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   Abstract—This  paper  presents  a  novel  sequential  inverse  opti-
mal control (SIOC) method for discrete-time systems, which cal-
culates  the  unknown  weight  vectors  of  the  cost  function  in  real
time  using  the  input  and  output  of  an  optimally  controlled  dis-
crete-time  system.  The  proposed  method  overcomes  the  limita-
tions  of  previous  approaches  by  eliminating  the  need  for  the
invertible Jacobian assumption. It calculates the possible-solution
spaces  and their  intersections  sequentially  until  the  dimension of
the  intersection  space  decreases  to  one.  The  remaining  one-
dimensional  vector  of  the  possible-solution  space’s  intersection
represents  the  SIOC  solution.  The  paper  presents  clear  condi-
tions  for  convergence  and  addresses  the  issue  of  noisy  data  by
clarifying  the  conditions  for  the  singular  values  of  the  matrices
that relate to the possible-solution space.  The effectiveness of  the
proposed method is demonstrated through simulation results.
    Index Terms—Inverse  optimal  control,  promised  calculation  step,
sequential calculation.
  

I.  Introduction

THE standard optimal control problem concerns finding the
state and input trajectories for a dynamical system. In this

regard,  the  inverse  optimal  control  (IOC)  approach  is  gener-
ally employed to obtain the weighting parameters  of  the cost
function using the input/output data generated by optimal con-
trol.

In many fields, such as robotics [1], biological systems [2],
[3]  and  marketing  systems  [4],  the  optimization  of  the  sys-
tems’ behavior has been studied using the IOC method.

In [1], a method is proposed to estimate the cost function of
human  operators  for  human-robot  interaction  control.  The
IOC method was utilized in [5] to analyze the route choices of
taxi  drivers.  To  evaluate  the  cost  combination  of  human
motion,  in  [6],  the  IOC  method  was  utilized  to  analyze  the
reaching movement  of  the  human arm.  Furthermore,  biologi-
cal  behavior  has been modeled as  an inverse linear  quadratic
regulator  problem,  and  an  adaptive  method  was  proposed  to
model and analyze human reach-to-grasp behavior by [7].

As mentioned in the literature, there are two main groups of
IOC. One has a hierarchy structure that updates the cost func-

tion  in  the  higher  stage  while  the  forward  optimal  control
problem  is  repeatedly  solved  in  the  lower  stage  to  minimize
the evaluation function between the original data and the gen-
erated  data.  In  [8],  where  the  IOC problem is  formulated  by
another  form  (the  inverse-reinforcement-learning  method),
cost  weights  are  adjusted  to  better  evaluate  the  observation-
feature  values  and  maximize  the  entropy  of  the  trajectory-
probability  distribution.  When  considering  the  IOC  problem
as  a  special  bilevel  optimal  control  problem  [9],  where  the
lower level is the optimal control problem and the upper level
is  the  inversion  problem,  the  IOC  problem  has  been  consid-
ered  for  simple  dynamical  models  [10].  To  analyze  locomo-
tion  movements,  the  authors  of  [3]  proposed  a  bilevel  opti-
mization  method  based  IOC  method.  In  [11],  mathematical
programs with complementary constraints in the context of the
IOC  method  are  discussed  for  the  application  of  locomotion
analysis.  In [12], the bilevel optimization problem for IOC is
transformed  into  a  single-level  problem,  and  a  globally  opti-
mal  solution is  computed.  Although these methods are effec-
tive  and  have  been  utilized  in  many  applications,  such  as
human-motor  behavior  analysis,  robot  navigation,  and
autonomous  driving,  they  require  significant  computational
costs  in the lower stage to repeatedly verify the updated cost
function.

Conversely, the second class of IOC research focus on solv-
ing  this  problem  by  exploiting  several  optimality  equations,
such  as  Pontryagin’s  maximum  principle-based  equations
[13], and Euler-Lagrange equations [2]. In [14], a linear com-
bination  of  feature  functions  with  unknown  weight  parame-
ters  was  formulated  to  approximate  the  original  optimal  cost
function. In [15], the recovery of the weight parameters of the
finite-horizon,  discrete-time  optimal  control  was  considered.
For  practical  applications,  it  is  important  to  obtain  the  cost
weights  in  real  time.  In  [16],  a  method  is  proposed  for  the
online calculation of discrete-time IOC in both finite and infi-
nite  horizons;  however,  it  requires  the  invertibility  condition
of a Jacobian. In addition, the convergence of the cost weights
has not been theoretically investigated.

