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Abstract: Audio mixing is a crucial part of music production. For analyzing or recreating audio mixing, it is of great importance to
conduct research on estimating mixing parameters used to create mixdowns from music recordings, i.e., audio mixing inversion.
However, approaches of audio mixing inversion are rarely explored. A method of estimating mixing parameters from raw tracks and a
stereo mixdown via embodied self-supervised learning is presented. In this work, several commonly used audio effects including gain,
pan, equalization, reverb, and compression, are taken into consideration. This method is able to learn an inference neural network that
takes a stereo mixdown and the raw audio sources as input and estimate mixing parameters used to create the mixdown by iteratively
sampling and training. During the sampling step, the inference network predicts a set of mixing parameters, which is sampled and fed to
an audio-processing framework to generate audio data for the training step. During the training step, the same network used in the
sampling step is optimized with the sampled data generated from the sampling step. This method is able to explicitly model the mixing
process in an interpretable way instead of using a black-box neural network model. A set of objective measures are used for evaluation.

The experimental results show that this method has better performance than current state-of-the-art methods.
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1 Introduction

Multitrack audio mixing refers to the process in which
multitrack recordings are balanced, treated, and com-
bined into a multichannel formatll. This is usually
achieved by adjusting the loudness, timbre, dynamics and
spatialization of the respective musical sources, after
which audio sources are collated together to obtain a mix.
It is usually the mixing engineers’ responsibility to en-
sure that all sonic elements of the mix are properly adjus-
ted and in accordance with the artistic intention of the
composers and/or the performers. To create an ideal mix
in an efficient way, a mixing engineer will apply a set of
audio processors, among which gain, pan, equalization
(EQ), reverb, and dynamic range compression are most
frequently used. The first four effects are often implemen-
ted as linear time-invariant processing, while dynamic
range compression is nonlinear. Although over the past
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decades, both analog and digital processing have been
used for creating mixdowns, it is now often the case that
a mixing engineer uses a digital audio workstation
(DAW) for this task.

Audio mixing inversion refers to the process of estim-
ating the processing used to create a certain mixdown
from music recordings. This may contribute to the digit-
al remastering of old analog recordings, since the informa-
tion about what audio effects were applied and how they
are applied is very useful for remastering an old record-
ing. Such information may be recovered by the inversion
of the mixing process of the given recording. In addition
to remastering, audio mixing inversion may also contrib-
ute to revealing how professionals mix and master their
audio recordings, which may be helpful for other musi-
cians’ recreations of musical recordings or teaching people
how to mix.

A session created by a DAW contains most, if not all,
of the information on what effects and processing are ap-
plied to multitrack audio sources, and how they are ap-
plied. Thus, without the information provided by a DAW
session, audio mixing inversion can be a very difficult
task. It is often the case that only the mixdown and raw
tracks are available, while the DAW session used to cre-
ate the mixdown is not. Even in the case in which the
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original DAW session is available, simply trying to reuse
the session on a DAW may not work since DAW ses-
sions cannot be shared across different DAWSs or some-
times different versions of the same DAW due to poten-
tial incompatibility or inconsistency of the software. Fur-
thermore, the session may use specific (and often costly)
effect plugins unavailable to another mixing engineer,
which could make the entire session unusable if the first
mixing engineer employs complicated signal chains2. To
tackle these challenges, we propose a method that util-
izes an embodied self-supervised learning framework to
estimate the parameters used to control the audio pro-
cessors of a given DAW, and thus, to some extent if not
completely, recover the processing used to create a cer-
tain mixdown from only the mixdown itself and its re-
spective raw tracks.

