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Abstract:     Graph neural networks have been shown to be very effective  in utilizing pairwise relationships across samples. Recently,
there have been several successful proposals to generalize graph neural networks to hypergraph neural networks to exploit more com-
plex relationships. In particular, the hypergraph collaborative networks yield superior results compared to other hypergraph neural net-
works for various semi-supervised learning tasks. The collaborative network can provide high quality vertex embeddings and hyperedge
embeddings together by formulating them as a joint optimization problem and by using their consistency in reconstructing the given hy-
pergraph. In this paper, we aim to establish the algorithmic stability of the core layer of the collaborative network and provide generaliz-
ation guarantees. The analysis sheds light on the design of hypergraph filters in collaborative networks, for instance, how the data and
hypergraph filters should be scaled to achieve uniform stability of the learning process. Some experimental results on real-world datasets
are presented to illustrate the theory.
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 1   Introduction

Many real-world applications involve datasets that ex-

hibit  graph  structures  that  depict  pairwise  relationships

between vertices. These applications span a wide range of

domains,  including  text  analysis[1, 2],  social  network  ana-

lysis[3],  molecule classification in chemistry[4],  point cloud

processing[5],  mesh generation[6],  and knowledge graphs[7],

to  name  a  few.  In  some  applications,  the  only  available

data  are  graphs,  while  in  some  other  applications,  fea-

tures  about  the  vertices  and  edges  are  also  available.

Very naturally, machine learning algorithms that can ex-

ploit  both  graphs  and  features  often  yield  better  results

than  algorithms  that  solely  rely  on  graph  structures.  Of

particular  interest  is  the  class  of  graph  convolution  net-

work (GCN) methods[8−10]. These methods use neural net-

work layers whose output at a vertex depends mostly on

others  that  are  deemed  relevant  according  to  the  graph

structure. A very common point of view is that GCN is a

generalization  of  the  traditional  spatial  filters,  where

graphs  can  represent  neighbors  that  are  not  limited  to

spatial closeness.

While graphs can depict pairwise relationships, hyper-

graphs  can  represent  relationships  between multiple  ver-

tices. A hypergraph is a graph in which each edge, or hy-

peredge,  can  connect  to  multiple  vertices.  Hypergraphs

can  therefore  represent  more  complex  relationships.  For

example,  in  traditional  paper-authorship  networks,  two

articles (vertices) are connected if they share one or more

coauthors. In this way, authorship information, which can

provide  important  clues  to  the  topic  of  the  articles,  is

lost. Hypergraphs come to the rescue by treating each au-

thor as a hyperedge and each article as a vertex. Several

works have been devoted to hypergraph learning. In [11],

spectral  clustering  and  semi-supervised  parametric  mod-

els  on  graphs  were  extended  to  hypergraphs.  In  [12],  a

tensor  representation  of  hypergraphs  was  proposed  to

make  the  optimization  of  hypergraphs  more  amenable.

Generalizations  of  graph  convolution  networks  to  hyper-

graph convolution networks have been studied in [13−16].

The main task is to define a convolution operator in a hy-

pergraph  such  that  the  transition  probability  between

two  vertices  can  be  measured,  and  the  embeddings  (or

features)  of  each  vertex  can  be  propagated  in  a  hyper-

graph convolution network. More propagations should be

done between vertices connected by a common hyperedge.

Recently, Wu and Ng[17, 18] studied and developed the
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convolution of  vertex and hyperedge features to suitably

aggregate values in hypergraphs. It was shown that such

hypergraph  collaborative  networks  (HCoN)  have  ob-

tained  superior  results  in  some  semi-supervised  learning

problems  compared  to  other  hypergraph  neural  network

models. The proposal is to formulate the learning of ver-

tex  and  hyperedge  embeddings  as  a  joint  optimization

problem to allow for  updating the vertex and hyperedge

embeddings simultaneously. The authors showed that the

performance  can  be  further  boosted  by  incorporating  a

hypergraph reconstruction error as one of the objectives.

Apart  from  the  development  of  machine  learning  al-

gorithms and applications, efforts on the theory have also

been made in the past decades, from general learning the-

ory to specific properties of a class of algorithms. In this

paper, we aim to study the algorithmic stability and gen-

eralization  of  the  class  of  HCoN.  We  show  that,  in  the

single-layer case, the HCoN is algorithmically stable. As a

result,  the  generalization  gap  (difference  between  train-

ing error and testing error) converges to zero as the size

of  the  training  set  increases.  We  should  explain  the  no-

tions of training and testing in our context in Section 3.6

below.  The  analysis  sheds  light  on  the  design  of  hyper-

graph filters in HCoNs, for instance, how the data and fil-

ters  should  be  scaled  to  achieve  the  uniform stability  of

the learning process. Our generalization result is also val-

id for hypergraph convolution networks with the propaga-

tion of vertex embeddings only.

The  rest  of  the  paper  is  organized  as  follows.  In

Section  2,  we  review  some  works  related  to  hypergraph

neural  networks  and generalization  guarantee  studies.  In

Section 3,  we introduce the HCoN model,  some assump-

tions about the loss function and activation function, and

some  preliminary  results.  The  results  of  the  algorithmic

stability  of  the  HCoN  and  the  generalization  guarantee

are  established  in  Section  4.  In  Section  5,  we  present

some experimental studies on the generalization gap to il-

lustrate the theory. Some concluding remarks are given in

Section 6.

