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a b s t r a c t 

Semi-supervised object detection has recently achieved substantial progress. As a mainstream solution, 

the self-labeling-based methods train the detector on both labeled data and unlabeled data with pseudo 

labels predicted by the detector itself, but their performances are always limited. Through experimen- 

tal analysis, we reveal the underlying reason is that the detector is misguided by the incorrect pseudo 

labels predicted by itself (dubbed self-errors). These self-errors can hurt performance even worse than 

random-errors, and can be neither discerned nor rectified during the self-labeling process. In this pa- 

per, we propose an effective detection framework named CrossRectify, to obtain accurate pseudo labels 

by simultaneously training two detectors with different initial parameters. Specifically, the proposed ap- 

proach leverages the disagreements between detectors to discern the self-errors and refines the pseudo 

label quality by the proposed cross-rectifying mechanism. Extensive experiments show that CrossRectify 

achieves outperforming performances over various detector structures on 2D and 3D detection bench- 

marks. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

The success of deep learning has greatly prompted the devel- 

pment of object detection approaches, such as SSD [1] , Faster- 

CNN [2] , STDnet-ST [3] , MSKR [4] , SCA-Net [5] , CADN [6] , etc ,

nd a large amount of labeled data is essential to the training 

rocess of object detectors. However, as illustrated in [7] , it is al- 

ays labor-intensive and expensive to acquire a large amount of 

abeled data with bounding-box-level annotations. In comparison, 

nlabeled data are much easier and cheaper to collect. Therefore, 

emi-supervised object detection [8] is recently investigated to re- 

uce the cost of data annotating, which leverages only a few la- 

eled data and a large amount of unlabeled data to train object 

etectors. 

Semi-supervised object detection (SSOD) has achieved signif- 

cant progress in recent years, and one mainstream of existing 

SOD solutions is based on the self-labeling scheme [9] . The core 

dea of self-labeling scheme is to first utilize the current detec- 
∗ Corresponding author. 

E-mail address: tangfan@jlu.edu.cn (F. Tang) . 

U

fi

l

ttps://doi.org/10.1016/j.patcog.2022.109280 

031-3203/© 2022 Elsevier Ltd. All rights reserved. 
or to predict pseudo bounding boxes for unlabeled data in each 

raining iteration, then conduct detector training with both labeled 

ata and pseudo-labeled data. However, compared with fully- 

upervised baselines, the performance increments brought by the 

elf-labeling-based methods are always observed limited. For ex- 

mple, the absolute AP 50 gain is only 0.40% (0.46%) without (with) 

he mix-up data augmentation [10] over the SSD300 [1] detector 

n the Pascal VOC [11] benchmark (as shown in Fig. 1 ). To reveal

he reason behind such phenomenon, we introduce the ground- 

ruth annotations of unlabeled data for in-depth analysis. Exist- 

ng self-labeling-based SSOD methods generate pseudo labels by 

electing bounding boxes with high confidence scores to ensure 

he quality of pseudo labels. However, we observe that part of 

igh-confidence boxes are still misclassified (dubbed self-errors), 

nd these self-errors can hurt the detection performance even 

orse. Specifically, when we replace the misclassified category la- 

els with random labels (dubbed random-errors) during the self- 

abeling training process, the final performance is even improved. 

nfortunately, these self-errors can be neither discerned nor recti- 

ed by the detector itself, which we summarize as two inherent 

imitations of the self-labeling training scheme. These two limita- 

https://doi.org/10.1016/j.patcog.2022.109280
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.109280&domain=pdf
mailto:tangfan@jlu.edu.cn
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C. Ma, X. Pan, Q. Ye et al. Pattern Recognition 137 (2023) 109280 

Fig. 1. The proposed CrossRectify and CrossRectify ∗ method can outperform the 

self-labeling-based semi-supervised object detection method by large margins on 

the Pascal VOC benchmark dataset without/with the mix-up data augmentation. 

(For interpretation of the references to color in this figure legend, please refer to 

the online version of this article.) 
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ions will lead the detector to be misguided by self-errors, and fi- 

ally results in insignificant performance increments. 

Since one single detector can neither discern nor rectify the 

isclassified pseudo bounding boxes, it is necessary to introduce 

he guidance information from other distinct detector to the train- 

ng process. Recently, a few works, such as Deep Co-Training [12] , 

ual Student [13] , JoCoR [14] , Co-teaching+ [15] , illustrate the fact 

hat two differently initialized models with an identical structure 

an yield diverse results on the same training sample during the 

raining process. Inspired by this fact, in this paper, we propose an 

ffective and general training framework named CrossRectifiy for 

oth 2D and 3D semi-supervised object detection task. In Cross- 

ectify, two detectors with the same structure but different initial- 

zation are trained simultaneously, and each detector is supervised 

y the pseudo labels generated from the proposed cross-rectifying 

echanism. Specifically, the proposed cross-rectifying mechanism 

rst leverages the disagreements on the same objects between two 

etectors to discern the latent self-errors predicted by each sin- 

le detector. Then, the pseudo labels are generated based on the 

ounding boxes predicted by two detectors, by adopting a sim- 

le yet effective comparison-to-assigning pipeline with confidence 

cores being considered. To this end, the proposed CrossRectify 

ethod can discern and rectify the self-errors and improve the 

seudo label quality. 

Note that a few recent works utilize another separate detec- 

or for pseudo label generation, which can somehow alleviate the 

imitations of self-labeling training scheme. For instance, recent 

orks including STAC [16] , Uncertainty [17] , UBTeacher [18] , Hum- 

le Teacher [19] , Soft Teacher [20] adopt the teacher-student mu- 

ual learning framework [21] and utilize a specific teacher detec- 

or to generate pseudo labels in an offline or online way. However, 

hese approaches still suffer from the following shortcomings: the 

seudo labels always remain fixed [16,17] , and the teacher de- 

ector is converged to the student detector in the late stage of 

raining [18–20] , thus the labeling process degenerates into the 

elf-labeling manner and suffers from the same limitations. Simi- 

ar with our method, [22] proposes the co-rectify method to train 

wo models simultaneously and takes the average on two predic- 

ions sets as pseudo labels, which is the only prior work adopting 

he co-training framework to the best of our knowledge. However, 

e conduct quantitative comparison on the pseudo label quality, 
2 
nd the experimental results validate the superiority of our Cross- 

ectify method compared with co-rectify. 