2 Background

While the field of musical information retrieval has
been receiving increasing attention, the task of audio mix-
ing inversion still remains rarely explored. Early works
paid much attention to recovering an audio signal in a
blind manner from audio recordings with certain audio
processing applied. Such problems include denoisingl3,
dereverberation4, and source separationl® 6. Gorlow and
Marchand(”) proposed an approach that uses a two-stage
cascaded encoder and decoder to estimate the compres-
sion gain, and panning effects with only the spectrogram
of the target mixdown. This approach requires the num-
ber of audio tracks to be fixed and does not take EQ or
reverb into consideration. Gorlow and Reiss/® proposed a
method to estimate dynamic range compression applied
to an audio source with satisfying results, but it can only
explicitly estimate one audio signal and needs to be refor-
mulated to model another one. More recent works have
paid much attention to using black-box neural network
approaches, such as using deep learning techniques for
modeling EQI, compression[!0: 1, and other effects/!2.
Martinez-Ramirez!!3] proposed a black-box approach of
EQ and reverberation modelling. This approach is able to
model EQ and reverb in an end-to-end fashion with an
adaptive front-end neural network composed of 1-dimen-
sional (1D) convolutional layers, a latent space modelling
module composed of a WaveNet block and a fully connec-
ted layer, and a synthetic back-end composed of several
1-dimensional de-convolutional layers. This approach
achieved state-of-the-art performances for modelling EQ
and reverb, but is not very adaptive to music pieces that
are not included in the dataset. Additionally, since it is a
black-box approach, it cannot give out human-inter-
pretable parameters that explicitly describe how the au-
dio effects are used. The works mentioned above have
satisfactory performances, but all of them are unable to
jointly model multiple audio effects while giving out hu-
man-interpretable results and thus are inadequate for the
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task of audio mixing inversion.

Barchiesi and Reiss/'4 proposed an approach that ex-
plicitly deals with audio mixing inversion. Their ap-
proach is able to estimate linear and nonlinear processing
applied to audio tracks with both the mixdown and raw
multitrack audios. Dynamic range compression is mod-
elled as a time-varying gain envelope to be applied to the
audio sources framewise, and the linear processors includ-
ing EQ, gain, delay and pan are modeled by a time do-
main least square approach. Colonel and Reissi? later
proposed an approach on modeling only linear processing.
Their approach follows the architecture of Barchiesi and
Reiss’ approach, and improves the reverb module by re-
placing it with a new stereo reverb model, which was
achieved via a differentiable audio effect modelling frame-
work called differentiable digital signal processing
(DDSP)3l. With the help of DDSP and deep learning
techniques, their approach is able to achieve explicit
white-box neural network modelling of linear audio ef-
fects and thus produces an audio processing signal chain
that is interpretable to humans. Colonel et al. later ap-
plied a similar approach towards distortion(l®l and dy-
namic range compressorll’l effects. However, although
these approaches are able to produce human-inter-
pretable results, the audio effects produced by DDSP
somewhat lack quality and authenticity compared with
those produced by real DAWs.

We now summarize existing audio mixing inversion
methods. There are some existing worksl® 4 7> 8 using real
digital audio processors and trying to fit the target audio
by finding the optimum parameters controlling the audio
processors. They are able to give out human-inter-
pretable results while maintaining quality and authenti-
city of the sound since they used real audio processors,
however, they can only specifically model a target audio
and need to be reoptimized when trying to model anoth-
er audio, indicating a lack of adaptive capability. Black-
box neural network based approaches®1l 13l are able to
adapt to other real-world audios, but fail to give out hu-
man-interpretable results and the output audios some-
times lack quality and authenticity compared to real au-
dios. DDSP-based approaches(1¢: 171 are adaptive to vari-
ous real-world audios, and are able to give out human-in-
terpretable parameters, but the output sound produced
via DDSP somewhat lacks quality and authenticity.

Thus, we can conclude that the audio mixing inver-
sion problem is facing 3 major challenges: 1) The lack of
quality and authenticity of the output sound; 2) The abil-
ity of giving out human-interpretable results; 3) The cap-
ability of adapting to real-world audios. As mentioned
above, white-box approaches lack adapting capability and
black-box approaches lack interpretability and sound
quality, so an obvious approach is to combine the advant-
ages of these two kinds of approaches. DDSP somehow
manages to do this, but still need to improve on sound
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quality and authenticity. Another option is to replace
DDSP with real digital audio processors, but the pro-
cessors are not differentiable and thus are unable to co-
alesce with neural networks via traditional supervised
learning techniques.

To tackle these challenges, we propose an embodied
self-supervised learning method that can incorporate a
given digital audio processing module (e.g., a DAW simu-
lator) into the neural network optimizing procedure. Our
method takes a mixdown and raw tracks as input, and es-
timates the parameters used for controlling the audio pro-
cessors of the given processing module. Frequently used
audio processors including gain, pan, EQ, reverb and dy-
namic range compression are taken into consideration.