Control Lyapunov function (CLF) based IOC is an essential
paradigm  in  control  theory,  where  a  stabilizing  feedback  is
designed  first  and  then  shown  to  be  optimal  for  a  cost  func-
tion. In recent years,  there have been numerous contributions
to  address  the  limitations  of  CLF-based  IOC.  The  extended
Kalman filter (EKF) has been utilized in some studies to con-
struct  a  CLF  [17],  [18].  Furthermore,  some  researches  have
applied CLF-based IOC to non-linear inverse optimal control
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problems  [19].  Additionally,  some  works  have  developed
data-driven  non-linear  stabilization  schemes  utilizing  the
Koopman operator [20], and focused on learning simple poly-
nomial  CLFs  from  counterexamples  and  demonstrations  for
non-linear  dynamical  systems  [21]–[23].  Despite  these
advancements, notable limitations of CLF-based IOC method
persist,  including  the  inability  to  explicitly  specify  a  clear
optimal  cost  function  and  the  difficulty  in  selecting  and
adjusting  parameters,  which  often  requires  extensive  experi-
ence and expert knowledge.

Moreover, the problem of noisy data is a source of concern
in IOC research. The authors of [24] analyzed the IOC prob-
lem  for  discrete-time  finite-horizon  LQR  as  an  optimization
problem and proved that the solution to the problem is statisti-
cally  consistent.  They  utilized  the  data  from  multi-observa-
tions to complete the offline IOC method. In [25], building on
the  work  of  [24],  the  authors  recast  the  IOC  problem  as  the
identification of a parameterized causal and anti-causal mixed
system  exited  by  boundary  conditions.  They  clarified  suffi-
cient identifiability conditions for the unknown parameters in
terms of the system model. Besides, [26], [27] also emphasize
the consideration of data noise.  Although the aforementioned
methods  are  effective  in  tackling  problems  of  noise  for  the
offline IOC problem of discrete-time finite-horizon LQR, it is
still  necessary  to  consider  the  noisy  problem  in  the  IOC
method  in  (1)  online  calculation  and  (2)  nonlinear  system’s
IOC method.

This  paper  proposes  a  novel  SIOC  method  to  address  the
issues  mentioned  above.  The  method  recovers  the  cost  func-
tion  of  an  optimal  control  problem  from  input/output  data
acquired  step-by-step,  and  solves  the  inverse  optimal  control
problem sequentially with a promised convergence speed. By
assuming the positivity of a Jacobian, this method is applica-
ble even if the invertible Jacobian assumption required in [16]
is  not  satisfied.  Most  importantly,  the  method  clarifies  the
conditions  for  the  convergence  of  the  weight  estimation  in
every step, which can be utilized in the analysis of real appli-
cations. On the other hand, in this study, the noisy data prob-
lem  is  considered  for  the  online  recovery  of  the  cost-weight
vector. We also analyze the effect of noisy data on the possi-
ble-solution space and propose a one step selection method of
the possible-solution space for the noisy case using noisy data
from  multiobservations.  Contribution  of  this  research  comes
from three aspects.

1) The first contribution is the promised solution’s calcula-
tion  speed  and  the  conditions  that  enable  it.  We  discuss  the
conditions  for  the  decrease  in  the  dimension  of  the  intersec-
tion space. Consequently, if any of the conditions listed (The-
orem  1)  is  satisfied,  the  dimension  of  the  intersection  of  the
solution’s  space  will  decrease  in  each  step,  allowing  us  to
obtain  solutions  within  a  promised  number  of  steps.  This  is
beneficial  for  applications  that  require  high-speed  calcula-
tions.

2)  The  second  is  the  establishment  of  a  sequential  IOC
method without utilizing the invertible Jacobian assumption in
[16].  Notably,  although the invertible  Jacobian assumption is

widely  used  in  the  solution  of  the  forward  finite  and  infinite
horizon optimal control of the discrete system, as highlighted
in ([28]), some necessary conditions are proposed to apply the
method  for  the  system  dynamics  even  if  the  invertible  Jaco-
bian assumption is not satisfied.

3)  The  third  is  the  development  of  an  efficient  method  for
tackling the noisy data problem in the online IOC calculation.
If  we have prior knowledge of the maximum error value,  we
can  analyze  the  effect  of  the  error  on  the  possible-solution
space in our method and propose two conditions for selecting
the  possible-solution  space.  Simulation  results  show that  this
method is effective.  

II.  Problem Formulation

Consider the dynamics of a discrete system
 

xk+1 = f (xk,uk) (1)
f (:, :) : Rn×U → Rn

xk = [x1
k , . . . , x

n
k]T ∈ Rn

uk = [u1
k , . . . ,u

m
k ]T ∈ U

U ⊆ Rm x[0,K] {xk : 0 ≤ k ≤ K}
u[0,K] {uk : 0 ≤ k ≤ K}

where  is  a  continuously  differentiable
function,  represents  the  system  states,

 denotes the control input of the system
belonging  to  a  closed,  bounded  and  convex  constrained  set

.  denotes the state sequence  and
 denotes control input sequence .

u∗[0,K]
x∗[0,K]

