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Abstract

Few-shot learning attempts to identify novel categories by exploiting limited labeled train-
ing data, while the performances of existing methods still have much room for improvement.
Thanks to a very low cost, many recent methods resort to additional unlabeled training data
to boost performance, known as semi-supervised few-shot learning (SSFSL). The general idea
of SSFSL methods is to first generate pseudo labels for all unlabeled data and then aug-
ment the labeled training set with selected pseudo-labeled data. However, almost all previous
SSFSL methods only take supervision signal from pseudo-labeling, ignoring that the distribu-
tion of training data can also be utilized as an effective unsupervised regularization. In this
paper, we propose a simple yet effective SSFSL method named TENFET, which takes low-rank
feature reconstruction as the unsupervised objective function and pseudo labels as the super-
vised constraint. We provide several theoretical insights on why TENET can mitigate overfitting
on low-quality training data, and why it can enhance the robustness against inaccurate pseudo
labels. Extensive experiments on four popular datasets validate the effectiveness of TENET.

Keywords: Semi-supervised few-shot learning, few-shot learning, pseudo-labeling, linear regression,

low-rank reconstruction.

1 Introduction

Although deep learning has made great progress
in a variety of visual recognition tasks in recent
years [1-3], it heavily depends on a large amount
of labeled training data, which is always costly
and time-consuming to obtain in real-world situa-
tions [4, 5]. In comparison, humans can easily learn
from one or just a few examples to identify novel
objects. Motivated by this fact, few-shot learning
(FSL) has recently attracted great research inter-
est recently [6, 7], which aims to make recognition
based on extremely limited training data similar
to humans.

In general, the existing FSL methods can be
summarized into meta-learning-based [8-13] and
transfer-learning-based [14, 15]. However, their
performances still have much room for improve-
ment compared with the regular many-shot train-
ing. Inspired by semi-supervised learning [16],
many recent methods [17-25] have been pro-
posed to augment the few-shot labeled training
set with additional unlabeled data, since the lat-
ter is much cheaper. Such methods are known as
semi-supervised few-shot learning (SSFSL), whose
general idea is to first generate pseudo labels for all
unlabeled data, and then select the most credible
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Fig. 1: The difference between the conventional pseudo-labeling method (left) and our TENET (right).
In comparison, the pseudo labels are additionally utilized by TENET to reconstruct the unlabeled data,
which acts as an unsupervised regularization to benefit the training process.

pseudo-labeled data for the augmentation. Refer-
ring to the few-shot classification leaderboard!,
the SSFSL methods can always outperform the
regular FSL methods.

Although effective, almost all previous SSFSL
methods only take the pseudo labels as super-
vision signal to train the classifier, which means
that their performances are heavily affected by
the quality of pseudo labels. In fact, most of
these methods focus on how to select the samples
with more accurate pseudo labels to augment the
labeled training set, which can be complicated and
empirical.

Therefore, beyond pseudo-labeling, can we
extract an effective unsupervised signal for the
SSFSL task? In this paper, we point out that
the distribution of training data can also be
utilized as an effective unsupervised regulariza-
tion term. We propose a simple yet effective
SSFSL method named TENET, which takes the
low-rank feature reconstruction as the unsuper-
vised objective function and pseudo labels as the
supervised constraint. The core idea of TENET
is illustrated in Fig. 1. As shown, the classi-
fier weight projects the high-dimensional feature
space into low-dimensional category space, while
TENET hopes the transpose of the weight matrix
can project the latter back to the former. In
other words, TENET minimizes the total distance
between low-rank reconstructed features and their
original version, and such process is independent
of pseudo labels. We will provide more theoretical
insights in Sec 4.

In practice, we choose the simplest linear
model, linear regression, for the task of SSFSL

Lhttps://few-shot.yyliu.net/

classification. We conduct extensive experiments
on four widely used datasets and two few-shot
settings. With a vanilla sample selection pro-
cess, TENET can achieve comparable and even
better performances than the previous state-of-
the-art baselines, which validates the effectiveness
of TENET.

In summary, the main contributions of this

paper can be summarized as

® Based on the linear regression model, we ana-
lyze the non-robustness and overfitting issues
in the existing SSFSL methods.

e We propose a novel yet effective method
named TENET, which additionally utilizes
the distribution of training data as unsu-
pervised regularization term to benefit the
SSFSL training.

e Extensive experimental results on four pop-
ular benchmarks including minilmageNet,
tieredlmageNet, CIFAR-FS and CUB, vali-
dates the effectiveness of TENET.