We carry out extensive experiments on both 2D and 3D semi- 

upervised object detection tasks to verify the effectiveness and 

ersatility of the proposed CrossRectify method. As illustrated in 

ection 5.3 , our method obtains consistent and substantial im- 

rovements compared with the state-of-the-art SSOD methods on 

he Pascal VOC, MS-COCO, and SUN-RGBD benchmark datasets, im- 

roving by > 1% absolute AP margins. 

Our main contributions are summarized as follows: 

1) We point out that the performances of self-labeling-based SSOD 

approaches are always limited, and the reason behind such 

phenomenon lies in that the detector can neither discern nor 

rectify the misclassified pseudo bounding boxes predicted by it- 

self. 

2) We propose an effective approach named CrossRectify to dis- 

cern and rectify the misclassified pseudo bounding boxes using 

the disagreements between two detectors, which can address 

the inherent limitations of self-labeling and improve the detec- 

tion performance. 

3) We conduct extensive experiments on both 2D and 3D object 

detection benchmark datasets, and the results verify the supe- 

riority of the proposed CrossRectify approach, compared with 

state-of-the-art approaches. 

In the remainder of this paper, we briefly review several re- 

ated works in Section 2 . Then we describe the two limitations of 

elf-labeling-based SSOD approaches in Section 3 , and provide the 

echnical details of the proposed CrossRectify method in Section 4 . 

inally, we display the detection performances of 2D and 3D SSOD 

asks in Section 5 and conclude the whole paper in Section 6 . 

. Related work 

.1. 2D and 3D object detection 

Object detection is one of the most significant tasks in com- 

uter vision, including 2D and 3D scenes. In the field of 2D ob- 

ect detection, the structures of detectors can be categorized into 

ingle-stage (SSD [1] , etc ) and two-stage (Faster-RCNN [2] , cascade 

CNN [23] , etc ), depending on whether a region proposal network 

s utilized. Although these detectors have reached outstanding per- 

ormances, their training processes heavily rely on a large amount 

f labeled data with bounding box annotations, which are always 

aborious and expensive to acquire [7] . In this paper, we focus on 

ow to leverage a large amount of unlabeled data for performance 

ncrement. For fair comparisons with existing works, we conduct 

xperiments over the SSD300 and Faster-RCNN-FPN detector struc- 

ures on 2D object detection, and over the VoteNet [24] structure 

n 3D object detection. 

.2. Semi-supervised object detection (SSOD) 

The existing SSOD approaches can be categorized as follows. 

onsistency regularization Many of the existing SSOD methods uti- 

ize the consistency regularization proposed in semi-supervised 

earning (SSL), such as CSD [25] , ISD [26] , PL [27] , etc . The key

dea of consistency regularization is to require the detector to pre- 

ict consistently on both weak- and strong- augmented versions of 

he same input. We point out that the consistency-regularization- 

ased methods can be regarded as the special case of the self- 

abeling training scheme, because the detector is supervised by the 

seudo labels on weak-augmented image predicted by itself. Note 

hat these studies report large performance improvements over the 

ully-supervised baselines, but we point out that the experimental 
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Table 1 

Results of self-labeling-based semi-supervised object detection methods 

under various data augmentations. The benchmark dataset is Pascal VOC 

and the detector structure is SSD300. “SeLa” stands for self-labeling. 

“identical”, “HF” and “MU” stand for no data augmentation, horizontal 

flip augmentation (CSD) [25] and mix-up augmentation (ISD) [26] , re- 

spectively. The figures in brackets are the performance increments over 

the fully-supervised baselines, which always seem trivial for the self- 

labeling-based methods. 

Method A (·) Labeled Unlabeled AP 50 (%) 

Supervised identical VOC07 - 71.73 

SeLa identical VOC07 VOC12 72.13 ( + 0.40) 

Supervised identical VOC0712 - 77.37 ( + 5.64) 

Supervised HF VOC07 - 71.89 

SeLa HF VOC07 VOC12 72.35 ( + 0.46) 

Supervised HF VOC0712 - 77.26 ( + 5.37) 

Supervised MU VOC07 - 73.04 

SeLa MU VOC07 VOC12 73.50 ( + 0.46) 

Supervised MU VOC0712 - 78.83 ( + 5.79) 
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ettings are somehow unfair. In fact, under the same data augmen- 

ation, the performance increments brought by consistency regu- 

arization are always observed limited. We analyze the reason be- 

ind such phenomenon in this paper, and point out the inherent 

imitations of the self-labeling training scheme, as well as the con- 

istency regularization. 

Teacher-student mutual learning Beyond the consistency regular- 

zation, there are a few SSOD works based on the teacher-student 

utual learning framework [21] . In an offline or online manner, 

he pseudo labels are generated by the teacher model, instead of 

y the student model itself. As for the former, STAC [16] and Uncer- 

ainty [17] first pre-train the teacher model with available labeled 

ata, then utilize the teacher to annotate the entire unlabeled data. 

owever, the pseudo labels are generated only once and remain 

xed during semi-supervised training, thus the final performance 

f student model is limited by that of the teacher model. As for 

he latter, UBTeacher [18] , Humble Teacher [19] , and Soft Teacher 

20] compute the exponential moving average of student as teacher 

nd the teacher is utilized to generate pseudo labels during the 

emi-supervised training process. However, we observe that the 

eacher is converged to the student in the late stage of training, 

hich indicates that the labeling process degenerates into the self- 

abeling manner and suffers from the same limitations. 