∗

In the standard optimal control problem, we design the opti-
mal  control  input  and  obtain  a  series  of  optimal  state

 to  minimize  the  following  cost  function,  subject  to
dynamics (1) (upperscript  stands for the optimal condition):
 

C(xk,uk,q) =
K∑

k=0

qT F(xk,uk) (2)

F(xk,uk)where  is a feature vector function defined as
 

F(xk,uk) = [FT
XU ,F

T
U ]T ∈ Rn f . (3)
K <∞ K→∞

q = [qT
xu,q

T
u ]T ∈ Rn f

qxu ∈ Rnxu xk
uk FXU = [Fxkuk(1), . . . ,Fxkuk(nxu)]T ∈ Rnxu

Fxkuk(i) xi
k

ui
k qu ∈ Rnu

uk FU = [Fuk(1), . . . ,Fuk(nu)]T ∈ Rnu

uk
||q|| = 1

n f n f = nxu+nu

Here, the terminal step K can be  or . The vec-
tor,  represents cost weights, in which vec-
tor  represents a weight vector with respect to  and

,  and  vector .  The
scalar  represents the i-th feature function related to 
and .  denotes the weight vector accounting for the
control  input ,  while  repre-
sents  the  feature  function  purely  related  to .  It  is  assumed
that  the  norm, ,  is  fixed  and  known  priorly.  The  total
number of features  satisfies .

x[0,K] u[0,K]

xk
uk

In our problem, we assume that  as well as  con-
stitutes  a  solution  to  minimize  (2)  for  system  dynamics  (1).
The objective  of  this  research is  to  realize  the  online  estima-
tion of the cost weight vector q in cost function (2), i.e., to cal-
culate  vector q online  for  the  given  system  state  and  the
control input  without the storage and batch processing. The
time horizon K is known priorly.  

III.  Sequential IOC for the Noise Free Case

In this section, we introduce the maximum principle for the
finite and infinite horizon, optimal control problems, which is
applicable  when  any  condition  provided  in  Assumption  1  is
satisfied.  Based  on  the  introduced  maximum  principle,  we
propose a sequential IOC method.  
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A.  Maximum Principle for the Finite and Infinite Horizon Opti-
mal Control Problems

The Hamiltonian function associated with the optimal  con-
trol problems given by (1) and (2) is defined as
 

Hk(xk−1,uk−1,λk,q) = qT F(xk−1,uk−1)

+λT
k f (xk−1,uk−1) (4)

λk ∈ Rn (k > 0)where  denotes the co-state vector.

xk−1 uk−1 ∇xHk(xk−1,uk−1,λk,q) ∈
Rn ∇uHk(xk−1,uk−1,λk,q) ∈ Rm

The column vectors of the partial derivatives of the Hamil-
tonian with respect to  and  are 

 and , respectively.

k ≥ 0
Assumption 1: The partial derivative of the dynamics satis-

fies any of the following two conditions for all :
∂ f
∂xk

1)  is invertible;
∂ f
∂xk

2)  satisfies the following positivity condition:
 

∂ f n j (xk,uk)
∂xni

k

≥ 0 ∀ni,n j ∈ 1, . . . ,n where ni , n j (5)

 

∂ f n j (xk,uk)

∂x
n j
k

> 0 ∀n j ∈ 1, . . . ,n (6)

f n j n j f (xk,uk)
xni

k ni xk

where  represents  the -th  element  of  function 
and  represents -th element of vector .

∂ f n j (xk ,uk)
∂x

ni
k

= 1 ni,n j
∂ f
∂xk

In [28] (Theorems 2.2 and 2.6), it has been shown that both
the assumptions of Jaocbian’s invertibility (Assumption 1-1))
and positivity (Assumption 1-2)) can be used to establish Pon-
tryagin’s maximum principles in both finite and infinite hori-
zon  discrete-time  optimal  control  problems.  These  assump-
tions  are  especially  necessary  for  infinite  horizon  problems.
While  the  previous  study  [16]  of  online  IOC  assumed  Jaco-
bian’s  invertibility  to  establish  the  discrete-time  maximum
principle,  this  assumption  may  not  hold  for  some  system
dynamics.  Therefore,  the  Jacobian’s  positivity  assumption
(condition) is proposed in [28] as an alternative to the invert-
ible  assumption  (condition).  For  example,  it  suffices  to  con-
sider  the  case  where  for  all  to  see  that
Assumption 1-2) is  fulfilled and  is  not invertible since its
rank is equal to 1.

In  addition,  as  in  [16],  the  inactive  constraint  times  of  the
control input are defined as

uk k > 0Definition 1: Given the control input, , for ,
 

κk ≜ {0 ≤ k ≤ l : uk ∈ int(U)} (7)

int(U)
U

is defined as the set when the control constraints are inactive.
Here  l  represents  time  larger  than  0,  and  denotes  the
interior of the inactive control constraint set, .