 2   Related work

Generalization guarantees concern the expected differ-

ence  between  training  and  testing  errors.  Bousquet  and

Elisseeff[19] and  Mukherjee  et  al.[20] showed  that  under

suitable  regularity  assumptions,  the  stability  of  an  al-

gorithm implies generalization. In addition to the general

theory,  Bousquet  and Elisseeff[19] also  studied  the  stabil-

ity  and  generalization  of  the  global  minimizer  of  some

regularized learning models. Such results are therefore in-

dependent of the particular algorithm used to compute an

approximate  optimizer.  Stochastic  gradient  descent

(SGD)  is  a  popular  algorithm  to  obtain  a  suboptimal

solution  to  optimization  problems.  Some classical  results

on the generalization of SGD in the case of a single pass

of  data  are  reported  in  [21].  The  analysis  in  the  case  of

multiple passes of SGD is reported in [22].

Stability  and  generalization  analysis  of  SGD  applied

to GCNs is studied in [23]. The stability is established in

terms  of  the  dominant  eigenvalue  of  the  graph  filter.  A

difference  between  [19]  and  [23]  is  that  the  former  con-

siders the model parameters computed via SGD, whereas

the  latter  considers  the  theoretical  optimal  model  para-

meters. Our work generalizes the analysis of GCNs in [23]

to hypergraph collaborative networks[17, 18] which also in-

clude some edge features.  A technical  difference between

our  work  and  [23]  is  that  the  latter  assumes  some

Lipschitz conditions on the composition of the loss func-

tion and the neural network outputs but we require some

Lipschtiz  conditions  on  the  loss  function  only.  Ours  are

therefore easier to verify and more fundamental.

Various  kinds  of  stability  have  been  proposed  and

studied in the literature[19, 20]. Similar to [23], we use uni-

form  stability  which  yields  tighter  bounds  than  other

forms of stability, such as error stability, hypothesis sta-

bility  and  pointwise  hypothesis  stability[19].  Finally,  an-

other  related  work  is  [24],  which  studied  regularized

graph learning problems and devised some generalization

guarantees.  However,  the  resulting  generalization  gap  is

inversely  proportional  to  the  second  smallest  eigenvalue

of the graph Laplacian matrix. Thus the bound can grow

with the size of the graph. The bounds devised by us and

[23] are independent of the graph size, and the generaliza-

tion gap converges  to  zero with the sample  size  and the

graph size.

 3   Hypergraph convolution networks

 3.1   Hypergraphs

G = (V, E) V
E = {e : e ⊂ V}

N = |V| M = |E|

H ∈ RN×M (i, j) j

i

A hypergraph is a graph where a hyperedge can con-

nect to any number of vertices. In the undirected version,

each hyperedge is  represented by a subset  of  vertices.  A

hypergraph is denoted by  where  is the set of

vertices  and  is  the  set  of  hyperedges.

The number of vertices and the number of hyperedges are

denoted  by  and ,  respectively.  A hyper-

graph  can  also  be  represented  by  an  incidence  matrix

, whose -th equals 1 if the -th hyperedge

is  connected  to  the -th  vertex,  and  equals  0  otherwise.

For  simplicity,  we  consider  unweighted  graphs,  but  the

weights can be introduced into the hypergraph filters eas-

ily as done in [13−16].

XV ∈ RN×FV FV

O

Generalizations  of  graph convolution networks  to  hy-

pergraph convolution networks have been studied. Given

a  feature  matrix  (where  is  the  dimen-

sion  of  the  vertex  features)  and  the  dimension  of  the

output embeddings, the convolution operator in a hyper-

graph  for  the  propagation  of  vertex  features  (or  embed-
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dings) is constructed as follows:

f(XV |QV ) = σ

(
D

− 1
2

V HD−1
E HTD

− 1
2

V XV QV

)
(1)

σ(·) QV ∈ RFV ×O

H ∈ RN×M

DV = diag(H1)
DE = diag(HT1)

D
− 1

2
V HD−1

E HTD
− 1

2
V

where  is  an  activation  function,  is  a

matrix  of  learnable  parameters,  is  the

incident  matrix  of  the  hypergraph,  and 

and  are  diagonal  matrices  with  the

degrees of the vertices and the degrees of the hyperedges

on  the  diagonals.  We  note  in  (1)  that  the  operator

 mixes  the  feature  vectors  of  vertices

connected  by  a  common hyperedge.  In  this  way,  feature

vectors of neighboring vertices of a vertex are propagated

into  the  vertex  and  aggregated  to  form  a  new  feature

vector  for  the  vertex.  This  model  does  not  make  use  of

hyperedge features.

 3.2   Hypergraph collaborative network
model

Unlike  the  hypergraph  convolution  networks  in  (1),

the HCoN in [17, 18] aims to predict vertex-level and hy-

peredge-level  labels  together  based  on  the  hypergraph

structure and a set of vertex features and hyperedge fea-

tures.  The  single-layer  hypergraph  collaborative  network

we consider is given by

f(XV , XE |θ) = σ

(
H̃H̃TXV QV + H̃D

− 1
2

E XEQE

)
(2)

g(XV , XE |θ) = σ

(
H̃TH̃XEPE + H̃TD

− 1
2

V XV PV

)
. (3)

XE ∈ RM×FE

FE

PV ∈ RFV ×O QE ∈
RFE×O PE ∈ RFE×O

θ = (QV , QE , PV , PE) H̃ = D
− 1

2
V HD

− 1
2

E

f g

In addition to the notations in (1), here 

is a given matrix of hyperedge features,  is the dimen-

sion  of  the  hyperedge  features, , 

 and  are  the  additional  learnable

parameters, ,  and 

is the normalized incident matrix. The functions  and 

are  referred  to  as  the  vertex  encoder  and  the  hyperedge

encoder, respectively. They are used to produce labels at

vertices  and  hyperedges,  respectively.  In  the  sequel,  we

focus  on  the  analysis  of  vertex  encoder  (2)  because  the

analysis of (3) is essentially the same.