Co-rectify and CPS As another research line of semi-supervised 

earning, co-training methods are proposed to train two models in 

 collaborative manner, such as Deep Co-Training [12] , Dual Stu- 

ent [13] , JoCoR [14] . Each model can learn from the pseudo labels

redicted by its counterpart, which seems a promising way to mit- 

gate the limitations of self-labeling methods. The only prior work 

aking the idea of co-training for the SSOD task is co-rectify [22] . 

n [22] , the pseudo boxes for unlabeled data are first predicted by 

ne detector, then refined by the corresponding predictions from 

nother model, with probability scores and coordinates being aver- 

ged. Besides, a recent study [28] also adopts co-training and pro- 

oses the cross pseudo supervision (CPS) for the semi-supervised 

emantic segmentation task, where each model is supervised by 

he pseudo maps predicted by the other model. We note that CPS 

an be adapted for the SSOD task. However, we conduct quantita- 

ive comparisons to show that both co-rectify and CPS cannot fully 

xploit the advantages of multiple models and improve the quality 

f pseudo labels. 

. Problem analysis 

In this section, we first introduce the preliminaries in semi- 

upervised object detection (SSOD), then analyze the inherent lim- 

tations of self-labeling-based SSOD methods. 

.1. Preliminaries 

Under the semi-supervised setting, an object detector f is 

rained on a labeled dataset D l = { x l 
i 
, y l 

i 
} N l 

i =1 
with N l samples and

n unlabeled dataset D u = { x u 
j 
} N u 

j=1 
with N u samples. For a labeled 

mage x l , its annotation y l = ( c , t ) contains the category labels c 

nd coordinates t of all foreground objects. 

Overall, the detector model f is optimized by minimizing the 

upervised loss L S on labeled data and unsupervised loss L U on un- 

abeled data, formulated as: 

 = L S + λU · L U , (1) 

here λU denotes the weight factor. Generally, the supervised loss 

 S consists of the classification loss l cls and coordinate regression 

oss l reg : 

 S = l cls 

(
f cls ( x 

l ) , c 
)

+ l reg 

(
f loc ( x 

l ) , t 
)
, (2) 
e

3

here f cls ( x 
l ) and f loc ( x 

l ) stand for probabilities and coordinates 

redicted by the classification and localization branch of detector 

f , respectively. 

In each training iteration, the self-labeling-based SSOD method 

tilizes the current detector to predict bounding boxes on the un- 

abeled inputs x u , and then selects the pseudo labels ˆ y with confi- 

ence larger than the threshold τ , and finally computes the unsu- 

ervised loss: 

 U = l cls 

(
f cls ( x 

u ) , ̂  c 
)

+ l reg 

(
f loc ( x 

u ) , ̂  t 
)
, (3) 

here ˆ y = ( ̂ c , ̂  t ) = 

(
argmax f cls ( x 

u ) , f loc ( x 
u ) 

)
and max f cls ( x 

u ) > τ
re correspondingly satisfied. 

As the special case of self-labeling training, the consistency- 

egularization-based methods introduce weak data augmentation 

(·) and strong data augmentations A (·) , and the Eq. (3) is up-

ated as: 

 U = l cls 

(
f cls (A ( x u )) , argmax f cls (α( x u )) 

)
+ l reg 

(
f loc (A ( x u )) , f loc (α( x u )) 

)
. 

(4) 

ote that as for the consistency regularization, the loss term 

q. (4) can be computed on both labeled and unlabeled data, 

nd the strong augmentations can also boost the performances 

f fully-supervised training [26] . Accordingly, the total loss in 

q. (1) is augmented as L = L S + λU ·
(
L U ( x 

l ) + L U ( x 
u ) 

)
, and the

ully-supervised baseline is trained by optimizing L = L S + λU ·
 U ( x 

l ) . 

.2. Limitations of self-labeling 

To verify the performances of existing self-labeling-based SSOD 

ethods, we conduct experiments on the Pascal VOC benchmark 

ataset [11] based on the SSD300 structure [1] . We use the train- 

al set of VOC07 as labeled data and trainval set of VOC12 as un- 

abeled data, and finally report the AP 50 performance on the test 

et of VOC07. The confidence threshold τ is fixed as 0.5, similar 

ith [25] and [26] . For comparison, we conduct fully-supervised 

raining with same hyper-parameters (batch size, iteration num- 

er, etc ) as baseline. As shown in Table 1 , the AP 50 improvement

chieved by self-labeling methods is only 0.40%. Besides, we test 

ith two representative consistency-regularization-based methods, 

amely CSD [25] and ISD [26] . Similarly, the detection results 

chieve only 0.46% absolute AP 50 gains over the baseline, which 

ndicates the inefficiency of self-labeling training scheme. 

To reveal the reason behind such phenomenon and find out 

ossible solutions, we introduce the ground-truth category labels 

f all pseudo bounding boxes for in-depth analysis. Although all 

xisting self-labeling-based SSOD methods generate pseudo labels 
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Fig. 2. Pseudo label quality under different confidence thresholds in self-labeling training. (a) Precision of pseudo labels. (b) Average number of correctly classified pseudo 

boxes in each iteration. (For interpretation of the references to color in this figure legend, please refer to the online version of this article.) 

Table 2 

Analysis on the limitations of self-labeling methods. The benchmark dataset is Pascal VOC and the 

detector structure is SSD300. TP (FP) stands for the correctly (falsely) classified pseudo boxes. “SeLa”

stands for self-labeling, which uses both TP and FP for training. The figures in brackets are the AP 50 

increments over the fully-supervised baseline. 