2 Related Work

Semi-supervised learning. When the costly
labeled data is limited, semi-supervised learning
(SSL) aims to improve the model performance
by leveraging large amount of cheap unlabeled
data, thereby saving the cost of data labeling.
Currently, the mainstream SSIL approaches are
usually based on three assumptions, including the
low-density separation [16, 26], cluster assump-
tion [26], and manifold assumption [26]. Specifi-
cally, the low-density separation states that the
decision boundary should pass through the low-
density data regions, and avoid cutting a high
density region into two different classes [26, 27].
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Similarly, the cluster assumption states that when
two samples are close to each other in the input
space, they should belong to the same class [28—
30]. Furthermore, after projecting the input space
to the feature space, the manifold assumption
states that the two close samples in the feature
space should also belong to the same class [31, 32].

However, most of existing SSL approaches are
usually not suitable for the semi-supervised few-
shot problems, where the amounts of labeled and
unlabeled data are both limited. As a result, it
is difficult to distinguish whether two samples are
close enough. For instance, [33] found that directly
applying MixMatch [34] to few-shot learning leads
to poor performance, especially in the low-shot
settings.

Few-shot learning. Few-shot learning (FSL)
aims to quickly adapt the deep models to novel
tasks by exploiting only a few labeled samples.
Existing approaches can be separated into two
branches, e.g. meta-learning-based approaches [8—
13] and transfer-learning-based approaches [14,
15]. The former branch usually designs a learning
paradigm for task adaptation, and can be fur-
ther divided into two categories: a) metric-based
methods [8-10], which measure the sample dis-
tances between the query set and the support set,
and classify images via nearest neighbors, and b)
optimization-based methods [11-13], which design
a specific optimization method for the few-shot
training set,

Transfer-learning-based approaches [14, 15]
usually pretrain a deep model on the base task,
and conduct fine-tuning with the few training data
from the novel task. Concretely, [15] pointed out
that fixing the parameters of the feature extrac-
tor and only training a simple classifier can lead
to similar performances with meta-learning-based
methods, sometimes even better. Our method is
based on the transfer-learning framework due to
its simplicity and universality.

Semi-supervised few-shot learning. Thanks
to a very low cost, many recent FSL methods [17-
25] resort to additional unlabeled training data for
boosting performance, which are known as semi-
supervised few-shot learning (SSFSL). Similar to
SSL, the core idea of SSFSL is to first generate
pseudo labels for all unlabeled training samples,
and then select the most credible pseudo-labeled

samples to expand the few-shot labeled training
set.

As pioneer works, [17] proposes advanced K-
means clustering algorithms, while [18] and [20]
adopt the label propagation or embedding prop-
agation algorithms to generate pseudo labels via
sample similarity in the manifold space, and [23]
further resorts to the label denoising method [35]
for refinement. However, all these methods need
to compute graph matrices, so their running effi-
ciencies are unsatisfactory in face of large-scale
meta-testing sets. In addition, [19] adopts the self-
training SSL method in a meta-learning manner,
which cherry-picks credible samples for multiple
times. [21] designs a linear classifier to evalu-
ate the credibility for sample selection. Similar to
[21], [24] utilizes Gaussian mixture models to fit
the distribution of classification loss, and takes
the fitness score for sample selection. However,
all their performances are restricted by the qual-
ity of pseudo labels, and [21] is sensitive to the
hyper-parameter choices [22, 23]. Recently, [25]
applies negative learning [36], introducing an addi-
tional supervision signal to mitigate the adverse
effects of inaccurate pseudo labels. However, our
experiments show that the effectiveness of nega-
tive learning for the SSFSL problem is limited in
low-shot settings, so an effective supervision signal
is still needed.

In addition, [37] also conducts unsupervised,
or namely self-supervised learning on unlabeled
data to improve the FSL performance. The main
difference lies in that [37] aims to improve the rep-
resentation ability of the feature extractor, while
our approach aims for the classifier, which is
orthogonal to [37].

3 Background

In this section, we first introduce the problem
formulation of semi-supervised few-shot learning
(SSFSL), and then point out the flaws of the com-
mon objective function used in the existing SSFSL
approaches.

3.1 Problem formulation

The SSFSL task includes five basic elements: a
representation function, a few-shot labeled train-
ing set, a few-shot unlabeled training set, a test
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set, and a linear classifier. We now explain them
in detail.

The representation function f : X — R? is
usually a feature extractor that maps the input
space X to a discriminative feature space R%. As
the size of the training set in the SSFSL task is too
small to train f(-), transfer-learning-based meth-
ods [17, 19, 21, 23-25] usually pretrain f(-) on
an auxiliary dataset with many-shot labeled data,
denoted as Dyase = {(€4,¥:),Yi € Chase}- In this
paper, we follow previous methods [17, 19, 21, 23—
25] to freeze the parameters of f(-) after the
pretraining stage.