Based  on  [16],  [28]–[30],  for  the  above  assumptions  and
definition, the following lemma holds:

x[0,K]
u[0,K]

λ0, . . . ,λK

Lemma  1: Suppose  that  the  optimal  control  problems
defined  by  (1)  and  (2)  are  solved  by  trajectories  and

 and  if  the  Assumptions  1-1)  or  1-2)  hold,  then  there
exist co-state vectors  that satisfy the combined Pon-
tryagin’s maximum principle as
 

F̄T
x(k−1)q+ f̄ T

x(k−1)λk = λk−1 (8)

0 ≤ k ≤ K λK+1 = 0 K <∞ λK+1
K→∞

for all  with  if , and  undefined
if , and
 

F̄T
u(k−1)q+ f̄ T

u(k−1)λk = 0 (9)

k ∈ κk κkfor all , where  denotes the inactive constraint times up
to and including time K.

F̄x(k) =
∂F
∂xk

F̄u(k) =
∂F
∂uk

f̄x(k) =
∂ f
∂xk

f̄u(k) =
∂ f
∂uk

λk

Here, , ,  and . The
co-state  varies in backward recursion in discrete-time opti-
mal control.

xk uk

Proof: Generally, (8) and (9) can be obtained by calculating
the gradients  of  (2)  for  (1)  using (4)  with  respect  to  the  vec-
tors  and , respectively. The brief proof of this lemma for
the assumption is given in [16] (Lemma 1) by using the results
of [29] (Proposition 3.3.2) and [30] (Theorem 2). It is also sat-
isfied  for  Assumption  1-2),  as  is  proven  in  [28]  (Theorem
2.6). ■  

B.  Construction of the Sequential IOC Method

x[T0,T f ],u[T0,T f ]
k−1

If the optimal control problems of (1) and (2) are solved by
( )  which  are  the  solutions  to  (8)  and  (9),  then
by considering (9) in steps k and  and substituting (8) in
step k, we have
 

Hk sk = 0 (10)

Hk =

 f̄ T
u(k−1) f̄ T

x(k) F̄T
u(k−1)+ f̄ T

u(k−1)F̄
T
x(k)

f̄ T
u(k) F̄T

u(k)

 sk =λk+1

q


sk sk−1

where  and 

, by considering (8), a backward recursive relation from
 to  can be formulated as follows:

 

Mk sk = sk−1 (11)

Mk Mk =

 f̄ T
x(k) F̄T

x(k)

0n f×n In f

 ∈ R(n+n f )×(n+n f )where  is defined as .

In f ∈ Rn f×n f 0n f×n ∈ Rn f×n

k,k−1 ∈ κk
k < κk

Here,  denotes the unit matrix and 
denotes  the  matrix  where  all  the  elements  are  zero.  Notably,
(10) holds only when  and (11) holds always even
if .

Mi (i = h, . . . ,k)
h ≤ k sh

Thus,  by  introducing  all  historical  with h
denoting step , it is easy to backward calculate  of step
h with
 

M̄h:k sk = sh (12)
M̄h:k M̄h:k =

∏k
l=h+1 Ml

M̄h:k = M̄h:k−1Mk

where  denotes a matrix defined as . and
it satisfies the forward recursion as .

sh
λh+1

sh

Since vector  contains the cost-weight vector, q, as well as
the  co-state ,  our  goal  of  constructing  the  online  IOC
changes to finding vector  based on the finite forward steps
of k.

sk
Hk sk

From  (10),  it  is  known  that  locates  in  the  null  space  of
, and  can be calculated as follows:

 

sk = (IN −H+k Hk)rk (13)
rk ∈ RN H+k

Hk

where  denotes  an  arbitrary  vector  and  represents
the pseudo inverse matrix of .

h (T0 ≤ h < k)
k (T0 < k ≤ T f )

For  step i in  the  duration  from  step  to
, we have

 

Φh(i)ri = M̄h:iΘiri = sh (14)
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Φh(i) = M̄h:i(IN −H+i Hi) = M̄h:iΘi h ≤ i ≤ k
Θi = IN −H+i Hi

where  with  and
.

Φh(i)
ΓΦh(i) = span(Φh(i)) for h ≤ i ≤ k span(:)

si ∈ ΓΦh(i) for h ≤ i ≤ k
ΓΦh(h) , . . . ,ΓΦh(k)

ΓΩh:k = ΓΦh(h) ∩ · · ·∩ΓΦh(k)

Here,  the  column  vector  space  of  can  be  denoted  as
, where  denotes the sp-

an  of  the  matrix.  From (14),  we have .
Therefore, the spaces of  are the possible-solu-
tion  spaces,  and  the  intersection  of  these  possible-solution
spaces is defined as .

sh ∈ ΓΩh:k shThus, we have , which implies that vector  exists
and always belongs to the intersection subspace.

sh
ΓΩh:k

To  obtain ,  it  is  necessary  to  discuss  the  decrease  in  the
dimension of  as k increases.