Method Labeled Unlabeled τ AP 50 

Supervised VOC07 - - 71.73 

SeLa VOC07 VOC12 0.5 72.13 ( + 0.40) 

SeLa VOC07 VOC12 0.5 → 0.8 72.09 ( + 0.36) 

SeLa VOC07 VOC12 0.8 72.12 ( + 0.39) 

SeLa (use TP and discard FP) VOC07 VOC12 0.5 74.03 ( + 2.30) 

SeLa (use TP and random labeled FP) VOC07 VOC12 0.5 73.87 ( + 2.14) 

SeLa (use GT labels for TP and FP) VOC07 VOC12 0.5 74.86 ( + 3.13) 

Supervised VOC0712 - - 77.37 ( + 5.64) 

b

s

h

W

p

t

a

c

t

w

i

t  

t

c

t

a

c

t

u  

0

p

t

m

l

t

l

g

t

g

p

B

p

r

p

t

F

w

d

t

r

i

t

h

4

4

e

t

b

s

i

t

t

p

g

t

s

c

1 Take 2D object detection task for example. The backbone parameters are both 

initialized by the ImageNet-pretrained model, while the parameters of detection 
y selecting bounding boxes with high confidence scores to en- 

ure the quality of pseudo labels, Fig. 2 (a) illustrates that part of 

igh-confidence pseudo bounding boxes can also be misclassified. 

e name these incorrect boxes “self-errors” for clarity. Since all 

seudo boxes are predicted by the detector, it is impossible for 

he detector itself to discern the self-errors, which we summarize 

s the inherent limitation of the self-labeling process. We further 

onduct an experiment to illustrate how much can such limita- 

ion affect the detection performance: in each training iteration, 

hen we use the correct pseudo bounding boxes and discard the 

ncorrect ones for training, the AP 50 result increases from 72.13% 

o 74.03% (see the 2nd and 5th rows in Table 2 ). Besides, we note

hat the detection performance cannot be improved by naively in- 

reasing the confidence threshold τ . As shown in Fig. 2 (a) and (b), 

he precision of pseudo bounding boxes increases from 71% to 91% 

s the threshold increases from 0.4 to 0.8, while a large threshold 

an also overkill the correct pseudo boxes and waste the unlabeled 

raining data. Correspondingly, we conduct self-labeling training 

nder three settings of the threshold τ : (i) fixed as 0.5, (ii) fixed as

.8, (iii) rising from 0.5 to 0.8 gradually during the whole training 

rocess. As displayed in Table 2 (from 2nd row to 4th row), the 

rade-off between precision and recall leads to similar final perfor- 

ances (about 72.1% AP 50 ). 

Since the self-errors cannot be discerned during the self- 

abeling process, it is also impossible for the detector to rectify 

hem, which we summarize as the second limitation of the self- 

abeling process. In each training iteration, when we utilize the 

round-truth (GT) category labels for all pseudo bounding boxes, 

he AP 50 result increases to 74.86%, obtaining a 3.13% absolute 

ain rather than 0.40% (see the penultimate row in Table 2 ). Such 

henomenon shows the effectiveness of pseudo label rectification. 

esides, we find another interesting phenomenon: when we re- 

lace the misclassified category labels with random labels (dubbed 

andom-errors) during the self-labeling training process, the final 
h

4 
erformance increases to 73.87% (see the third row from the bot- 

om in Table 2 ). We also conduct experiments on the Faster-RCNN- 

PN structure [2] and observe the similar trend: the AP 50 obtains 

ith a 0.2% gain by replacing the misclassified labels with ran- 

om labels during training. Such phenomena imply that the de- 

ector model can be misguided more severely by self-errors than 

andom-errors. 

Based on the above experimental analysis, we draw that two 

nherent limitations in self-labeling-based SSOD methods will lead 

he detector to be misguided by self-errors, and self-errors will 

urt the detector performance even worse than random-errors. 

. Methodology 

.1. CrossRectify 

Since one single detector can neither discern nor rectify its self- 

rrors, an intuitive idea is to utilize another model to deal with 

hem. Inspiring by the fact that two models with same structure 

ut different initialization can yield different predictions on the 

ame input, we present the CrossRectify method to address the 

nherent limitations of self-labeling. 

In CrossRectify, two detectors with the same structure but dis- 

inct initialization 

1 , f A and f B , are trained simultaneously. Both de- 

ectors are trained by jointly optimizing the supervised and unsu- 

ervised loss in Eq. (1) . For simplicity, we only introduce how to 

enerate pseudo bounding boxes ˆ y A for training detector f A , since 

he pseudo boxes ˆ y B for training detector f B are generated in the 

ame way. There are three steps in generating ˆ y A , including: 1) 

onducting detector feed-forward; 2) matching predicted bounding 
eads are randomly initialized. 
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Fig. 3. Overview of the pseudo label generation process in the proposed algorithm. Refer to Section 4 for more details. (For color discrimination in this figure, please refer 

to the online version of this article.) 
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oxes; 3) cross-rectifying the matched boxes to generate pseudo 

abels. They will be explained in details sequentially. The label gen- 

ration process of ˆ y A is illustrated in Fig. 3 and briefly summarized 

n Algorithm 1 . 

lgorithm 1 Generating pseudo bounding boxes ˆ y A via CrossRec- 

ify for training detector f A . 

nput: Object detectors f A and f B , and unlabeled input. 

utput: The pseudo bounding boxes for training f A . 

1: Utilize f A and f B to predict on unlabeled input 

2: Select the predicted boxes with their max probability scores 

larger than threshold τ , denoted as y A and y B . 

3: Compute the matching metrics M(·, ·) for each bounding boxes 

in y A with all bounding boxes in y B . 

4: Find the best matching box for each bounding boxes in y A (us- 

ing Eq. (5)). 

5: Compare max probability scores between each matched pair 

and obtain the pseudo boxes (using Eq. (8)) 

Detector feed-forward In each training iteration, we utilize two 

etector models f A and f B to predict on the unlabeled inputs, then 

elect the bounding boxes with max probability scores higher than 

hreshold τ , denoted as y A = ( p A , t A ) and y B = ( p B , t B ) . p and t de-

ote the probability scores and coordinates of all predicted bound- 

ng boxes. 