We  remark  that  the  HCoN  model  described  in  [18]

reads

f(XV , XE |θ) = σ
(
αH̃WH̃TXV QV +

(1− α)H̃WD
− 1

2
E XEQE

)
(4)

g(XV , XE |θ) = σ
(
βH̃TUH̃XEPE+

(1− β)H̃TUD
− 1

2
V XV PV

)
. (5)

W

U

α

β QV QE PV PE

In  this  work,  we  assume  that  the  vertex  weights 

and hyperedge weights  are set to identity matrices for

ease of presentation. We also absorb the constants  and

 into the parameters , , , and ; the degree of

freedom of the model remains unchanged.

 3.3   Activation function

σ : R → R

σ

σ(x) =
0, if x < −ϵ(
x+ϵ
2ϵ

)2
, if − ϵ ≤ x ≤ ϵ

x, if x > ϵ.

Algorithmic  stability  concerns  the  change  in  the  loss

function  value  with  respect  to  the  change  in  the  data.

Since  SGD  aggregates  gradients,  it  is  very  natural  that

the stability must rely on the regularity of the activation

function  and  the  loss  function.  The  activation  func-

tion  is  assumed  to  satisfy  the  following.

Standard  activations  such  as  sigmoid,  exponential  lin-

ear  unit  (ELU),  and  tanh  verify  these  assumptions.

RELU fails the -smoothness. However, one can consider

a  smoothed  RELU  to  restore  the  theory: 

σ1)  continuous differentiable.

σ2) -Lipschitz:

|σ(x)− σ(y)| ≤ ασ|x− y|, for all x, y ∈ R. (6)

σ′

|σ′(x)| ≤ ασ

It  follows  that  the  derivative  is  bounded,  i.e.,

.

σ3) -smooth:

|σ′(x)− σ′(y)| ≤ νσ|x− y|, for all x, y ∈ R. (7)

 3.4   Loss function

ŷ y

ℓ : [ymin, ymax]× [ymin, ymax] → R+

ℓ(ŷ, y)

Let  be an estimated label and let  be the true la-

bel.  The  loss  function 

is  denoted  by .  The  following  assumptions  are

made.

(ŷ, y)

ŷ

1) Continuous w.r.t.  and continuously differenti-

able w.r.t. .

ℓ ŷ2) -Lipschitz w.r.t. :

|ℓ(ŷ, y)− ℓ(ŷ′, y)| ≤ αℓ|ŷ − ŷ′| (8)

ŷ, ŷ′, y ∈ [ymin, ymax] | ∂ℓ
∂ŷ

(ŷ, y)| ≤
αℓ

for all . This implies that 

.

ℓ ŷ3) -smooth w.r.t. :∣∣∣∣ ∂ℓ∂ŷ (ŷ, y)− ∂ℓ

∂ŷ
(ŷ′, y)

∣∣∣∣ ≤ νℓ|ŷ − ŷ′| (9)

ŷ, ŷ′, y ∈ [ymin, ymax]for all .

ℓ(·, ·)
[ymin, ymax]× [ymin, ymax]

By the nonnegativity and continuity of  and the

compactness  of ,  the  loss  func-
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tion is bounded:

0 ≤ ℓ(ŷ, y) ≤ γℓ, for all ŷ, y ∈ [ymin, ymax]. (10)

ℓ(ŷ, y) = −y ln ŷ

ŷ

[ϵ, 1] 0 < ϵ < 1 ℓ(ŷ, y) ≤ − ln ϵ

In the case of the binary cross-entropy ,

the Lipschitzity condition does not hold. However, it can

be easily remedied by rescaling or clipping  to the range

of  for a , so that .

We  remark  that  the  following  Lipschitzity  of  a  com-

posite function is assumed in [23]:∥∥∇θ[ℓ(f(v|θ), y)]−∇θ[ℓ(f(v|θ′), y)]
∥∥
2
≤

αℓ∥∇θf(v|θ)−∇θf(v|θ′)∥2.

∥ · ∥2 f(v|θ)
θ

v θ θ′

∇θ

θ ∂
∂θ

∂ℓ
∂ŷ

Here,  denotes the Euclidean norm and  de-

notes  the output of  a  neural  network with parameters 

at vertex . The  and  are two sets of parameters for

the network. The  denotes the gradient operator w.r.t.

 (i.e., ).  Our  assumption  (9)  is  solely  in  terms  of 

and is more fundamental.

 3.5   Network outputs at a single vertex

In this subsection, we provide more details about the

characteristics of the network outputs at each vertex and

devise a bound of the hypergraph filter outputs that will

be  useful  in  the  next  section.  We  remark  that  a  similar

analysis  can  also  be  conducted  for  network  outputs  at

each hyperedge. Here, we focus on the analysis of vertex

propagation (2) only.

v ∈ V e(v)

j v j 0

θ = (QT
V , QT

E)
T ∈

R(FV +FE)×O v

For a vertex , let  be a binary vector whose

-th entry is 1 if  is the -th vertex and is  otherwise.

Denote  the  learnable  parameters  with 

. The output (2) for a vertex  is given by

f(v|θ) = σ (AvQV +BvQE) ∈ R1×O

Av := e(v)TH̃H̃TXV Bv := e(v)TH̃D
− 1

2
E XE

Av

v Bv

v

O = 1

O

where  and .

Note that  is a linear combination of the vertex feature

vectors  over  the  neighboring  vertices  of  and  is  a

linear  combination  of  the  edge  feature  vectors  over  the

hyperedges  joining .  For  notational  simplicity,  we

assume that the output dimension is . The analysis

also works for a general  with minor modifications. Let

dv = AvQV +BvQE .

Then, we have

f(v|θ) = σ(dv) ∈ R (11)

∇θf(v|θ) = σ′(dv) (Av Bv)
T ∈ R(FV +FE)×1. (12)

∇θ θ σ′

σ

Here,  is the gradient operator w.r.t.  and  is the

derivative of .