The few-shot labeled training set, also called
the support set, is denoted as Dyoper =
{(iﬂz,yz),yz € Cnovel}7 where Cbase N Cnovel = g.
Specifically, the category set C,ove; contains C'
categories, and each category contains K images,
thus |Dpovet| = C x K. Most of previous SSFSL
works set C' as 5 and set K as 1 or 5, which is
known as the 5-way-1-shot problem or 5-way-5-
shot problem. All image features extracted by the
representation function are denoted as the matrix
X novel € R(CXK)Xd~

The few-shot unlabeled training set Upoper
shares the same category set with D, oper, Where
each category contains U images, thus [Upneper| =
C x U. Commonly, U is set as 30 or 50 when K
equals 1 or 5. Many previous SSFSL works first
generate pseudo labels for samples in Uy pper, and
then expand D,over a8 Drover U Unover to train a
better classifier. All extracted features are denoted
as the matrix X ynlapel € R(EXV)xd,

The test set Diest, also known as the query
set, shares the same category set with D,,o,e; and
Unovel, which is used for evaluation. Each category
usually contains 15 images. The extracted features
are denoted as X et € R(EX19)%d In particular,
in the transductive few-shot setup, the test set is
accessible during the training process.

Following previous SSFSL methods [17, 19, 21,
23-25], the general idea of the SSFSL method
is to train a linear classifier g(-) on both Dy ope
and Up,ope; to classify images in Dyest correctly.
The inference process can be denoted as Y =
g(f(x)) = o(Xw), where X € R"*¢ denotes the
extracted features of n images, w € R¥¢ denotes
the weight of the linear classifier g(-), ¥ € R"*¢
denotes the prediction results, and o(-) denotes
the activation function. Correspondingly, the true
label is denoted as Y € R™*¢ in one-hot form.

Most of previous approaches [19, 21-25] are
conducted in an iterative manner: at the O-th iter-
ation, the classifier gg is trained on Djope;- At
any t-th iteration, the classifier from the last iter-
ation g;_1 predicts all remaining images in Uy oyer,
and some certain pseudo-labeled images are then
removed from Uy ppe; and put into Dyope; (usually
the same number of images per class). After that,
a new classifier g; is trained from scratch based
on the updated D,,,pe;- The iteration process ends
when U, e is empty, and the last classifier g is
utilized for evaluation (T is the iteration number).

3.2 Flaws of the common objective
function

The existing SSFSL methods usually choose a
single fully-connected layer [19, 25] or a logistic
regression model [21-24] as the linear classifier
g(+). The differences lie in the loss function, acti-
vation function and optimization method, but
they all belong to the generalized linear model
in essence. Without loss of generality, our experi-
ments are all based on the simplest linear model,
that is, the linear regression (LR) model. For the
SSFSL problem, the objective function of the LR
model is

min [|w||, st Xw=Y. (1)
The row number of feature matrix X is always less
than the column number?, so X is a row full-rank
matrix, and Xw = Y is an under-determined
equation. In other words, there are infinite solu-
tions of the equation, while the objective function
(1) aims to find the solution w* with the least ¢5
norm. Using the Lagrange multiplier method, we
can easily obtain the closed-form of w* as

w'=X"(XX")"Y. (2)

Based on this, at the ¢-th iteration process of
SSFSL, the optimal classifier weight is computed
as

* T
w; = Xnovel

(XnovchIovel)il Ynovcl . (3)

2The feature dimension d = 512 with f(-) being ResNet-
12 [38], while the largest n equals 5x (54+50)=275 (a 5-way-5-
shot problem) and is still less than d.
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However, there are two flaws of the common LR
model. (i) If the feature matrix Xyove; contains
very similar row elements or outliers, the inverse
matrix (X novel X Iovel)_l may suffer from numeri-
cal instability. Therefore, the LR model is greatly
affected by the data quality and is not robust?.
(ii) For any solution wa of equation Xw =Y, let
wa = w*+r and r be a residual vector in the null
space N (X povel), and we can know from Cauchy-
Schwartz inequality that [|w*||, < ||waly, which
means that optimizing the objective (1) will force
w* orthogonal to N (X yover). However, if X vl
cannot represent the test set distribution well,
then N(Xyovel) may contain beneficial vectors
for better generalization ability on the test set,
so the orthogonality to N (X povel) may lead to
overfitting. For example, suppose that a few-shot
training set X1 cannot represent the test set dis-
tribution well, while a larger training set X5 =
X1 U X4 can do (the number of training data
contained by Xio is still less than the number
of variables). Accordingly, we denote the optimal
solution trained on X3 by wj, = wi + Aw.
Because w7, still satisfies X jw}, = Y1, we can
know that the residual Aw lies in the null space
N (X1), indicating that N (X;) contains benefi-
cial vectors for better generalization ability onto
the test set.