Matching bounding boxes For each box in y A , we search its 

est match box among all boxes in y B . For example, for i th box 

 p A,i , t A,i ) in y A , the matching process is formulated as: 

j ∗ = argmax j∈{ 1 , ··· , | y B | } M 

(
( p A,i , t A,i ) , ( p B, j , t B, j ) 

)
, (5) 

here M(·, ·) stands for the matching metric and is slightly 

ifferent for kinds of detectors. For the Faster-RCNN [2] , 

(( p A,i , t A,i ) , ( p B, j , t B, j )) is the area of intersection over union 

IoU) between two boxes as: 

 

(
( p A,i , t A,i ) , ( p B, j , t B, j ) 

)
= 

t A,i ∩ t B, j 

t A,i ∪ t B, j 

. (6) 

pecifically, if the IoU areas between ( p A,i , t A,i ) and all boxes 

n y B are all below a certain threshold δ, we create a virtual 

ounding box t B, j ∗ to match it, as ( p B, j ∗ , t j ∗ ) = ( p A,i , t A,i ) and

he matching metric M(·, ·) equals 1. For the SSD structure [1] , 
5 
(( p A,i , t A,i ) , ( p B, j , t B, j )) equals 1 if two boxes are based on the 

ame anchor, otherwise 0. Note that M(·, ·) for SSD can also be 

pecified as the IoU areas as like that for Faster-RCNN, but we find 

t more effective to adopt the anchor correspondence in our exper- 

ments. For the VoteNet [24] , the matching metric M(·, ·) is speci- 

ed as the negative Euclidean distance between the centers of two 

ounding boxes, computed as: 

 

(
( p A,i , t A,i ) , ( p B, j , t B, j ) 

)
= −

∥∥C( t A,i ) − C( t B, j ) 
∥∥

2 
, (7) 

here C(·) denotes the center of a certain box. 

Cross-rectifying Based on the matched bounding box pair, each 

seudo bounding box ( ̂ c A,i , ̂  t A,i ) within 

ˆ y A can be generated as: 

 ̂

 c A,i , ̂  t A,i ) = 

{
( argmax p B, j ∗ , t B, j ∗ ) , i f max p A,i < max p B, j ∗

( argmax p A,i , t A,i ) , otherwise . 
(8) 

ote that the Eq. (8) covers two situations. (a) When both detec- 

ors predict the same class on a certain object, we adopt it as the 

seudo label, since two decisions are more reliable than one de- 

ision. (b) When two detectors have disagreements on a certain 

bject, such bounding box tends to be unreliable. To this end, the 

ounding box with higher confidence is regarded as the pseudo la- 

el. The rationality behind such cross-rectifying mechanism lies in 

hat the bounding boxes with higher confidence scores are more 

ikely to be correctly classified (see Fig. 2 (a)). Thus, the wrong ele- 

ents in y A can be both discerned and rectified in such manner. 

When the training process ends, we evaluate the performance 

f one single detector. Moreover, to exploit the different detec- 

ion abilities, we propose to adopt the weighted boxes fusion 

WBF) [29] strategy to ensemble two predictions sets. The cor- 

esponding performance is denoted as CrossRectify ∗. 

.2. Comparisons with other works 

Now we conduct quantitative analysis to show the superiority 

f CrossRectify on improving pseudo label quality, comparing with 

ther recent works. 

Teacher-student mutual learning As discussed in Section 2.2 , 

ome recent SSOD works such as STAC [16] , Uncertainty [17] , 

BTeacher [18] , Humble Teacher [19] , Soft Teacher [20] , are estab- 

ished on the offline/online teacher-student mutual learning [21] . 

hese works can alleviate the self-errors in self-labeling process 

y introducing another separate object detector for generation of 

seudo labels. However, as for offline methods [16,17] , the pseudo 
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Table 3 

2D Semi-supervised Object Detection performances (AP 50 ) on Pascal VOC benchmark dataset. 

Model Backbone Method Labeled Unlabeled Threshold AP 50 

SSD300 VGG-16 Supervised VOC07 - - 71.73 

Self-Labeling VOC07 VOC12 0.5 72.13 ( + 0.40) 

Online Teacher-Student Mutual 

Teaching 

VOC07 VOC12 0.5 72.56 ( + 0.83) 

Offline Teacher-Student 

Mutual Teaching [17] 

VOC07 VOC12 - 72.52 ( + 0.79) 

Cross Pseudo Supervision [28] VOC07 VOC12 - 72.56 ( + 0.83) 

Co-rectify [22] VOC07 VOC12 0.5 72.48 ( + 0.75) 

CrossRectify (ours) VOC07 VOC12 0.5 73.56 ( + 1.83) 

CrossRectify ∗ (ours) VOC07 VOC12 0.5 74.97 ( + 3.24) 

Supervised + MixUp VOC07 VOC12 0.5 73.04 

Self-Labeling + MixUp 

(ISD [26] ) 

VOC07 VOC12 0.5 73.50 ( + 0.46) 

CrossRectify + MixUp (ours) VOC07 VOC12 0.5 74.91 ( + 1.87) 

CrossRectify ∗ + MixUp (ours) VOC07 VOC12 0.5 76.16 ( + 3.12) 

Faster-RCNN-FPN ResNet-50 Supervised VOC07 - - 76.90 

CSD [25] VOC07 VOC12 - 77.50 ( + 0.60) 

STAC [16] VOC07 VOC12 - 77.50 ( + 0.60) 

Co-rectify [22] VOC07 VOC12 0.5 79.20 ( + 2.30) 

Combating Noise [35] VOC07 VOC12 - 80.60 ( + 3.70) 

Humble Teacher [19] VOC07 VOC12 0.7 80.94 ( + 3.94) 

Unbiased Teacher [18] VOC07 VOC12 0.7 80.51 ( + 3.61) 

CrossRectify (ours) VOC07 VOC12 0.7 81.56 ( + 4.66) 

CrossRectify ∗ (ours) VOC07 VOC12 0.7 82.34 ( + 5.44) 

Table 4 

2D Semi-supervised object detection performances (AP 50:95 ) on MS-COCO benchmark dataset. 