∥ · ∥2Denote by  the matrix 2-norm. Note that

∥(Av Bv)∥22 =
∥∥∥e(v)TH̃H̃TXV

∥∥∥2

2
+

∥∥∥∥e(v)TH̃D
− 1

2
E XE

∥∥∥∥2

2

≤

∥XV ∥22∥H̃H̃T∥22 + ∥XE∥22∥H̃∥22∥D
− 1

2
E ∥22 ≤

∥XV ∥22 µ(H̃)4 + ∥XE∥22 µ(H̃)2

µ(H̃) = ∥H̃∥2 H̃

DE ∥D− 1
2

E ∥2 ≤ 1

where  is  the  largest  singular  value  of .

The last inequality follows from the fact that the diagonal

entries  of  are  positive  integers  so  that .

Let

gmax := µ(H̃)
√

∥XV ∥22 µ(H̃)2 + ∥XE∥22. (13)

It follows that

∥(Av Bv)∥2 ≤ gmax. (14)

Moreover, by (12) and (6), we have

∥∇θf(v|θ)∥2 ≤ ασgmax. (15)

α 1− α

Finally, we remark that if the two terms in the sum in

(2)  are  weighted  by  and ,  respectively  as  de-

scribed in (4) and (5), then (14) and (15) hold with

gmax := µ(H̃)
√

α2∥XV ∥22 µ(H̃)2 + (1− α)2∥XE∥22.
(16)

 3.6   SGD algorithm

DLet  be an unknown joint distribution of the vertex

and the associated label. Let

S = {(v1, y1), (v2, y2), · · · , (vn, yn)}

n D Sbe a set of  i.i.d.  samples from .  The set  serves as

the training set for the HCoN. The objective function of

an HCoN is given by

L(θ) = 1

n

n∑
i=1

ℓ(f(vi|θ), yi).

H XV

XE

L

The  learning  task  is  a  transductive  semi-supervised

task. The incident matrix  and the feature matrices 

and  are  considered  given.  The  formation  of  a  train-

ing  set  is  a  sampling  of  vertices  (and  the  associated  la-

bels)  in  the  network.  The  training  process  (or  learning

process) refers to the minimization of  via SGD. A test-

ing sample is another i.i.d. sample of a vertex in the net-

work.  The testing  process  refers  to  taking the  output  at

the testing sample and comparing it to the known label.

The sample space is therefore a finite space, to which the

concentration inequality we used below applies.

T

t

We consider  iterations of the SGD algorithm, where

the  batch  size  is  1.  At  the -th  iteration,  a  sample
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(vit , yit) S
θ = (QT

V , QT
E)

T
 is drawn from  with replacement. The paramet-

ers  are updated as follows:

θt = θt−1 − η∇θℓ(f(vit |θt−1), yit)

t = 1, 2, · · · , T η > 0

θT θ(S, A)

A
(i1, i2, · · · , iT )

for ,  where  is  the learning rate.  The

final  parameters  learnt  are ,  also  denoted  by .

The  variable  denotes  a  particular  randomization  of

SGD, i.e., the sequence .

S ′ = {(v′1, y′
1), (v

′
2, y

′
2), · · · , (v′n, y′

n)}
S

1 ≤ i∗ ≤ n

Let  be  a  training

set that differs from  with one sample. That is, for some

, {
(v′i, y

′
i) = (vi, yi), if i ̸= i∗

(v′i, y
′
i) ̸= (vi, yi), if i = i∗.

θ′ = (Q′
V

T
, Q′

E
T
)T

S ′
Let  be the parameters learned with

. The SGD update is given by

θ′t = θ′t−1 − η∇θℓ(f(v
′
it |θ

′
t−1), y

′
it)

t = 1, 2, · · · , T S S ′

θ0 = θ′0
A S

θ′T = θ′(S ′, A)

for .  The  initial  parameters  for  and 

are set equal, i.e., . The parameters learned, using

the same randomization  as that for , are denoted by

.

θt θ′t
t

The  difference  between  the  parameters  and  at

the -th SGD iteration is

∆θt := θt − θ′t =

[
QV,t −Q′

V,t

QE,t −Q′
E,t

]
.

S S ′ i∗

t∗ (vi∗ , yi∗)

(v′i∗ , y
′
i∗) ∆θt = 0 t < t∗

Since  and  are  identical  except  for  the -th

sample,  if  is  the  first  iteration at  which  and

 are  sampled,  we  have  for  all .

Note that

∆θt = ∆θt−1 − η[∇θℓ(f(vit |θt−1), yit)−

∇θℓ(f(v
′
it |θ

′
t−1), y

′
it)]. (17)

 4   Main results

Following  the  approach  of  [22, 23],  we  first  establish

the uniform stability of SGD and then obtain the general-

ization guarantees.

 4.1   Uniform stability

S S ′

i∗

S S ′

σ′ σ

(′)

S ′

Recall that  and  are two training sets that differ

only by the -th sample. In Lemmas 1 and 2, we bound

the gradient difference when the same sample and differ-

ent  samples  are  used,  respectively.  Then,  we  devise  the

difference  between  the  SGD  updates  for  and  in

Lemma 3. The stability then follows in Theorem 1. Note

that  is  the  derivative  of .  Other  variables  with  a

prime  denote  quantities  derived  from  the  perturbed

training set .

tLemma 1. At the -th SGD iteration, we have∥∥∇θℓ(f(v|θt−1), y)−∇θℓ(f(v|θ′t−1), y)
∥∥
2
≤

(αℓνσ + νℓα
2
σ)g

2
max∥∆θt−1∥2.

f = f(v|θt−1) f ′ = f(v|θ′t−1)Proof. Let  and . Let

d = AvQV,t−1 +BvQE,t−1

d′ = AvQ
′
V,t−1 +BvQ

′
E,t−1.

f = σ(d) f ′ = σ(d′)By (11) and (12), we have , , and

∇θf = σ′(d) (Av Bv)
T

∇θf
′ = σ′(d′) (Av Bv)

T .