ΓΩh:i−1 ⊈ ΓΦh(i)

ΓΩh:i

Proposition 1: If , the dimension of the inter-
section  will be decreased; that is,
 

dim(ΓΩh:i−1 ) > dim(ΓΩh:i ) (15)
ΓΩh:i ΓΩh:i = ΓΦh(h) ∩ · · ·∩ΓΦh(i)where  means .

ΓΦh(i) ΓΦh( j)Proof: It is clear that, for any vector space,  and ,
 

dim(ΓΦh(i) ∩ΓΦh( j) ) ≤ dim(ΓΦh(i) ) (16)
ΓΦh(i) ⊆ ΓΦh( j)the equality sign holds when .

ΓΩh:i = ΓΩh:i−1 ∩ΓΦh(i)Since , we have
 

dim(ΓΩh:i ) ≤ dim(ΓΩh:i−1 ), h < i < K (17)
ΓΩh:i−1 ⊆ ΓΦh(i)the equality sign holds when .

ΓΩh:i−1 ⊈ ΓΦh(i) ΓΩh:iTherefore,  if ,  the  dimension  of  will
decrease as k increases. ■

k f

ΓΦh(h) , . . . ,ΓΦh(k f )

sh

From Proposition 1,  it  is  clear  that  with the increase in the
step, at some step instant , the rank of the common intersec-
tion subspace of  becomes one and this unique
intersection is .

ΓΩh:i

Here, we give the main result to clarify the condition for the
decrease in the dimension of intersection space .

ΓΩh:i−1 ⊈ ΓΦh(i)

Theorem 1: Under Assumption 1-1), if any of the following
two conditions is satisfied, then :

a)
f̄ T
u( j̄)
∀h ≤ j ≤ i−1i)  is full rank;

F̄T
u(i)ii)  is full rank.

b)
dim( f̄ T

u( j)) < m∀h ≤ j ≤ i−1i) ;
F̄T

u(i)ii)  is full rank;
iii)

 

i−1∑
j=h

dim(null( f̄ T
u( j))) < Nz(i)

Nz(i) ΓΦh(i)

dim(:)
where  denotes  the  dimension of  the  null  space  of 
and  denotes the dimension of the column vector space
of the matrix.

Proof: The proof of this theorem is shown in Appendix. ■
Therefore,  if  Conditions a)  or  b)  of  Theorem 1 is  satisfied,

the  dimension  of  the  intersection  of  the  possible-solution
space will decrease in every step.  

shC.  Calculation of Vector 
Ωs1)  Calculation  of  the  Intersection  Space: Here,  is  the

matrix  related  to  the  intersection  of  the  possible-solution

spaces,  which  is  initialized  in  step h and  is  updated  in  every
cycle.

ΓΩh:i−1 ∩ΓΦh(i) = null(null(ΓΦh(i) )∪null(ΓΩh:i−1 ))
Ωs

From ,  we
can calculate  by
 

Ωs = Ωh:i = null(Yh(i)) (18)
Yh(i) = [null(Ωh:i−1)T ,null(Φh(i))T ]T

Yh(i) =WΛVT

Λ

where  can  be  represented
by  singular-value  decomposition  by . W and V
are  unitary  matrices,  is  a  rectangular  diagonal  matrix  with
non-negative values on the diagonal.

dim(ΓΩh:i ) = 1 Ωs Vn

Λ

Yh(i)sh = 0 sh

Vn −Vn sh

−sh sh

sh

When ,  becomes  vector ,  which  is  the
row  vector  of V related  to  the  smallest  singular-value  of .
From ,  it  is  clear  that  may  maintain  the  same
direction with  or . From the fact that right  can make
the  cost  function  be  positive  while  using  instead  of 
make  the  cost  function  become  negative  on  the  contrary, 
can be selected as
 

sh =

{Vnap, C(xk,uk, q̂) ≥ 0

−Vnap, C(xk,uk, q̂) < 0
(19)

q̂ = [Vnap]n+1:n+n f

(n+1) (n+n f ) Vnap

ap =
||q||

||[Vn]n+1:n+n f ||
[Vn]n+1:n+n f

(n+1) (n+n f ) Vn

||q||
Vn

where  is  the  vector  constructed  by  the
-th  element  to  the -th  element  of  vector ,

,  denotes  the  vector  constructed
by the -th element to the -th element of , and
the  is known prior. Here, we use a previously known norm
of q to  scale  to  obtain  a  unique  and  right-cost  weight
vector.