Model Backbone Method 

Proportion of labeled data 

1% 2% 5% 10% 

Faster-RCNN-FPN ResNet-50 Supervised 9.05 ± 0.16 12.70 ± 0.15 18.47 ± 0.22 23.86 ± 0.81 

CSD [25] 10.51 ± 0.06 13.93 ± 0.12 18.63 ± 0.07 22.46 ± 0.08 

STAC [16] 13.97 ± 0.35 18.25 ± 0.25 24.38 ± 0.12 28.64 ± 0.21 

Unbiased Teacher [18] 20.75 ± 0.12 24.30 ± 0.07 28.27 ± 0.11 31.50 ± 0.10 

Humble Teacher [19] 16.96 ± 0.38 21.72 ± 0.24 27.70 ± 0.15 31.61 ± 0.28 

Co-rectify [22] 18.05 ± 0.15 22.45 ± 0.15 26.75 ± 0.05 30.40 ± 0.05 

Combating Noise [35] 18.41 ± 0.10 24.00 ± 0.15 28.96 ± 0.29 32.43 ± 0.20 

Soft Teacher [20] 20.46 ± 0.39 26.20 ± 0.10 30.74 ± 0.08 34.04 ± 0.14 

CrossRectify (ours) 21.90 ± 0.11 26.70 ± 0.07 31.70 ± 0.04 34.89 ± 0.07 

CrossRectify ∗ (ours) 22.50 ± 0.12 27.60 ± 0.07 32.80 ± 0.05 36.30 ± 0.07 
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C

V

abels are generated only once and remain fixed when training stu- 

ent detector, so the student performance is upper-bounded by 

hat of teacher. For instance, we conduct experiments with Faster- 

CNN-FPN detector on the MS-COCO benchmark dataset under 10% 

egree of supervision. The AP 50 performance of teacher detector 

fter fully-supervised pre-training is 23.86%, while that of student 

etector supervised by teacher detector only increases with a 3.30% 

bsolute gain, far away from the results in Table 4 (34.89% AP 50 ). 

imilar phenomenon can be observed with respect to the SSD300 

tructure on the Pascal VOC benchmark dataset in Table 3 (obtain- 

ng only a 0.79% AP 50 gain). 

As for online methods [18–20] , the teacher detector is con- 

erged to the student detector and yields similar predictions in 

he late stage of training, thus the pseudo label generation pro- 

ess degenerates to the self-labeling process and suffers from the 

ame limitations. For instance, we conduct online teacher-student 

utual learning based on SSD300 and Pascal VOC. As shown in 

ig. 4 (a), the average KL-divergence between probability scores 

redicted by teacher and student detector reaches zero in the last 

0 k iterations. Correspondingly, the detection performance shown 

n Table 3 also indicate the ineffectiveness of online teacher- 

tudent mutual learning. 

Co-rectify and CPS Recently, a co-training based SSOD method 

amed co-rectify has been proposed in [22] , which is the only 

rior work taking the idea of co-training in the SSOD task to the 

est of our knowledge. In co-rectify, the pseudo bounding boxes 

re first predicted by one detector, then refined by corresponding 
6 
redictions from another model, with probability scores and coor- 

inates being averaged. Besides, we notice that a recent work pro- 

oses cross pseudo supervision (CPS) [28] for the semi-supervised 

emantic segmentation task and achieves the state-of-the-art per- 

ormances, where each model directly takes the predictions from 

he other model as pseudo labels. CPS can be adapted to the SSOD 

ask, as each detector is supervised by the other detector. How- 

ver, as shown in Fig. 4 (b), the precision values of pseudo label 

f these methods are inferior to that of CrossRectify (conducting 

emi-supervised training with SSD300 on Pascal VOC). We consider 

he reason behind such phenomenon lies in that simply averag- 

ng multiple predictions (co-rectify) or directly taking predictions 

rom other models as supervision (CPS) cannot fully exploit the ad- 

antages of multiple models, in comparison to our cross-rectifying 

echanism. Their inferior performances shown in Tables 3 and 

 also validate our consideration. Besides, we also investigate more 

lternative strategies on pseudo label rectification and observe that 

ross-rectifying turns out to be most effective strategy (as detailed 

n Section 5.4 ). 

. Experiments 

.1. Datasets and evaluation metrics 

2D semi-supervised object detection We evaluate the proposed 

rossRectify on two widely-used benchmark datasets, i.e. , Pascal 

OC [11] and MS-COCO [30] . Pascal VOC has 20 object categories. 
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Fig. 4. Left: (a) comparison on the average KL-divergence between probability scores predicted by two detectors over each 12 k iterations. “TS-online” stands for the teacher- 

student mutual learning in the online manner. Right: (b) comparison on the average precision of pseudo bounding boxes among different methods over each 12 k iterations. 

(For interpretation of the references to color in this figure legend, please refer to the online version of this article.) 

W

V

f

i

W

p

b

fi

t

p

u

e

d

r

a

r

5

d

V

5

m

V

t

w

w

s

e

R

fi

a

t

d

i

o

F

a

g

fi

a

f

t

R

t

l

c

t

b

W

t

p

5

c

t

s

m

c

i

l

t

R

R

l

t

A

a

T

A

t

r

t

m

d

t

i

e take the VOC07 trainval set (5,011 images) as labeled and the 

OC12 trainval set (11,540 images) as unlabeled. The detection per- 

ormance is evaluated on the VOC07 test set (4,952 images) us- 

ng the VOC style AP 50 metric. MS-COCO has 80 object categories. 

e follow the same settings as that in [16] to randomly sam- 

le 1/2/5/10% of the COCO2017 train set (118,287 images) as la- 

eled and take the remaining part as unlabeled. Also, we create 

ve data folds under each degree of supervision, and finally report 

he mean and standard deviation from five results. The detection 

erformance is evaluated on the COCO2017 val set (5,0 0 0 images) 

sing the COCO style AP 50:95 metric. 