4 Methodology

As we discussed above, the common linear regres-
sion (LR) suffers from non-robustness and over-
fitting, so it is necessary to explore more super-
vision signals from the few-shot training set and
modify the objective function. In this paper, we
propose a simple yet quite effective approach
for the SSFSL task, i.e. feaTurE recoNstruction
based rEgression meThod (TENET). The idea of
TENET and the comparison to LR are illustrated
in Fig. 2.

Recalling the principal component analysis
(PCA) algorithm [39], its purpose is to find a set of
orthogonal basis that can preserve the data distri-
bution to the maximum extent, and also make the

3We emphasize that (2) is not the closed-from solution of
logistic regression, while the logistic regression model is also
greatly affected by noisy data.

low-rank reconstructed data closest to the origi-
nal data. For the SSFSL task, since the weight
matrix w can project the n-dim feature space into
the C-dim category space, we encourage w to be
able to reconstruct the feature samples in a C-rank
space. Inspired by PCA, we propose to modify the
objective function (1) as
min | X — Xww'||, st Xw=Y (4
Such an objective function has four advantages.
(i) Xww" represents the C-rank reconstruction
of feature X, and minimizing ||X — X'waHF
will no longer force the optimal solution to be
orthogonal to N'(X) anymore, which is because

Xw+r)(w+7r)" = Xww' +2Xrw’ + Xrr'
= Xww' +0+0,

where Xr = 0. The overfitting issue can thus
be mitigated. (ii) The feature reconstruction pro-
cess implies an orthogonal regularization to the
solution, because when ||X — X'waHF — 0, we
have ||YwT'w - YHF — 0, which means ww —
I. Generally, the orthogonality of the network
weight indicates better generalization capability
and robustness [40, 41]. (iii) The feature recon-
struction process aims to capture the distribution
information of X, which is naturally robust to the
very similar samples and outliers [39]. (iv) The
feature reconstruction process is independent of
pseudo labels Y, so the adverse effects brought
by inaccurate pseudo labels can be circumvented.
In other words, the feature reconstruction process
acts as an unsupervised regularization for the
SSFSL task.

However, harder than linear regression, we
cannot derive the closed-form solution of objective
(4). Inspired by [42], we first rewrite the objective
(4) as

. 2

min || X —Yw' ||+ XY - Xw|%, (5)
where A is a trade-off parameter. By setting the
first derivative of (5) as zero, we then apply
the Bartels-Stewart algorithm [43] to solve the

equation below to obtain the optimal solution w*

A XTXw* +w'Y'Y =1+M)X'Y. (6
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Fig. 2: A 2D toy example on a 2-way-1-shot SSFSL task, with 6 unlabeled samples per class. After the
Oth iteration, the 3 most confident pseudo-labeled samples per class (farthest from the decision boundary)
are selected. At the 1st iteration, our TENET works better than common linear regression, as TENET
captures the distribution information of few-shot labeled and unlabeled data, by minimizing the total
distance between the low-rank reconstructed training samples and their original version.

Algorithm 1 Inference process of TENET

Input: labeled training data (X ovel, Y novel),
unlabeled training data Xypiabel, test data
Xtest~

1: Obtain wq by solving Equation (6) based on

(Xnovela Ynovel)-

t<+0

while ¢t < T do
Get prediction Y unlabel = Xunlabel T Wy
Select a subset of (X unlabel; Y unlabel) as

(X select Y select) according to indices in (7).

6: Xnovel — [Xnovel; ?(select]
7 Ynovel — [Ynovel; Yselect]
8: Obtain w; by solving Equation (6) based
on new (Xnovcla Ynovcl)~
9: t+—t+1
10: end while
Output: Get prediction Y iest = Xiest - W

B

In practice, our TENET approach follows the
existing SSFSL approaches to be conducted in
an iterative manner, as introduced in Sec 3.1.
The entire process is summarized in Algorithm 1.
Specifically, TENET selects the top-k confident
pseudo-labeled samples per class to expand the
labeled training set, and the selected indices are

formulated as

I = {z i € topk (max [softmax(f’un]abd . s)} > } ,
J 1)

(7)

where s denotes the scaling factor. In addition,
optimizing the objective (5) will lead to two
forms of pseudo labels, as the first term leads to
Y untabel = Xunlabel - w(w " w)~! and the second
term leads to Yunlabel = Xunlabel -+ w. We find
in experiments that both leads to similar perfor-
mances, indicating that w has orthogonality.