2)  Calculation  With  Control  Constraints: When  control
constraints exist, the calculation procedure is designed as fol-
lows:
 

ΓΩh:i = ΓΩh:i−1 ∩ΓΦh(i) , ui ∈ int(U) & ui−1 ∈ int(U)
Reinitialize ΓΩh:i , ui ∈ int(U) & ui−1 < int(U)
S kip the S tep, Otherwise.

(20)
We halt the calculation when the control constraint is active

and reinitialize, restart the IOC calculation when it is inactive.
The high calculation speed of our method makes it possible to
quickly complete the IOC calculation after the active duration
of the control constraints so that it is not necessary to store the
data  of  the  duration  before  the  control  constraints  are  active
[16].

The  total  calculation  in  the  noise-free  case  is  shown  in
Algorithm 1.  

IV.  When Noise Exists

x̂ û
Φh(i)

When  measurement  noise  or  numerical  errors  exist,  the
noisy-system  state, ,  and  control  input, ,  introduce  errors
into  the  calculation  of ,  resulting  in  the  deviation  of  the
calculated  possible-solution  space  from  the  correct  result.
Here, we also introduced a method for tackling this problem.

x̂ û
First, in this research, we assume that the noise of the mea-

sured  and  satisfies the following conditions:
 

||x̃|| = ||x− x̂|| ≤ ϵx
||ũ|| = ||u− û|| ≤ ϵu (21)

ϵx ϵuwhere  and  are  two  positive  scalars.  Furthermore,  we
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introduce  the  following  assumption  of  the  system  dynamics
and feature function.

Algorithm 1 Online Implementation (Noise-Free Case)

xi,ui, ||q||Input: 
shOutput: 

Initialization :
Hh Φh(h)1: Compute a  and .

Ωs = Φh(h)2:  Initialize  matrix  which  represents  the  intersection  of
possible-solution spaces.

LOOP Process
i = h+13: for  to K do
ui ∈ int(U)4: 　if  then

ui−1 < int(U)5: 　　if  then
Φh(i) Ωs = Φh(i)6: 　　　Calculate  and reinitialize 

7: 　　　Continue.
8: 　　end if

Φh(i) null(Φh(i)) null(Ωs)9: 　　Calculate ,  and .
ΓΩs ∩ΓΦh(i)

Yh(i) = [null(Φh(i))T ,null(Ωs)T ]T Yh(i)

ΓΩs Ωs

10:  　 　 Calculate  by  constructing  the  matrix
 and  compute  the  null  space  of .

Here,  denotes the vector space of .
rank(Yh(i)) < N −111: 　　if  then

Ωs = null(Yh(i))12: 　　　Update 
13: 　　end if

rank(Yh(i)) = N −114: 　　if ( ) then
Ωs Ωs = null(Yh(i))15: 　　　  is decreased to a vector with .

16: 　　　Get the unique solution following (19).
17: 　　end if
18: 　end if
19: end for

sh20: return 

f̄u(k), f̄x(k), F̄u(k), F̄x(k)Assumption 2: Function  satisfy
 

|| f̄u(k)− ˆ̄fu(k)||F ≤ ψ f
u ||(uk − ûk)|| ≤ ψ f

uϵu

|| f̄x(k)− ˆ̄fx(k)||F ≤ ψ f
x ||(xk − x̂k)|| ≤ ψ f

xϵx

||F̄u(k)− ˆ̄Fu(k)||F ≤ ψF
u ||(uk − ûk)|| ≤ ψF

u ϵu

||F̄x(k)− ˆ̄Fx(k)||F ≤ ψF
x ||(xk − x̂k)|| ≤ ψF

x ϵx (22)
ˆ̄fu(k),

ˆ̄fx(k),
ˆ̄Fu(k)

ˆ̄Fx(k)

|| : ||F ψ f
u ψ f

x
ψF

u ψF
x

where  symbols  and  denote  the  terms
with noises and  denotes the Frobenius norm, and , ,

 and  represent the positive scalars.
ψ f

u ψ f
x ψF

u ψF
x

uk xk
f̄ u(k) f̄ x(k) F̄u(k) F̄x(k)

In practical applications, the parameters , , , and 
represent  the  degree  of  influence  of  the  disturbances  in  the
system input  and  system state  on  the  system dynamics
equations , , ,  and .  They  quantify  the
weight of input and state disturbances in the system dynamics
equations  and  feature  functions,  which  is  crucial  for  design-
ing  robust  controllers  and  evaluating  system performance.  In
order to determine the values of these parameters, one would
typically  rely  on  prior  knowledge  about  the  system,  such  as
the  system’s  sensitivity  to  disturbances  in  its  input  and  state
variables. This information can be obtained from system iden-
tification or previous experimental data.