3D semi-supervised object detection We follow [31] to conduct 

xperiments on the SUN-RGBD benchmark dataset [32] . We ran- 

omly sample 5% of 5285 training samples as labeled and take the 

emaining part as unlabeled. The detection performances is evalu- 

ted on 5050 validation samples, using both AP 25 and AP 50 met- 

ics. 

.2. Implementation details 

Detector structures We carry out experiments on the Pascal VOC 

ataset with two detector structures, that are SSD300 [1] with 

GG-16 backbone and Faster-RCNN-FPN [2,33] with ResNet- 

0 backbone. The latter structure is also utilized in experi- 

ents on the MS-COCO dataset. As for 3D detection, we utilize 

oteNet [24] with PointNet++ backbone [34] . 

Training settings We utilize the Pytorch implementation 

2 to 

rain SSD300 on Pascal VOC. Within a total of 120 k iterations, 

e conduct fully-supervised training in the first 12 k iterations as 

arm-up. We ramp-up/down the unsupervised loss weight λU , and 

et threshold τ and batch size as 0.5 and 32 according to Jeong 

t al. [26] . We utilize the Detectron2 platform 

3 to train Faster- 

CNN-FPN on Pascal VOC. We train a total of 36 k iterations with 

rst 6 k being fully-supervised warm-up, and adopt the same data 

ugmentation strategy as that in [18] . We set λU as 2.0 and 

hreshold τ as 0.7 following [18] . The batch sizes for labeled 

ata and unlabeled data are both 16. The threshold δ on match- 

ng metric is 0.5. To show the generality across different platforms 

f our CrossRectify method, we adopt the MMdetection 

4 to train 

aster-RCNN-FPN on MS-COCO. We train a total of 180 k iterations 

nd adopt the data augmentation strategies in [20] . Under 1% de- 

ree of supervision, we conduct fully-supervised warm-up in the 

rst 80 k iterations to ensure the stability of training. We set λ
U 

2 https://github.com/amdegroot/ssd.pytorch . 
3 https://github.com/facebookresearch/detectron2 . 
4 https://github.com/open-mmlab/mmdetection . 

0

f
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a

m

7 
s 4.0 and threshold τ as 0.9 according to [20] . The batch sizes 

or labeled data and unlabeled data are respectively 8 and 32. The 

hreshold δ on matching metric is 0.5. To train VoteNet on SUN- 

GBD, we first conduct fully-supervised pre-training by 900 itera- 

ions, then conduct semi-supervised training by 1 k iterations, fol- 

owing [31] . 

Note that the exponential moving average (EMA) strategy is 

ommonly used for the pseudo label-based methods, since a detec- 

or model aggregated by EMA can yield more conservative and sta- 

le predictions than the detector itself [18] . For fair comparisons, 

e follow such common practice in our experiments, as we utilize 

he EMAs of two detectors to conduct the detector feed-forward 

rocess. 

.3. Results 

Pascal VOC Table 3 shows the results of our CrossRectify method 

ompared with other training frameworks on Pascal VOC. As for 

he SSD300 detector, we take the 71.73% AP 50 performance of fully- 

upervised training as the baseline. As can be seen, our proposed 

ethod can obtain a 73.65% AP 50 result, while the results of all 

ompared approaches are only about 72.50%. Such comparison val- 

dates the effectiveness of our CrossRectify on improving pseudo 

abel quality. Besides, the WBF-merged [29] results from both de- 

ectors can further boost the final performances, denoted as Cross- 

ectify ∗. Under the mix-up data augmentation [10] , our Cross- 

ectify method can still show better performance than the self- 

abeling-based method, ISD [26] (by a 1.41% margin). 

As for the Faster-RCNN-FPN detector, we compare CrossRec- 

ify with previous methods, and our method can improve the 

P 50 result with a 4.66% margin over fully-supervised baseline, 

chieving the state-of-the-art performance. Note that Unbiased 

eacher [18] reports the performance based on the COCO style 

P 50 metric in their paper. For a fair comparison, we instead adopt 

he VOC style AP 50 metric for Unbiased Teacher, and the AP 50 

aises from 77.37% to 80.51%, still surpassed by that of CrossRec- 

ify with a 0.59% margin. 

MS-COCO Table 4 shows the performances of our CrossRectify 

ethod compared with previous state-of-the-arts on the MS-COCO 

ataset. Under different degrees of supervision 1%, 2%, 5% and 10%, 

he proposed CrossRectify can obtain consistent and substantial 

mprovements, surpassing those of Soft Teacher [20] by 1.46%, 

.50%, 0.96%, and 0.85% AP 50:95 margins. These comparative results 

urther verify the effectiveness of the proposed method. Moreover, 

e visualize the pseudo bounding boxes for some unlabeled im- 

ges in Fig. 5 . Compared with self-labeling training scheme, our 

ethod can yield more accurate pseudo boxes. 

https://github.com/amdegroot/ssd.pytorch
https://github.com/facebookresearch/detectron2
https://github.com/open-mmlab/mmdetection
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Fig. 5. The visual comparisons between Self-Labeling (the first row) and the proposed CrossRectify method (the second row) on MS-COCO under 1% degree of supervision. 

(For color discrimination in this figure, please refer to the online version of this article.) 

Fig. 6. (a) Ratio of disagreement between two models. (b) Precision of pseudo bounding boxes in disagreement between two models. 

Table 5 

3D Semi-supervised object detection performances (AP 25 and AP 50 ) on SUN-RGBD 

benchmark dataset. 