Note that

d− d′ = (Av Bv)∆θt−1.

Therefore, by (14), we have

|d− d′| ≤ gmax∥∆θt−1∥2. (18)

Hence,

∥∇θℓ(f, y)−∇θℓ(f
′, y)∥2 =∥∥∥∥ ∂

∂ŷ
ℓ(f, y)∇θf − ∂

∂ŷ
ℓ(f ′, y)∇θf

′
∥∥∥∥
2

≤∥∥∥∥ ∂

∂ŷ
ℓ(f, y)∇θf − ∂

∂ŷ
ℓ(f, y)∇θf

′
∥∥∥∥
2

+∥∥∥∥ ∂

∂ŷ
ℓ(f, y)∇θf

′ − ∂

∂ŷ
ℓ(f ′, y)∇θf

′
∥∥∥∥
2

=∣∣∣∣ ∂∂ŷ ℓ(f, y)
∣∣∣∣ ∣∣σ′(d)− σ′(d′)

∣∣ ∥(Av Bv)∥2 +∣∣∣∣ ∂∂ŷ ℓ(f, y)− ∂

∂ŷ
ℓ(f ′, y)

∣∣∣∣ ∣∣σ′(d′)
∣∣ ∥(Av Bv)∥2 ≤

αℓνσ|d− d′|gmax + νℓ|f − f ′|ασgmax ≤
αℓνσ|d− d′|gmax + νℓα

2
σ|d− d′|gmax ≤

(αℓνσ + νℓα
2
σ)g

2
max∥∆θt−1∥2.

  □
tLemma 2. At the -th SGD iteration, we have

∥∇θℓ(f(v|θt−1), y)−∇θℓ(f(v
′|θ′t−1), y

′)∥2 ≤ 2αℓασgmax.

f = f(v|θt−1) f ′ = f(v′|θ′t−1)Proof. Let  and .  By  (8)

and (15), we have

∥∇θℓ(f, y)−∇θℓ(f
′, y′)∥2 =∥∥∥∥ ∂

∂ŷ
ℓ(f, y)∇θf − ∂

∂ŷ
ℓ(f ′, y′)∇θf

′
∥∥∥∥
2

≤∣∣∣∣ ∂∂ŷ ℓ(f, y)
∣∣∣∣ ∥∇θf∥2 +

∣∣∣∣ ∂∂ŷ ℓ(f ′, y′)

∣∣∣∣ ∥∥∇θf
′∥∥

2
≤

2αℓασgmax.

  □
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S S ′

θ = θ(S, A) θ′ = θ′(S ′, A)

T S S ′

Lemma 3. Let  and  be two training sets that dif-

fer  by  one  sample.  Let  and  be

the  graph filter  parameters  of  the  HCoN models  trained

using  SGD  for  iterations  on  and ,  respectively.

Then,  the  expected  difference  in  the  filter  parameters  is

bounded by

EA[∥∆θT ∥2] ≤
κ0

n

where

κ0 :=
2αℓασ

{[
1 + η(αℓνσ + νℓα

2
σ)g

2
max

]T − 1
}

(αℓνσ + νℓα2
σ)gmax

.

1 ≤ t ≤ TProof. Let  and let

h = ∇θℓ(f(v|θt−1), y)−∇θℓ(f(v
′|θ′t−1), y

′).

By (17), we have

EA[∥∆θt∥2] ≤ EA[∥∆θt−1∥2] + ηEA[∥h∥2].

(n− 1)/n 1/n

Note  that  the  probabilities  of  the  two  scenarios  con-

sidered  in  Lemmas  1  and  2  are  and ,  re-

spectively. By Lemmas 1 and 2, we have

EA[∥h∥2] ≤
n− 1

n
× EA[C∥∆θt−1∥2] +

1

n
× EA[C

′] ≤

CEA[∥∆θt−1∥2] +
1

n
× C′

C := (αℓνσ + νℓα
2
σ)g

2
max C′ := 2αℓασgmaxwhere  and .

Hence, we have

EA[∥∆θt∥2] ≤ (1 + ηC)EA[∥∆θt−1∥2] +
ηC′

n
.

∆θ0 = 0

Solving the above recursion with the initial  condition

 yields

EA[∥∆θT ∥2] ≤
ηC′

n
× (1 + ηC)T − 1

ηC
=

κ0

n
.

  □

β n

Next, we prove the uniform stability of the single-lay-

er  HCoN  model  trained  using  the  SGD  algorithm.  Uni-

form stability has been introduced in [19] for the study of

nonrandomized  algorithms,  where  the  algorithms  are  as-

sumed to  be  insensitive  to  the  order  of  the  training  set.

However,  SGD  is  a  randomized  algorithm  that  depends

on the order of the random samples. In [22], the notion of

uniform stability was extended to randomized algorithms.

A randomized algorithm is said to be uniformly stable if

there exists a constant , possibly depending on , such

that

sup
S,S′,v,y

|EA[ℓ(f(v|θ), y)− ℓ(f(v|θ′), y)]| ≤ β.

θ = θ(S, A) θ′ = θ′(S ′, A)

S S ′
Here,  and  are  the  paramet-

ers learned with the datasets  and , respectively. Thus

the difference in the loss function values is averaged over

all randomizations. In this paper, we adopt this notion of

uniform stability  to  establish  a  bound  of  the  generaliza-

tion gap.