5 Experiments

5.1 Experimental settings

Datasets. We evaluate the proposed approach
on four publicly available benchmarks including
minilmageNet [12], tieredlmageNet [17], CIFAR-
FS [44], and CUB [45], following previous SSFSL
works [21-23, 25]. MinilmageNet is a subset of
ImageNet [46] containing 64 base classes and 20
novel classes (600 images per class). We follow
the commonly used data split proposed by [12].
TieredImageNet is also sampled from ImageNet
but organized in a hierarchical label structure. It
contains 351 base classes (448,695 images in total)
and 160 novel classes (206,209 images in total). We
follow the data split in [47]. CIFAR-F'S is sampled
from CIFAR-100 [48] containing 64 base classes
and 20 novel classes (600 images per class). The
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data split is defined by [49]. CUB is a fine-grained
bird dataset of 200 different species. We follow the
split proposed by [49, 50] with 100 base classes
and 50 novel classes. For fair comparisons with
[21-23, 25], we crop all CUB images according to
the bounding boxes provided by [45]. All images
in four datasets are resized to 84x84 to fit the
feature extractor network.

Note that there are multiple preprocessed
versions of minilmageNet and tieredlmageNet,
and different versions can lead to large perfor-
mance gaps*. Meanwhile, the versions of these two
datasets chosen by different baseline methods are
inconsistent (sometimes even unknown), so it is
somehow unrealistic to make fair comparisons. In
our experiments, we choose the original version
of these two datasets without any preprocessing.
Thus, the corresponding performances of TENET
are shown less competitive. For the sake of fair-
ness, we further make a comparison with the ICI
baseline [21] under the same version of tieredIm-
ageNet in the following as an example, based on
its own implementation®.

Metrics. Similar to all baseline methods, our
TENET is evaluated over 600 episodes with 15
test samples per class. We report the mean top-1
accuracy over 600 episodes.

Implementation Details. We choose the com-
monly used ResNet-12 [38] as the representation
function f(-), and the network architecture follows
[21-24]. For pretraining, we follow all the training
settings in [22] and [25]: the total epoch number
is 120, the optimizer is SGD with 0.9 momentum
and be — 4 weight decay, and the learning rate is
initialized as 0.1 and decayed as 6e — 3, 1.2e — 3
and 2.4e — 4 after the 60th, 70th and 80th epochs,
respectively. For TENET, the trade-off parame-
ter A in objective function (5) is default set as 20,
and the scaling factor s in the selection process
(7) is 10. We will conduct ablation study on A
and s in the following. We utilize the scipy.linalg.
solve_sylvester® API provided by scipy [62] to solve
the Equation (6). Regarding the experimental set-
tings, each of the features X extracted by f()
is vectorized and ¢y-normalized, following [21-25].

4https://github.com/Yikai- Wang/ICI-FSL /issues/8

Shttps://github.com/Yikai- Wang/ICI-FSL/tree/master/
V1-CVPR20

Shttps://docs.scipy.org/doc/scipy /reference/generated /
scipy.linalg.solve_sylvester.html

The per-class number of unlabeled samples U is
set as 30 and 50 in the 1-shot and 5-shot settings,
respectively. We set the SSFSL iteration number
T as 5 in the semi-supervised few-shot setup (we
select 6 and 10 samples per class in the 1-shot
and 5-shot setting, respectively), and set T as U
(we select 1 sample per class) in the transductive
few-shot setup. We utilize the last classifier for
evaluation.

5.2 Experimental results

Semi-supervised few-shot setup. In the
inductive setup, we compare our TENET with
both regular few-shot learning (training without
unlabeled samples) and semi-supervised few-shot
learning methods. All the results are sourced
from their original papers. As shown in Table 1,
TENET outperforms all baselines on CIFAR-FS
and CUB, and achieves comparable performances
on minilmageNet and tieredlmageNet. As dis-
cussed above, we further make a comparison with
one of the previous methods ICI [21], based on the
same dataset and pretrained representative func-
tion. As shown in Table 3, TENET leads to better
performances most of the time. Such experimental
results show the effectiveness of our TENET.

Transductive few-shot setup. The transduc-
tive few-shot setup is another important setup in
the field of SSFSL, where the test set is accessible
during the classifier training, and no unlabeled set
is needed. In other words, the unsupervised infor-
mation of the test set can be utilized to help train
a better classifier. We compare TENET and base-
line methods in Table 2 and 3. Again, the baseline
performances are sourced from their papers. As
shown, TENET almost always beats all baselines
in both 1-shot and 5-shot settings.

Apart from the default ResNet-12 backbone,
we follow [23] to utilize WRN-28-10 [13] and
compare TENET with ICI [21], PT+MAP [61],
EASE [60], and iLPC [23], and keep all training
settings the same as [23], such as 1000 episodes
and the same preprocessing on input features, and
the same postprocessing on predictions. Table 4
shows that TENET achieves comparable perfor-
mances with existing baselines, except for ICI with
a ~ 1.5% improvement.

Variety-unlabeled semi-supervised few-
shot setup. To evaluate the stability of TENET,
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Table 1: Comparisons of 5-way few-shot classification with the inductive setup. The light blue blocks
represent that these methods are tested in the regular few-shot setup, and the light yellow blocks are tested
in the semi-supervised few-shot setup. The best and second best performances are highlighted in red and
blue, respectively. *: using the average of feature vectors under multiple times of data augmentations.