Model Backbone Method AP 25 AP 50 

VoteNet PointNet + Supervised 29.9 ± 1.5 10.5 ± 0.5 

SESS [36] 34.2 ± 2.0 13.1 ± 1.0 

3DIoUMatch [31] 39.0 ± 1.9 21.1 ± 1.7 

CrossRectify (ours) 42.1 ± 1.7 23.0 ± 1.2 
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SUN-RGBD Table 5 shows the comparison with all previous 

orks ( i.e. , SESS [36] and 3DIoUMatch [31] ) on the SUN-RGBD 

enchmark dataset. Under 5% degree of supervision, the perfor- 

ance of our CrossRectify can outperform that of the state-of- 

he-art 3DIoUMatch method by 3.1 AP 25 and 1.9 AP 50 margins. 

he results validate the efficiency of CrossRectify on 3D semi- 

upervised object detection task. We omit the WBF-merging per- 

ormance CrossRectify ∗, because WBF does not support on 3D 

ounding boxes with different rotation angles. 

.4. Empirical study 

How many labels are found to be in disagreement between two 

odels? We monitor the percentage of pseudo labels in disagree- 

ent between models A and B during the whole training process. 

he detector structure is SSD300 and the dataset is VOC07 (la- 

eled) plus VOC12 (unlabeled). As shown in Fig. 6 (a), there are 

2% pseudo labels in disagreement in the early stage of training, 

nd around 10% in the tail stage of training, which indicates that 

he pseudo label quality keeps improving during the whole pro- 

ess. Also, we measure the precision of pseudo labels in disagree- 

ent during the whole process. As can be seen in Fig. 6 (b), the

recision of pseudo labels in disagreement is only ∼30%, while our 
8

rossRectify method can always bring about a ∼20% improvement. 

s we illustrate in Table 6 , such ∼20% margin can contribute to a 

.92 AP 50 gain with respect to the final detection performance. 

Pseudo label rectification strategy As we mentioned in the last 

aragraph, our CrossRectify can improve the precision of pseudo 

abels in disagreement with a ∼20% margin during the whole 

raining process. As we illustrate in Table 6 , such ∼20% margin can 

ontribute to a 1.92 AP 50 gain with respect to the final detection 

erformance. Moreover, it can be seen that other strategies such as 

ntersection (only use pseudo labels in agreement), difference set 

only use pseudo labels in disagreement predicted by the model 

tself), cross pseudo supervision (directly use pseudo labels pre- 

icted by the other model), co-rectify (use averaged pseudo labels 

redicted by two models), cannot significantly improve the detec- 

ion performance in comparison with CrossRectify. 

Ablation study on threshold δ when matching pseudo bounding 

oxes We have examined different threshold δ (ranging from 0.4 

o 0.9) with Faster-RCNN-FPN on MS-COCO, under the degree of 

upervision 10%. As can be found in Table 7 , the detection perfor- 

ance is robust with threshold δ ranging from 0.4 to 0.7. A high 

alue such as 0.9 may lead too many pseudo bounding boxes un- 

atched and the CrossRectify is just skipped, so the training pro- 

ess will degrade to vanilla self-labeling-based training. 

Extension to more detectors Our proposed CrossRectify method 

an be easily extended to train more than two detectors simulta- 

eously. Specifically, during the pseudo label rectification process, 

ach pseudo bounding box is re-labeled by the majority of all pre- 

icted classes, and re-located by the average of all predicted co- 

rdinates. As displayed in Table 8 , CrossRectify over four SSD300 

etectors can bring a 0.06% AP 50 improvement for each detector 

n average. We believe that two-detector scenario is already able 

o cross-rectify the misclassified pseudo labels adequately. 
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Table 6 

Performance comparison among different pseudo label generation methods. Figures in paren- 

theses are the improvement over the fully-supervised baseline. Best results are in bold . 

Model Labeled Unlabeled Strategy AP 50 

SSD300 VOC07 - - 71.73 

VOC07 VOC12 self-labeling 72.13 ( + 0.40) 

VOC07 VOC12 intersection 72.59 ( + 0.86) 

VOC07 VOC12 difference set 65.52 (-6.21) 

VOC07 VOC12 cross pseudo supervision 72.56 ( + 0.83) 

VOC07 VOC12 co-rectify 72.48 ( + 0.75) 

VOC07 VOC12 CrossRectify 73.65 ( + 1.92) 

Table 7 

Ablation study on the pre-defined threshold δ when matching bounding boxes. 

δ 0.4 0.5 0.6 0.7 0.8 0.9 

AP 50:95 34.87 34.89 34.84 34.72 34.31 34.13 

Table 8 

Extension to four detector models on Pascal VOC dataset. 

Model Index Single Average WBF-Merged

SSD300 detector #1 73.67 73.65 74.83 

detector #2 73.63 

detector #1 73.60 73.71 75.84 

detector #2 73.71 

detector #3 73.80 

detector #4 73.73 
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. Conclusion 

In this paper, we first illustrate the fact that the performances 

f self-labeling-based semi-supervised object detection (SSOD) ap- 

roaches are actually always limited. Through experimental analy- 

is, we find the reason behind such phenomenon lies in that the 

etector can neither discern nor rectify the misclassified pseudo 

ounding boxes predicted by the detector itself (dubbed self- 

rrors). To remedy such inherent limitations, we propose the 

rossRectify method, where two detectors with the same structure 

ut different initial parameters are simultaneously trained. During 

raining, the pseudo bounding boxes predicted by each detector 

re sent to the other detector for a further judgement, and the 

elf-errors can be realized and rectified in such way. Our CrossRec- 

ify method is reasonable and robust, based on our two consistent 

bservations across various datasets and detector structures. First, 

e can always observe that the pseudo bounding boxes with high 

cores are more likely to be correctly classified than ones with low 

cores, so the self-errors can be realized and rectified by the pre- 

iction disagreements. Second, we surprisingly observe that even 

f the rectified pseudo labels are still wrong, the non-self-errors 

an still mitigate the performance degrade compared with the self- 

rrors, which shows the robustness of CrossRectify. Some may ar- 

ue the complexity of CrossRectify since we need to train two de- 

ectors, however we show by experiments that two final predic- 

ions can be directly merged to further obtain a ∼1% AP gain and 

chieve a new state-of-the-art performance. We believe CrossRec- 

ify can enlighten the entire semi-supervised learning field, such 

s image classification and semantic segmentation, which leaves as 

uture works. 
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