This paper is organized as follows. In Section 3, the
problem scenario and the model architecture as well as
the optimizing procedure are demonstrated. In Section 4,
details of experimental setups are shown. In Section 5, ex-
perimental results are presented and discussed. In Section 6,
we conclude our work and discuss remarks and possible
directions of future work.

3 Method and theory

3.1 Problem scenario

Let 4i(n) and gr(n) denote the left and right channel
of a stereo mixdown, and y;(n) and y-(n) denote the left
and right channel of the stereo mixdown produced by an
audio processing chain. The goal is to minimize the value
of l[yu(n) — 5 (M) + ly-(n) — - (n) . Note that | - || in the
expression represents the calculation of a loss function of
our choice, which will be demonstrated later.

As shown in Fig.1, the audio signal processing chain
applied to each audio track is defined as follows: gain —
EQ — compressor — pan — reverb and wet/dry mix —
sum with other stems. Here, the term “stem” refers to a
raw track to which has been applied certain audio pro-
cessing.

| Compressor ]—»[ Pan ]::'Reverb'::

Fig.1 Audio signal processing chain

3.2 Embodied
framework

self-supervised learning

We propose an embodied self-supervised learning
framework for audio mixing inversion, which is inspired
by the EmJEm framework(l8l. EmJEm was originally de-
signed for estimating articulatory information for a given
physical simulator to generate speech. The system takes
speech audio signals as input, and returns articulatory
parameters used to control the physical simulator as out-

put. This method was proposed to tackle two major chal-
lenges: Incorporating non-differentiable physical pro-
cesses and the lack of paired data for supervised learning.

We use a similar iterative sampling and training
strategy for our task. At the sampling step, given a set of
raw audio tracks, a deep neural network is used to ap-
proximate the parameters used for controlling the DAW.
Then, these parameters are sampled via Gaussian
sampling with ¢ = 0inity’, where o denotes the standard
deviation, 0in;+ denotes the initial value of o, v denotes
the decay rate, and ¢ denotes the number of current iter-
ation. Sampled parameters are then fed into the DAW
along with the raw tracks to generate a mixdown, which
would then form paired data with the sampled paramet-
ers. At the training step, the same network is trained on
the sampled paired data to predict mixing parameters.
These two steps are operated iteratively and contribute
to each other, which is somewhat similar to the guess-try-
feedback process in human learning. By integrating the
generation process via DAW into the learning procedure,
this method is able to obtain human-interpretable para-
meters with which to control DAW to generate audio in a
self-supervised manner.

The entire learning procedure is shown in Fig.2. At
the sampling step, we first extract the mel-scale spectro-
grams from the reference mixdown and its respective raw
tracks as input features, and feed them into the inference
network to estimate the parameters, then the parameters
are sampled using multivariate Gaussian sampling and
fed into the DAW to generate mixdown. At this point,
the sampled parameters and the generated mixdowns
form a set of paired data that can be used for supervised
training in the next step. At the training step, the infer-
ence network will be trained with the sampled paired
data. It should be noted that those two steps use exactly
the same inference network.

The inference network is illustrated in Fig.3. An en-
coder consisting of 6 U-Net[!9 layers is used to obtain a
feature map that contains local temporal and spectral fea-
tures with different time and frequency scales. All kernel
sizes of the convolutional layers are set to 3. The output
dimension of the U-Net module is N x 80, where N de-
notes the number of audio frames and 80 denotes the di-
mension of frequent bins. The output of the U-Net mod-
ule is then mapped to an N x 128 feature map with a
pointwise 1D convolutional layer. For each set of input
tracks, the process of estimating parameters for each
track is independent of each other on a per-track basis.
As a result, the cross-channel interactions, which are cru-
cial for mixing, will not be captured by default. For this
issue, we adopt a strategy that is similar to the one used
in [20]. We concatenate the feature map of the target
mixdown extracted by U-Net module and the point-wise
1D convolutional layer with the feature map of each
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Overview of an iteration. At the sampling step, the output of the inference network is sampled and used to control DawDreamer

to generate audio; At the training step, the same inference network is trained with the paired data generated from the sampling step.
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track, and then feed it into a Conformer module with 3
stacked Conformer[2l] layers for modelling long range tem-
poral dependencies. Each Conformer layer contains four
36-dimensional attention heads, and the kernel size is 32.
The output of the Conformer module will then go
through 2 bidirectional long short-term memory (LSTM)
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layers and a fully connected layer with Tanh activation
function. We use the mean square error between the es-
timated parameters and the sampled parameters as the
loss function for training. The entire inference network
architecture is depicted as Fig. 4.