Method Backbone minilmageNet | tieredlmageNet CIFAR-FS CUB
1-shot  5-shot | 1-shot 5-shot | 1-shot 5-shot | 1-shot 5-shot
MatchingNet [9] 4 CONV 43.56  55.31 - - - — - -
MAML [11] 4 CONV 48.70  63.11 | 51.67 70.30 | 58.90  71.50 | 54.73  75.75
ProtoNet [8] 4 CONV 49.42 6820 | 53.31  72.69 | 55.50  72.00 | 50.46  76.39
LEO [13] WRN-28-10 | 61.76  77.59 | 66.33  81.44 - - - -
CAN [51] ResNet-12 63.85  79.44 | 69.89  84.23 - - - -
DeepEMD [10] ResNet-12 65.91 8241 | 71.16 86.03 | 7458 86.92 | 75.65  88.69
FEAT [52] ResNet-12 66.78  82.05 | 70.80  84.79 - - 73.27  85.77
RENet [53] ResNet-12 67.60 82.58 | 71.61 8528 | 7451 86.60 | 82.85 91.32
FRN [54] ResNet-12 66.45  82.83 | 72.06 86.89 - - 83.55  92.92
COSOC [55] ResNet-12 69.28  85.16 | 73.57  87.57 - - - -
SetFeat [56] ResNet-12 68.32  82.71 | 73.63  87.59 - — 79.60  90.48
MCL [57] ResNet-12 69.31  85.11 | 73.62  86.29 - - 85.63  93.18
STL DeepBDC [58] ResNet-12 67.83 85.45 73.82 89.00 - - 84.01  94.02
DC [59] ResNet-12 68.57  82.88 | 78.19  89.90 - - 79.56  90.67
TPN [18] 4 CONV 52.78  66.42 | 55.74  71.01 - - - -
TransMatch [33] WRN-28-10 | 60.02 79.30 | 72.19  82.12 - - - -
LST [19] ResNet-12 70.01 7870 | 77.70  85.20 - - - -
EPNet [20] ResNet-12 70.50  80.20 | 75.90  82.11 - - - -
ICT [21] ResNet-12 69.66  80.11 | 84.01 89.00 | 76.51  84.32 | 89.58  92.48
iLPC [23] ResNet-12 70.99 81.06 | 85.04 89.63 | 78.57 85.84 | 90.11 -
PLCM [24] ResNet-12 71.58 83.44 | 83.05 89.55 | 77.48  85.56 - -
MUSIC [25] ResNet-12 | 74.96 85.99 | 85.40 90.79 | 78.96 87.25 | 90.76  93.27
TENET (ours) ResNet-12 74.02 83.69 82.83 89.32 80.11 86.67 | 91.74 94.11
TENET" (ours) ResNet-12 74.58 84.19 | 83.71 90.14 | 80.62 86.91 | 91.74 93.95

we follow previous SSFSL works [24, 25] to per-
form TENET with a varied number of unlabeled
samples in the inductive semi-supervised few-shot
setup. As shown in Fig. 3, TENET can always
beat all baselines in the 1-shot setting, and obtain
comparable results with PLCM [24] in the 5-shot
setting, still surpassing all other baselines. We
skip the dubious MUSIC [25] baseline due to its
inconsistent performances reported by its original
paper (in 1-shot, approximately 73% accuracy
from its Fig. 2 but 74.96% from its Table 1).

5.3 Ablation study

Here we conduct ablation studies on the trade-off
parameter X in (5), the scaling factor s in sample
selection (7), and the SSFSL iteration number T

Recalling the objective function (5), a large A
means that more attention will be given to cor-
rect classification than to unsupervised feature
reconstruction. On the minilmageNet and CUB
datasets, we can see from Table 5 that A\ being
10 or 20 leads to better semi-supervised 1-shot
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Table 2: Comparisons of 5-way few-shot classification with the transductive few-shot setup. The best and
second best performances are highlighted in red and blue, respectively. *: using the average of feature
vectors under multiple times of data augmentations.