T

Theorem  1  (Uniform  stability). The  single-layer

HCoN model trained using the SGD algorithm for  iter-

ations is uniformly stable:

sup
S,S′,v,y

|EA[ℓ(f(v|θ), y)− ℓ(f(v|θ′), y)]| ≤ κ

n

where

κ := αℓασgmaxκ0 =

2α2
ℓα

2
σ

{[
1 + η(αℓνσ + νℓα

2
σ)g

2
max

]T − 1
}

αℓνσ + νℓα2
σ

. (19)

f = f(v|θ) f ′ = f(v|θ′)
f = σ(d) f ′ = σ(d′)

Proof. Let  and .  By  (11),  we

have  and , where

d = AvQV +BvQE

d′ = AvQ
′
V +BvQ

′
E .

Hence, by (6), (8), (18) and Lemma 3, we have

|EA

[
ℓ(f(v|θ), y)− ℓ(f(v|θ′), y)

]
| ≤

EA

[∣∣ℓ(f(v|θ), y)− ℓ(f(v|θ′), y)
∣∣] ≤

αℓEA

[∣∣f(v|θ)− f(v|θ′)
∣∣] ≤

αℓασEA

[∣∣d− d′
∣∣] ≤

αℓασgmaxEA

[
∥∆θT ∥2

]
≤

αℓασgmax × κ0

n
=

κ

n
.

  □

 4.2   Generalization gap

S
A

f(v|θ(S, A)) z = (v, y) D
z

Consider  an  HCoN  trained  on  with  a  randomiza-

tion .  Denote  the  output  of  the  trained  network  by

. Let  be a random sample from .

We denote the loss w.r.t.  by

ℓ(S, A, z) := ℓ(f(v|θ(S, A)), y).

The generalization error is defined by

R(S, A) := Ez[ℓ(S, A, z)].

The empirical risk (a.k.a. training error) is defined by

Remp(S, A) :=
1

n

n∑
i=1

ℓ(S, A, zi)

zi = (vi, yi) i Swhere  is  the -th  sample  in .  The
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generalization gap is given by

G(S) = EA[R(S, A)−Remp(S, A)].

GNext,  we  present  a  perturbation  result  for .  It  is  a

general  result  for  stable  algorithms.  The  proof  can  be

found in the Appendix of  [23].  However,  we also include

the proof here for completeness and we have fixed a few

minor  typos  of  [23].  Recall  that  by Theorem 1,  we have

the uniform stability

|EA[ℓ(f(v|θ), y)− ℓ(f(v|θ′), y)]| ≤ κ

n
.

S S ′

i∗
Lemma  5  (Gap  perturbation). Let  and  be

two training sets that differ by their -th samples. Then,

|G(S)−G(S ′)| ≤ 2κ+ γℓ
n

.

κ γℓ ℓHere,  is given by (19) and  is the upper bound of .

R(S, A)Proof. First, consider the perturbation of :

|EA

[
R(S, A)−R(S ′, A)

]
| =∣∣EA

[
Ez

[
ℓ(S, A, z)− ℓ(S ′, A, z)

]]∣∣ =∣∣Ez

[
EA

[
ℓ(S, A, z)− ℓ(S ′, A, z)

]]∣∣ ≤
Ez

[∣∣EA

[
ℓ(S, A, z)− ℓ(S ′, A, z)

]∣∣] ≤ κ

n
.

Remp(S, A)Second, consider the perturbation of :

|EA

[
Remp(S, A)−Remp(S ′, A)

]
| ≤∣∣∣∣∣∣ 1n

∑
j ̸=i∗

EA

[
ℓ(S, A, zj)− ℓ(S ′, A, zj)

]∣∣∣∣∣∣+∣∣∣∣ 1nEA

[
ℓ(S, A, zi∗)− ℓ(S ′, A, z′i∗)

]∣∣∣∣ ≤
1

n

∑
j ̸=i∗

∣∣EA

[
ℓ(S, A, zj)− ℓ(S ′, A, zj)

]∣∣+
1

n
EA

[∣∣ℓ(S, A, zi∗)− ℓ(S ′, A, z′i∗)
∣∣] ≤

n− 1

n
× κ

n
+

γℓ
n

≤ κ+ γℓ
n

.

Finally, we have

|G(S)−G(S ′)| ≤
∣∣EA

[
R(S, A)−R(S ′, A)

]∣∣+∣∣EA

[
Remp(S, A)−Remp(S ′, A)

]∣∣
so that the result follows.  □

For reference, we state the classical McDiarmid′s con-

centration inequality[25],  which provides the chance of an

inequality with respect to a random training set.

F (S) = F (z1, z2, · · · , zn) n

Proposition  1  (McDiarmid′s  concentration  in-

equality). If  is  a  function of 

i.i.d. random variables that satisfies

|F (S)− F (S ′)| ≤ c

S S ′

ϵ > 0

for  all  and  that  differ  by  one  coordinate,  then,  for

any , we have

P (F (S) ≤ ES [F (S)] + ϵ) ≥ 1− e−
2ϵ2

nc2 .

We are now in position to present our main result for

the generalization gap.

S
T

0 < δ < 1

1− δ

Theorem  2  (Generalization  gap). Consider  a

single-layer HCoN model trained on a dataset  using the

SGD  algorithm  for  iterations.  The  following  expected

generalization gap holds for  all ,  with probabil-

ity at least ,

EA[R(S, A)−Remp(S, A)] ≤ κ

n
+

2κ+ γℓ√
n

×

√
ln 1

δ

2
.

κ γℓ ℓHere,  is given by (19) and  is the upper bound of .

F (S) = G(S)Proof. Let  be  the  generalization  gap.

