:
 

H (x,ω,z) =
w t

0
φ̇(x(τ))dτ+

w t

0

(∥z(τ)∥1 −γ ∥ω(τ)∥1
)
dτ. (7)

Substituting (5) and (6) into (7), as t goes to ∞, it follows that:
 

H (x,ω,z) =
w ∞

0

(∥z(τ)∥1 −γ ∥ω(τ)∥1
)
dτ+

w ∞
0
φ̇(x(τ))dτ

=
w +∞

0
f T (x(τ))

[
(C+Cd)T 1+ (A+Ad)T p

]
dτ

+
w +∞

0
ωT (τ)

(
BT p+DT 1−γ1

)
dτ. (8)

ΣδConsidering the positive system , we have
 w +∞

0
f T (x(τ)) dτ ≻ 0,

w +∞
0
ωT (τ) dτ ≻ 0.

H(x,ω,z) < 0 t ∈ R0,+ ω(t) ∈ R|Vo |
0,+

According to (2) and (3), under zero initial conditions, one has that
 stands true for all  and . Since

 w ∞
0
φ̇(x(τ)) dτ = φ(x(∞))−φ(x(0))

= xT (∞)p+ lim
t→∞

(w t+d

t
f T (x(τ−d))AT

d pdτ
)
≥ 0

it follows that:
 w ∞

0

(∥z(τ)∥1 −γ ∥ω(τ)∥1
)
dτ < 0, ∀ω(τ) ∈ R0,+

⇒ sup
∥ω∥L1≤1

∥z∥L1 < γ. (9)

Thus, the sufficiency of conditions (2) and (3) is proved. ■
Σδ

A+Ad ω(t) σ(t)r ∞
0 σ(τ)dτ = ei ei R|Vo |

Σδ

Proof (Necessity): If system  is asymptotically stable, the matrix
 is Hurwitz. Let  be an impulse vector function  satis-

fying ,  where  is  the i-th  base  vector  of .  Inte-
grating the first equation of system  leads to
 

x(∞)− x(0) = (A+Ad)
w ∞

0
f (x(τ))dτ+Bei. (10)

A+Ad (A+Ad)−1Since  is  Hurwitz,  exists.  Based  on  (9),  one  has
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r ∞
0 f (x(τ))dτ = −(A+Ad)−1Bei

Σδ

.  By  integrating  the  second  equation
of system , we have
 w ∞

0
z(τ)dτ =C

w ∞
0

f (x(τ))dτ+Cd

w ∞
0

f (x(τ−d))dτ+Dei

= (C+Cd)
w ∞

0
f (x(τ))dτ+Dei

=
[
(−(C+Cd)(A+Ad)−1)B+D

]
ei. (11)

∥ei∥1 = 1 L1 ΣδSince  and  the -gain  of  system  is  less  than γ.  The
right-hand side of (11) satisfies
 

1T [−(C+Cd)(A+Ad)−1B+D]ei < γ (12)
i ∈ {1,2, . . . , |Vo|}

−B(A+Ad)−1(C+Cd)1+D1 ≺ γ1

p ∈ RN
+

for  all .  Equality  (11)  can  be  rewritten  as
.  According  to  Lemma  1  of  [11],

the above inequality is equivalent to the condition that a positive vec-
tor  exists  such  that  (2)  and  (3)  hold,  and  the  necessity  of
Theorem 1 is proved. ■

Σδ
L(δ) L1

Theorem 2 (GP for system ): Given that Assumptions 1–3 hold,
the posynomial cost function  with -gain performance less than
γ can be optimized by resolving the following GP problem:
 

min
δ∈Rnδ

+ ,p∈RN
+

L(δ) (13)

 

s.t.D−1
δ,p

[
(ĀT (δ)+AT

d (δ))p+ (CT (δ)+CT
d (δ))1

]
≺ 1 (13a)

 

γ−1
[
BT (δ)p+DT (δ)1

]
≺ 1 (13b)

 

si(δ) ≤ 1, i = 1,2, . . . , l (13c)
Dδ,p = diag(r1(δ)p1, r2(δ)p2, . . . ,rN (δ)pN ) p = [p1, p2, . . . ,

pN ]T ∈ RN
+

where , 
.

Σδ
L1

Proof: By Theorem 1, if the system  is asymptotically stable and
-gain input-output performance is less than γ, it follows that:

 

(AT (δ)+AT
d (δ))p+ (CT (δ)+CT

d (δ))1 ≺ 0 (14)
 

BT (δ)p+DT (δ)1 ≺ γ1. (15)
A(δ) = Ā(δ)−

H(δ)
It can be found that (15) is equivalent to (13b). Since 

, we have that (14) yields
 

(ĀT (δ)+AT
d (δ))p+ (CT (δ)+CT

d (δ))1 ≺Dδ,p1 (16)
which is equivalent to (13a). ■

Remark 1: The optimal parameter selection problem (13) in Theo-
rem 2 is a standard GP one [7], which can be transformed into a con-
vex optimization problem by the logarithmic variable transformation.
Moreover,  standard  software  platforms  such  as  Python,  MATLAB,
and MOSEK provide packages to formulate and solve GP problems
directly.

fi(xi) = ln(x+1) i ∈ Vo fi(x) =
x1/2 + sin x i ∈ Vr fi(x) = arctan x i <Vo∪Vr

Σδ

Numerical example: We introduce a buffer network example with
three  observation  satellites  (triangle  nodes),  fifteen  relay  satellites
(circle nodes), and two receivers (square nodes) shown in Fig. 2. The
nonlinear  function f is  given  as , , 

, ,  and , .  We  evaluate
the cost of tuning system  by the following sum function:
 

L(ϕ,ψ) =
∑
i∈Vr

ϕi +
∑

i∈V\Vr

ψi

ϕi ψi

α = 1/10
ϕi ≤ ϕ̄i = 5 ψi ≤ ψ̄i = 5

H(δ) = diag
(
1T

N AGΨ
)
+Φ Ā(δ) = A(δ)+

H(δ) = 0
1 wi j = 1/|Nout

i |
L1

γ∗ = 1.0692 [γ∗,4γ∗]

where  and  denote  the  costly  resources  of  data  transmitting
power  and  processing  capacity.  The  measurement  output  rate  is

. Considering the physical restrictions, the upper bounds of
tuned  parameters  are  given  as  {M/s}  and 
{M/s}.  Define  and  we  have 

.  Suppose that  the weights  of  edges stemming from a node
are  equal  and  sum  to .  We  give  for  each  satellite i.
First,  the  system  minimum  achievable  norm  is  determined  as

.  Then,  given  different γ within  the  range ,  the
optimal parameter selection problem for the buffer network is solved
to get the optimal values of ϕ and ψ. The optimal values of cost L for

γ = 1.5γ∗ 2γ∗
4γ∗ ϕi ψi

different γ are  shown  in Fig. 2.  For  scenarios  when , ,
and , the optimal values of  and  are given explicitly.

L1

Conclusion: This  letter  has  studied the parameter  tuning problem
for  nonlinear  satellite  buffer  networks.  A  fundamental  performance
characterization is  first  proposed to  guarantee  the  asymptotic  stabil-
ity  of  nonlinear  systems  with  induced  performance.  Then,  a  GP
framework is proposed to find the minimum-cost parameters through
convex optimization. Finally,  the efficiency of the proposed method
is demonstrated by a simulation example.
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