Method Backbone minilmageNet | tieredlmageNet CIFAR-FS CUB

1-shot  5-shot | 1-shot 5-shot | 1-shot 5-shot | 1-shot 5-shot

TPN [18] 4 CONV 55.51  69.86 | 59.91 73.30 — - — -

EPNet [20] ResNet-12 | 66.50 81.06 | 76.53  87.32 — - — -
ICT [21] ResNet-12 | 66.80  79.26 | 80.79  87.92 73.97 8413 | 88.06  92.53
iLPC [23] ResNet-12 | 69.79  79.82 | 83.49  89.48 77.14 8523 | 89.00 92.74

PLCM [24] ResNet-12 | 70.92  82.74 | 82.61 89.47 — — — —
EASE [60] ResNet-12 | 70.47  80.73 | 84.54 89.63 | 78.41 85.67 | 90.11  93.13
MUSIC [25] ResNet-12 | 72.01 83.49 | 83.57 89.81 | 77.56 8549 | 89.40 9291
TENET (ours) | ResNet-12 | 71.03 8239 | 81.13 88.69 | 78.15 86.16 | 90.37 94.14
TENET" (ours) | ResNet-12 | 71.58 82.82 | 82.40  89.22 77.83 85.72 | 90.76 94.15

Table 3: Semi-supervised and transductive few-shot classification, in comparison with ICI [21]. T: our

reproduction with official implementation on our datasets and pretrained representative function.

Setting Method Backbone minilmageNet | tieredlmageNet
1-shot  5-shot | 1-shot 5-shot

ICI [21] ResNet-12 | 69.66 ~ 80.11 | 84.01 89.00

Semi-supervised rctt [21] ResNet-12 | 73.27 82.56 | 82.28  88.80
TENET (ours) | ResNet-12 | 74.02 83.69 | 82.83 89.32

ICI [21] ResNet-12 | 66.80 79.26 | 80.79  87.92

Transductive 1crf [21] ResNet-12 | 71.23 82.28 | 80.14  88.17
TENET (ours) | ResNet-12 | 71.03 82.39 | 81.13 88.69

performances, while A being 1 leads to worse per-
formances. This reveals that category labels still
provide more useful information for SSFSL than
the unsupervised reconstruction. However, a A
that is too large (being 100 or 1000) will impair the
effectiveness of TENET, leading to a degenerated
performance. We set A as 20 as default.

The scaling factor s affects the order of the vec-
tor elements obtained from the max operation in
Equation (7), influences the sample selection pro-
cess, and further impacts the final performances.
Table 6 shows that the effect of s on semi-
supervised 1-shot performances is insignificant.
We set s as 10 as default.

Fig. 4 illustrates the semi-supervised 1-shot
performances of TENET with different iteration

numbers T'. Increasing T from 1 to 5 can bring
significant improvements, while increasing 7" from
5 to 15 leads to little-changed results. We note
that T is usually set to 5 in previous SSFSL
works [21-25].

5.4 Empirical comparison

Pseudo label accuracy. Now we make an
empirical comparison of THE pseudo label accu-
racy and test set accuracy along SSFSL iterations
between LR and TENET. We set the same pseudo
label accuracy at the 1st iteration for both, while
TENET can still achieve higher test accuracy than
LR. The experimental result in Fig. 5 indicates
that TENET is more robust against inaccurate
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Table 4: Transductive few-shot classification based on WRN-28-10, in comparison with LR+ICI [21],

PT+MAP [61], EASE [60], and iLPC [23].

inil N i 1 N IFAR-F B
Method Backbone minilmageNet | tieredlmageNet CIFAR-FS CU
1-shot  5-shot | 1-shot 5-shot | 1-shot 5-shot | 1-shot 5-shot
LRA+ICI [21] WRN-28-10 | 80.61 87.93 | 86.79 91.73 | 84.88 89.75 | 90.18  93.35
PT+MAP [61] WRN-28-10 | 82.88 88.78 | 88.15 9232 | 86.91 90.50 | 91.37  93.93
EASE [60] WRN-28-10 | 83.00 88.92 | 88.96 92.63 | 87.60 90.60 | 91.68 94.12
iLPC [23] WRN-28-10 | 83.05 88.82 | 83.50 9246 | 86.51  90.60 | 91.03  94.11
TENET (ours) | WRN-28-10 | 82.93 88.71 | 8848 9226 | 86.86 90.54 | 91.30  93.87
85 )
Table 5: Ablation study on the trade-off param-
eter A. Semi-supervised 1-shot classification, with
80 iteration number T being 1.
p—-
g IR TR ; A minilmageNet ~ CUB
sy PR L. L 65.31 83.41
8 s e .ew
= ',"',-P" - - 5 67.56 85.89
b . . -
f.- R SAES
70 L L T 67.83 86.48
proo TS st 20 67.65 86.58
‘ = ® = EPNet(l) = % = TENET (1)
65 } L EPNet (5) == TENET (5) 100 6604 8586
30 50 80 100
# of unlabeled samples 1000 62.80 83.48

Fig. 3: Comparison results of varied unlabeled
samples on minilmageNet. The number in the
brackets denotes K-shot.

pseudo labels than LR, because the objective
function of TENET is unsupervised. In addition,
the performance gap between LR and TENET
becomes larger as the iteration proceeds, indi-
cating that TENET can generate more accurate
pseudo labels.

Extend to logistic regression.