The output of the entire inference network is a 16-di-
mensional vector, which is used to control the Daw-
Dreamer??l to generate mixdowns from raw multitrack
audios. DawDreamer is an open source Python module
that allows automated control over audio effects and pro-
cessors via Python scripts. Users can compose graphs that
define the workflow of multiple audio processors and set
parameter automation in the graphs, serving the role of
traditional DAW.

4 Experimental setup

4.1 Dataset

We conduct our tests on 2 datasets: ENST-Drums/23]
and MedleyDBP4 25, ENST-Drums includes approxim-
ately 3 hours of multitrack drum recordings. Each item in
the dataset includes 8 sources from different parts of a
drum kit. We randomly split the dataset into training,
validation and testing sets with the ratio of 8:1:1. The
test conducted on this dataset reveals the ability of our
method to perform audio mixing inversion with consist-
ent sources and mixing techniques. Then, we conducted
on the MedleyDB dataset, which

our experiments
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Fig. 4 Inference network architecture

provides multitrack recordings of complete songs of vari-
ant genres, sources and mixing techniques. For each song
in the dataset, the raw audio tracks and the mixdown are
both provided. The dataset contains 196 songs (approx-
imately 7h long in total). Due to memory constraints, we
only use songs with no more than 16 inputs to train our
model, so only 120 songs are used for our task. We ran-
domly split the dataset into training, validation and test-
ing sets at a ratio of 8:1:1.

4.2 Training details

For audio feature extraction, we use log magnitude
mel-scale spectrogram with 80 frequency bins within the
range from 20Hz to 20 000 Hz, so the shape of a spectro-
gram is N x 80, where N is the total frame number.
Frame length and frame shift are set to 50ms and 25 ms,
respectively. All inferred mixing parameters are rescaled
before being fed into the DawDreamer. The inference net-
work is randomly initialized and the loss weight A is set
to 0.01. We use the Adam[20] optimizer with learning rate
of 5x107%, B1 =0.5 and B2 = 0.999 to train our infer-
ence network. For each single iteration of sampling and
training, the model is trained for 10 epochs using a batch
size of 4. We trained our model for 50 iterations on
ENST-Drums and 100 iterations on MedleyDB. We
trained our model on 2 NVIDIA 2080Ti graphic cards
and the whole training process took approximately 10
hours for ENST-Drums and 51 hours for MedleyDB.

5 Results and discussion

5.1 Performance evaluation

To evaluate our method, we need to measure how
close the estimated mixdowns and the reference mix-
downs match. To this end, we calculate and compare the
mean average error (MAE) and the multi-resolution

short-term Fourier transform (STFT) distancel2” between
the ground truth and predicted waveforms, and calculate
the average of these 2 metrics across the dataset.

The MAE is expressed as follows:

1 N
MAE(y Z lyr (i)

7,:1

L (@) +lyr() —gr@)]) (1)

where ¢ denotes the i-th sample, N denotes the total
length of the signal, y and ¢ denote the predicted and
target signals, respectively.

The multi-resolution STFT distance is composed of a
spectral convergence term 6;. and a spectral log-mag-
nitude term 6s,,, and is formulated as follows:

- |ISTFT(yr) — STFT(§1) |l
Osc(y,9) = ISTFT (y)| #
|STFT(yr) — STFT(§R)| 5 (2)
ISTFT (yr)|F
Do (1, g):%(” log(ISTFT (yz)]) ~log(|STFT (1)) 21+

[og(ISTFT (yr)|) — log(ISTFT(§r)])l|£1)

3)

where ||STFT(-)|| is the short-time Fourier transform
magnitude, || - |7 is the Frobenius norm, and || - ||z1 is the
L1 norm. N denotes the number of STFT frames, y and g
denote the predicted and target signals, respectively.
Finally, we calculate M different resolutions STFTs with
varying window, hopping, and frame sizes, and the error
at these resolutions is averaged:

M

Z (@Y

m=1

MRSD(y )+ 0sm(9,9).  (4)

The test results on ENST-Drums and MedleyDB are
shown in Fig.1. In addition to our method, we also con-
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Table 1 Test results on ENST-Drums and MedleyDB

Machine Intelligence Research 21(1), February 2024

Table 2 Results of different sampling settings

ENST-Drums MedleyDB
Model
MAE MRSD MAE MRSD
EAMI 0.033 2.274 0.082 3.423
Colonel and Reiss/?! 0.041 2.435 0.091 4.281
Barchiesi and Reiss[!4] 0.063 2.838 0.122 5.723
Sum 0.158 3.458 0.226 7.577
Random 0.323 5.124 0.381 11.127

Note: EAMI refers to our proposed method.

sidered 4 baselines. The first one simply sums all tracks
together and applies no processing. The second one uses
random parameters to process each track. The third one
is based on Colonel et al.’s approaches(? 16: 17, The fourth
one is based on Barchiesi and Reiss's method!4. For the
tests for all comparing methods, we randomly split the
dataset into training, validation and testing sets with the
ratio of 8:1:1, which is the same as the test for our pro-
posed method. All test samples were subjected to the
same loudness normalization using Pyloudnorm/28l.

We can see from the results as shown in Table 1 that
our method performs significantly better than the sum
and random baselines on both datasets, which proves the
effectiveness of our method to approximate the reference
mixdown, and our method outperforms the current state-
of-the-art methods. We can also see that there is a not-
able difference between the results of ENST-Drums and
MedleyDB, which is probably due to the different com-
plexity of the two datasets. ENST-Drums contains only
drum recordings that have the same instrument setup,
while MedleyDB contains different genres of music re-
cordings with variant sound sources including voices, syn-
thesizers and various kinds of musical instruments. The
cross-channel interactions between different tracks occur
much more often in MedleyDB than ENST-Drums, which
poses a significant challenge for modelling the mixing pro-
cess. The difference between the performances of the
method on two different datasets shows that our model
suffers from the cross-channel interactions between differ-
ent tracks. For example, multiple simultaneously played
instruments may interfere with each other thus adding
difficulty to extracting spectral features and estimating
the EQ parameters. Possible improvements include intro-
ducing instrumental information and/or source separa-
tion information so that the network might be able to
capture the spectral feature of each track more accur-
ately.

5.2 Ablation study

To further prove the effectiveness of our method, we
also conducted an ablation study that aims at proving
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Sampling method MAE MRSD

No sampling 0.207 5.643
Random sampling 0.178 5.073

o = 0.05 0.125 4.235

oc=0.1 0.127 4.438

oc=0.5 0.133 4.574

o exponentially decreasing 0.082 3.423

the effectiveness of the proposed sampling strategy used
to generate training samples during the sampling process
of the proposed framework. The experiment compares the
results of sampling with several different standard devi-
ations as well as a random sampling method that is not
based on the estimation of the network but in a totally
random manner. The experiment was conducted only on
MedleyDB dataset. We tested 6 different sampling set-
tings: no sampling, random sampling, ¢ = 0.05, o = 0.1,
0 =0.5, and o exponentially decreasing which is de-
scribed in Table 2. For each of these sampling settings,
we run a test respectively. The test results are presented
in Section 2. We can conclude from the result that the
sampling process of the network output is necessary, since
training without sampling has a significantly worse per-
formance than others. Among all sampling settings, us-
ing an exponentially decreasing standard deviation has
the best performance over all others, which further veri-
fies the effectiveness of this sampling strategy.

6 Conclusions

We propose an embodied self-supervised learning
method for audio mixing inversion. By integrating a
DAW-like module, our method works in an analysis-by-
generation procedure via iteratively sampling and train-
ing, which can be viewed as a form of embodied learning.
Our method is able to obtain a human-interpretable para-
meters, which could be further analyzed or modified for
educational or recreational purposes. Future work may
include investigating the performances on different indi-
vidual audio processors, genres and/or instrument setups,
or creating a labeled dataset from unlabeled data with
the help of expert knowledge.
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