Using the noisy data, (10) and (11) can be expressed as fol-
lows: 

Ĥk sk = eh
k

M̂k sk = sk−1+ em
k (23)

Ĥk =

 ˆ̄f T
u(k−1)

ˆ̄f T
x(k)

ˆ̄FT
u(k−1)+

ˆ̄f T
u(k−1)

ˆ̄FT
x(k)

ˆ̄f T
u(k)

ˆ̄FT
u(k)

 M̂k = ˆ̄f T
x(k)

ˆ̄FT
x(k)

0n f×n In f


where  and 

, respectively.

Φ̂h(i) =
ˆ̄Mh:iΘ̂i

h ≤ i < k sh
Φ̂h(i)

Here, since the existence of noise will  affect 
at  each  step  for  ( ),  will  not  belong  to  the  column
vector  space  of  and  the  direction  of  the  final  estimated
cost-weight vector will deviate from the correct result.

Θi null(Φh(i))

To solve this problem, we adjust the calculation of the pos-
sible-solution  space  by  selecting  an  appropriate  method  to
replace the original calculation method of  and  in
each  step  in  the  noise-free  case.  With  the  following  method,
this goal is achieved in three steps:

Ĥk
TĤk

sk

i)  Based on  and the  range of  the  noise  error,  we calcu-
late matrix, , which spans a vector space containing .

TĤk
M̂k Φ̂h(k)

TΦ̂h(k)
sh

ii) We utilize  and  to calculate matrix  and sub-
sequently calculate the matrix  which may span a vector
space containing .

TΦ̂h(k)
h ≤ i ≤ k

iii) We calculate the intersection of spaces spanned by 
( ) obtained in each step.

Ĥk
Hk sk = 0

1) Method of Tackling the Effect of Noises on : From (23)
and , we have
 

Ĥk sk = eh
k = H̃k sk (24)

H̃k = Hk − Ĥk
Ĥk

where . By performing singular-value decompo-
sition (SVD) of matrix , we have
 

Ĥk =WĤk
ΛĤk

VT
Ĥk

WĤk
VĤk

ΛĤk

with two unitary matrices  and  and a rectangular diag-
onal singular-value matrix, .

H̃k
sk

Ĥk H̃k

Here, it is clear that the existence of the  term affects the
estimation  result;  as  such,  will  not  lie  in  the  null  space  of

. We analyze the condition of the Frobenius norm of  in
the following lemma first.

H̃kLemma 2: The Frobenius norm of  is bounded and satis-
fies the following:
 

||H̃k ||F ≤
√
β1+β2 (25)

where
 

β1 = 2ψ f 2
u ϵ

2
u Tr( ˆ̄f T

x(k)
ˆ̄fx(k))

+ψ f 2
x ϵ

2
x Tr( ˆ̄f T

u(k−1)
ˆ̄fu(k−1))+ψ f 2

u ϵ
2
u

 

β2 = 2ψF2
u ϵ

2
u +3ψF2

x ϵ
2
x Tr( ˆ̄FT

x(k)
ˆ̄Fx(k))

+3ψF2
x ϵ

2
x Tr( ˆ̄f T

u(k−1)
ˆ̄fu(k−1))+ψF2

u ϵ
2
u .

Hk Ĥk H̃T
k H̃kProof: From the definitions of  and ,  can be rep-

resented as
 

H̃T
k H̃k =

h1 h0

hT
0 h2

 (26)
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h1= ( ˆ̄fx(k)
˜̄fu(k−1)+

˜̄fx(k)
ˆ̄fu(k−1)) ( ˜̄f T

u(k−1)
ˆ̄f T
x(k)+

ˆ̄f T
u(k−1)

˜̄f T
x(k))+

˜̄fu(k)
˜̄f T
u(k) h2 = ( ˜̄Fu(k−1)+

ˆ̄Fx(k)
˜̄fu(k−1)+

˜̄Fx(k)
ˆ̄fu(k−1)) ( ˜̄FT

u(k−1)+

˜̄f T
u(k−1)

ˆ̄FT
x(k)+

ˆ̄f T
u(k−1)

˜̄FT
x(k))+

˜̄Fu(k)
˜̄FT

u(k)

where  
 and  

 .
Then, from (21) and (22), we have

 

Tr(h1) ≤ 2ψ f 2
u ϵ

2
u Tr( ˆ̄f T

x(k)
ˆ̄fx(k))

+ψ f 2
x ϵ

2
x Tr( ˆ̄f T

u(k−1)
ˆ̄fu(k−1))+ψ f 2

u ϵ
2
u = β1 (27)

 

Tr(h2) ≤ 2ψF2
u ϵ

2
u +3ψF2

x ϵ
2
x Tr( ˆ̄FT

x(k)
ˆ̄Fx(k))

+3ψF2
x ϵ

2
x Tr( ˆ̄f T

u(k−1)
ˆ̄fu(k−1))+ψF2

u ϵ
2
u = β2 (28)

Tr(H̃T
k H̃k) = Tr(h1)+Tr(h2)Since , we have

 

||H̃k ||F =
√

Tr(H̃T
k H̃k) ≤

√
β1+β2 (29)

Tr(:)where  represents the trace of the matrix. ■

VĤk
sk

Based  on  the  above  condition  of  Lemma  2,  we  attempt  to
derive  a  condition  of  singular-value  relating  to  the  appropri-
ate  column  vectors  in ,  which  can  be  utilized  to  build  a
subspace that always contains .