In the above sections, we take the linear
regression model as an example to analyse the
non-robustness and overfitting issues of general-
ized linear models. Similar to linear regression,
the logistic regression model also suffers from
the overfitting issue when the number of vari-
ables is greater than the number of data points,
known as the p > n problem. Through experimen-
tal validation, we show that the reconstruction-
based regularization in TENET can also be
applied to the logistic regression model. Over 600

Table 6: Ablation study on the scaling factor s.
Semi-supervised 1-shot classification, with itera-
tion number T being 1.

s minilmageNet CUB
0.1 67.38 86.29
0.5 67.40 86.29

1 67.42 86.29

5 67.55 86.35
10 67.58 86.37
50 67.57 86.40

episodes on minilmageNet and CUB, we compare
the semi-supervised 1-shot performances among
vanilla logistic regression, fo-regularized logistic
regression, and reconstruction-regularized logistic
regression, with the trade-off parameter A\ being
1E-4 and the SSFSL iteration number T being 1.
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Fig. 4: Ablation study on SSFSL iteration num-
ber T'. Semi-supervised 1-shot classification.

As Table 7 shows, the reconstruction-based regu-
larization still performs best, which validates the
effectiveness and generality of TENET.

Orthogonality of learned weights. As we
state in Sec 4 that the feature reconstruction
in TENET implies an orthogonal regularization
to the classifier weights w, here we check the
orthogonality of w through experiments. Over
600 episodes of semi-supervised 1-shot learning on
minilmageNet, we record all the weights w opti-
mized by linear regression and TENET, respec-
tively, and then compute the average w " w results.
As shown in Fig. 6b, TENET with the trade-
off parameter A in objective function (5) being
1 (equal consideration to correct classification
and feature reconstruction) leads to the resulting
matrix closest to an identity matrix. If further
raising A up to 20 (less consideration to fea-
ture reconstruction, and it is the default setting),
the resulting matrix is still closer to an identity
one than that of linear regression (see Fig. 6¢
vs Fig. 6a). Such empirical results demonstrate
the achievability of orthogonal regularization in
TENET.

Comparison with orthogonality regulariza-
tion. To find out if the effectiveness of TENET
arises from the orthogonal regularization or the
reconstruction regularization, we conduct compar-
ative experiments that solely use one of these
two types of regularization. Formally, the objec-
tive function of linear regression with orthogonal

Table 7: Comparison of semi-supervised 1-shot
performances among logistic regression models
with different regularizations. The iteration num-
ber T is 1.

Regularization | minilmageNet CUB
None 66.38 84.96
{9-norm 65.16 84.13
reconstruction 66.91 85.92

Table 8: Comparison of semi-supervised 1-shot
between orthogonal regularization and reconstruc-
tion regularization. The iteration number 7T is 1.

Regularization | minilmageNet CUB
None 59.78 79.60
Orthogonal 64.75 82.98
Reconstruction 66.96 84.82

regularization is formulated as
. 2
min /\-||Y—Xw||§7+HwT’w_IHF7 (8)

and that of reconstruction regularization is consis-
tent with Equation (4). For a fair comparison, we
now utilize the SGD optimizer on Pytorch frame-
work to minimize both Equations (8) and (4), and
keep all training settings the same, such as a learn-
ing rate of 0.01, trade-off parameter A = 20, and
SSFSL iteration number T' = 1. The average test
set accuracy over 600 episodes on the minilma-
geNet and CUB datasets are shown in Table 8.
As can be seen, the effectiveness of TENET arises
more from the reconstruction regularization.

6 Conclusion

In this paper, we first analyse the flaws of the
common objective function in previous SSFSL
approaches, which are non-robustness and over-
fitting. The essence of these flaws is the lack of
a reliable supervision signal. Motivated by this,
we propose to capture the distribution informa-
tion from both labeled and unlabeled training sets
as unsupervised regularization to benefit the clas-
sifier training. We change the objective function
of linear regression into low-rank feature recon-
struction, and term this new approach as TENET.
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Fig. 5: Comparison of pseudo label accuracy and test set accuracy during SSFSL iterations. The dataset

is minilmageNet.

2002  -0.02 002  -0.02 (LIl 023 024 025  -0.24
0.02 A -0.02 0.02 0.02 VPR 136 024  -0.23 0.23
002 -0.02 [NUEEAN 002  -0.02 -0.24
002  -0.02  -0.02 0.25
032 030 032 002  -0.02 002  -0.02 0.24
(a) Linear regression (b) TENET (A =1) (c) TENET (X = 20, default)

Fig. 6: Comparison of the w " w results. TENET leads to the resulting matrix being closer to an identity
matrix, indicating better orthogonality than linear regression.

Experiments on four commonly used datasets val-
idate the effectiveness of TENET. We believe
that our proposed method can inspire the field of
SSFSL.
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