By  Lemma 5  and  McDiarmid′s  concentration  inequality,

we have

P {G(S) ≤ ES [G(S)] + ϵ} ≥ 1− e−
2ϵ2

nc2

c := 2κ+γℓ
n

δ = e−
2ϵ2

nc2where . Let . Note that

ϵ = c

√
n ln 1

δ

2
=

2κ+ γℓ√
n

×

√
ln 1

δ

2
.

1− δ

Hence,  the  following  holds  with  a  probability  of  at

least :

EA[R(S, A)−Remp(S, A)] ≤ ES [G(S)] + 2κ+γℓ√
n

×
√

ln 1
δ

2
.

ES [G(S)] ≤ κ/nIt  remains  to  be  shown  that .  Note

that

ES [G(S)] = ES [EA[R(S, A)−Remp(S, A)]] =

ES [EA[Ez[ℓ(S,A, z)]]]−
1

n

n∑
j=1

ES [EA[ℓ(S, A, zj)]] =

ES,z[EA[ℓ(S, A, z)]]− ES [EA[ℓ(S, A, zi)]] =

ES,z′
i
[EA[ℓ(S, A, z′i)]]− ES,z′

i
[EA[ℓ(S ′, A, z′i)]] ≤

ES,z′
i
[|EA[ℓ(S, A, z′i)− ℓ(S ′, A, z′i)]|] ≤

ES,z′
i

[κ
n

]
=

κ

n
.

The last inequality is due to Theorem 1.  □
n → ∞

O(1/
√
n) κ

n M N

gmax

n M N gmax

Theorem 2 states that as , the gap converges to

zero at the rate of , provided that  in (19) does

not  grow  with  and  the  network  size  (  and ).  It

boils down to the requirement that the  given in (13)

does  not  grow  with ,  and .  In  general,  can

grow  with  the  size  of  the  network.  For  example,  if  the
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XV XE

[0, 1] ∥XV ∥2 = O(
√
NFV ) ∥XE∥2 =

O(
√
MFE) XV

∥XV ∥2 ≤ ∥XV ∥F =
√
FV

∥ · ∥F
XE ∥XE∥2 ≤

√
FE

gmax H

H H̃

µ(H̃)

µ(H) = O(
√
NM)

entries of  and  are uniformly distributed on the in-

terval ,  then  and 

.  We  therefore  normalize  each  column  of 

to a unit vector. Thus, we have ,

which is a constant independent of the graph size. Here,

 denotes the Frobenius norm. Likewise, we also nor-

malize  so  that .  Another  factor  that

may affect the growth of  is the incidence matrix .

When  is  normalized  to ,  it  can  be  shown  that  the

dominant singular value  is bounded above by 1 (see

[18]). In contrast, we have . With both

kinds of normalization in place, we have

gmax ≤
√
FV + FE = O(1)

gmax√
α2FV + (1− α)2FE = O(1)

a constant independent of the graph size.  Likewise, 

in (16) is bounded by .

θ

κ

T

θ1, · · · , θT
κ O(T )

T

n

It is worthwhile to compare our results with some re-

lated works. In the study of stable algorithms in [19], the

learnt model  is assumed to be a global optimizer of the

loss  function,  which  is  assumed to  be  convex.  There  are

no SGD iterations. As such, the corresponding constant 

is  independent  of .  However,  the  assumption  of  global

optimality  is  impractical.  The  work  in  [22]  considers  re-

gression models with  generated with SGD. The

constant  is shown to be . However, there are also

some  rather  strong  convexity  assumptions  in  the  model

that are not applicable to neural networks with nonlinear-

ities.  The  bound in  [23]  for  GCNs has  the  same kind  of

exponential dependence on  as ours. This is due to the

lack of convexity in the model. Moreover, SGD does not

guarantee a monotonic reduction of the loss function even

when the learning rate is coupled with a line search. Thus

the  situation  encountered  in  [23]  and  in  this  paper  is

more sophisticated but more practical. However, we man-

age to establish the convergence with respect to the size

 of the training set.

The  result  indicates  the  consistency  between training

and testing errors, which is important for the model to be

useful. Of course, it relies on the well-known fundament-

al  assumption  that  the  training  and  testing  sets  are

drawn  from the  same  distribution.  In  Section  5,  we  will

also  numerically  study  the  generalization  gap  with  re-

spect to different parameters.

In the paper by [17, 18], vertex and hyperedge classi-

fication is studied. Experimental results on several bench-

mark  datasets  have  shown  that  the  performance  of  the

hypergraph  collaborative  network  is  better  than  that  of

the baseline methods. Our theoretical results for the sta-

bility and generalization of hypergraph collaborative net-

works can further confirm their usefulness.

Finally,  we would like to remark that our theoretical

analysis  is  also  valid  for  hypergraph  convolution  net-

works (HCNs) in (1), where propagation of embedding is

XE

FE

done  on  vertices  only.  The  HCoN  model  reduces  to  an

HCN when the hyperedge feature matrix  is set to the

zero  matrix  and  the  hyperedge  feature  dimension  is

set to zero.

S
T

0 < δ < 1

1− δ

Corollary  1  (Generalization  gap). Consider  a

single layer HCN model trained on a dataset  using the

SGD  algorithm  for  iterations.  The  following  expected

generalization gap holds for  all ,  with probabil-

ity at least ,

EA[R(S, A)−Remp(S, A)] ≤ κ

n
+

2κ+ γℓ√
n

×

√
ln 1

δ

2
.

κ γℓ ℓHere,  is given by (19) and  is the upper bound of .

 5   Experiments

The purpose of this section is to numerically study the

behavior  of  the  generalization  gap  of  HCoNs.  We  refer

the reader to [18] for the accuracy of the model.

 5.1   Datasets

We use  the  widely  used  benchmark  datasets  of  Cite-

seer[26], Cora[27] and PubMed[28] for evaluations. The three

networks  consist  of 1 498, 16 313,  and 3 840 vertices,  re-

spectively.

30%
30%−70%

Citeseer  and  PubMed  are  cocitation  datasets.  In  the

hypergraph,  each vertex  represents  a  document.  The  set

of citations of a document forms a hyperedge. The vertex

features  for  Citeseer  and  PubMed  are  the  bag-of-words

vector  representations  and  the  term  frequency-inverse

document  frequency  (TF-IDF),  respectively.  Cora  is  a

coauthorship dataset. Each vertex represents a document

and  each  hyperedge  represents  an  author  connecting  to

documents of the author. The vertex features are the TF-

IDF vectors  of  the  documents.  A  more  detailed  descrip-

tion of the feature vector generation process can be found

in [18]. In each of the three networks,  of the vertices

are  used  as  the  test  set;  of  the  vertices  are

used as the training set.

 5.2   Effect of the weight

α

10

EA[·]

α

Fig. 1 shows the generalization gap as a function of the

size  of  the  training  set.  The  weight  in  (4)  and  (5)  is

varied to see its effects. The gap values are the average of

 different randomizations to serve as a proxy for the ex-

pectation .  As the  size  of  the  training set  increases,

the  generalization  gap  decreases.  This  is  predicted  with

our theory that the gap decreases as the size of the train-

ing set increases. For a fixed size of the training set, the

gap is smaller as  increases; this indicates that for these

datasets, the vertex features are more important for pre-

diction than the hyperedge features.
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 5.3   Effect of the learning rate

10

n

n

Fig. 2 shows the generalization gap as a function of the

size  of  the  training  set  for  different  learning  rates.  The

gap values are the average of  different randomizations.

The generalization gap reduces as the size of the training

set  increases.  Moreover,  the  gap  decreases  with  the

learning rate for each fixed . Such phenomena are con-

sistent with the bound devised in Theorem 2.

To  illustrate  the  convergence  of  the  training  process,

we show the training and test loss function values at each

epoch  in Fig. 3.  To  avoid  overwhelming  with  too  many

70%
α = 0.9 η = 0.01

10

figures, we show only the result for  training sample,

 and . The loss function values are the av-

erage  of  different  randomizations.  The  graph  shows

that: 1) The training loss function value is monotonically

decreasing,  and  hence,  the  network  fits  better  to  the

training  data;  2)  The  test  loss  function  value  is  also

monotonically  decreasing,  and  hence,  the  generalization

error  is  improving.  The  starting  training  and  test  loss

function values are similar because the network paramet-

ers  are  initialized  randomly.  The  difference  between  the

training  and  the  test  loss  function  values  at  the  final

epoch  constitutes  the  generalization  gap  reported  in
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Fig. 1     Convergence  of  generalization  for  various  ′ s  as  the
training size   increases.
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Figs. 1 and 2. Our theory predicts that the gap at a fixed

 decreases as the size  of the training set increases; see

Figs. 1 and 2 for the convergence of the gap as a function

of .

 5.4   Effect of incidence matrix normaliza-
tion

H

H̃ H

In  the  experiment,  we  demonstrate  the  effect  of  nor-

malization  of  the  incidence  matrix .  The  normalized

model is given in (4) and (5). The unnormalized model is

obtained  by  replacing  in  (4)  and  (5)  with . Fig. 4

70% α

0.9

H H̃

µ(H̃) ≤ 1 µ(H) =

O(
√
NM)

shows the generalization gap as the SGD progresses. The

size of the training set is fixed to . The  is fixed to

 because it yields the lowest gap and highest accuracy

(see [18]). Each epoch represents a cycle of iterations over

the whole training set. The gap values are obtained from

a single randomization. First, the results show that when

 is  normalized  to ,  the  gap  reaches  a  smaller  level

and  converges  faster  as  the  number  of  iterations  in-

creases.  This  is  predicted  with  our  theoretical  bound  of

the  generalization  gap  since  whereas 

. The theory thus explains why normalization is
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important. Second, regarding the results with normalized

incidence matrices, although the theoretical bound grows

with  (the  number  of  iterations),  the  gap  stabilizes

quickly in practice. This is because the bound represents

the worst-case scenario, which is pessimistic.

 6   Conclusions

H

In  this  paper,  we  have  established  uniform  stability

and  generalization  guarantee  for  single-layer  hypergraph

collaborative  networks.  The results  show the  importance

of  the  normalization  of  the  vertex  and  hyperedge  fea-

tures and normalization of the hypergraph incidence mat-

rix . With these normalizations, we have a bound of the

generalization  gap  independent  of  the  graph  size,  and

therefore, the generalization gap converges to zero. Some

numerical experiments are presented to examine the con-

vergence of the generalization gap in practice.

Ez∼D ES

Several  future  research  directions  will  be  considered.

1)  Extend  the  analysis  to  multilayer  HCoNs,  which  are

more  useful  in  practice.  The  main  challenge  is  that  the

gradients of the network become highly nonlinear and are

more difficult to estimate. 2) Consider more general first-

order stochastic optimization algorithms to include other

commonly used algorithms such as SGD with momentum

and adaptive moment estimation (ADAM). The problem

is to devise estimates that can precisely reflect the poten-

tial  acceleration delivered by these algorithms and study

how the acceleration affects  the  stability  and generaliza-

tion gap. 3) While the present result has an advantage in

that it does not assume any specific data distribution, it

would also be useful to analyze the generalization gap in

the  presence  of  a  data  distribution.  The  idea  is  to  im-

prove the estimation of the expectations  and  in

Lemma 5, Proposition 1, and Theorem 2. Specifically, de-

termine the distribution of the gap from the assumed dis-

tribution of data, and the devise a special case of McDiar-

mid′s concentration inequality with an improved bound.
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