Ĥk

Theorem 2: If  the  following  condition  of  the j-th  singular-
value of  is satisfied:
 

Λ
j
Ĥk
>

1
ϵv

√
β1+β2 (30)

ϵv V j
Ĥk

where  is a positive scalar. The corresponding  satisfies
 

V jT
Ĥk

sk

||sk ||
< ϵv.

VĤk
r̂c

k
sk = VĤk

r̂c
k

VĤk
sh

Proof: First, since  is a full rank matrix, a vector, , will
always exist such that . Here, since we attempted to
calculate  the  intersection  of  the  possible-solution  space
obtained  in  each  step,  if  the  matrices  spanning  these  spaces
are  all  full  rank,  the  dimension  of  the  intersection  space  will
not decrease and the estimation of the cost weight will not be
completed.  Therefore,  it  is  required  to  select  an  appropriate
subspace of the column vector space spanned by  contain-
ing vector  at each step and finally calculate the intersection
of these vector spaces to obtain the result.

Tr(sT
k ĤT

k Ĥk sk) = Tr(sT
k H̃T

k H̃k sk)From  (24),  we  have .  Fur-
thermore, we get
 

Tr(sT
k VĤk

ΛT
Ĥk
ΛĤk

VT
Ĥk

sk) = Tr(H̃T
k H̃k sk sT

k ). (31)

sk = VĤk
r̂kUsing ,  we  obtain  the  inequality  formulated

below:
 

Tr(ΛT
Ĥk
ΛĤk

r̂o
k r̂oT

k ) = Tr(H̃T
k H̃k r̂o

k r̂oT
k ) ≤ Tr(H̃T

k H̃k) (32)

r̂o
k = VT

Ĥk
sk/||sk || r̂k

r̂o
k

r̂o
k

sk/||sk || VĤk

∀ j ≤ N r̂o
k ||r̂ jo

k || = V jT
Ĥk

sk/||sk || = 0 V jT
Ĥk

sk

ΛT
Ĥk
ΛĤk

Tr(ΛT
Ĥk
ΛĤk

r̂o
k r̂oT

k )
T1 ΛĤk

where  is the unit vector of . Here, although
we  cannot  determine  the  exact  value  of ,  each  element  of
unit vector  can be regarded as the score evaluating the rela-
tion  between  vector  and  each  column  vector  of 
(orthogonal,  parallel,  otherwise).  When  the j-th  element
( )  of  satisfies ,  has  no
relation  with , and the  corresponding j-th  diagonal  element
in matrix  will not have any effect on .
Here, we design a set, , of the diagonal elements of  as

follows:
 

{T1 : Λ j
Ĥk
| r̂ jo

k = V jT
Ĥk

sk/||sk || ≤ ϵv}

ϵvwhere the positive scalar  is a threshold that can be appropri-
ately selected.

ΛT
Ĥk
ΛĤk

Tr(ΛT
Ĥk
ΛĤk

r̂o
k r̂oT

k )

Since  is  a  diagonal  matrix,  we  can  rewrite
 as

 

Tr(ΛT
Ĥk
ΛĤk

r̂o
k r̂oT

k ) =
N∑

j=1

Λ
jT
Ĥk
Λ

j
Ĥk

[r̂o
k r̂oT

k ] j ≤ Tr(H̃T
k H̃k) (33)

[:] j

[r̂o
k r̂oT

k ] j 0 < [r̂o
k r̂oT

k ] j ≤ 1
where  represents  the j-th  diagonal  element  of  the  matrix.
All  satisfy .

Λ
j
Ĥk

Λ
j
Ĥk
> 1
ϵv

√
Tr(H̃T

k H̃k) = 1
ϵv

√
β1+β2

V j
Ĥk

V jT
Ĥk

sk < ϵv||sk ||

Thus,  from  (33),  it  is  clear  that  any  satisfying

 is  the  possible  singular-

value  corresponding  to  the  column  vector ,  making
. ■

VĤk
ΛĤk

Λ
j
Ĥk
> 1
ϵv

√
β1+β2

sk VĤk
V jT

Ĥk
sk ≥ ϵv||sk ||

ΛĤk

Λ
j
Ĥk
≤ 1
ϵv

√
β1+β2

Theorem 2 shows that all  the column vectors of  corre-
sponding to the diagonal elements of  that satisfy the con-
dition  have little correlation with the vector

.  All  the  column  vectors  in  that  satisfy 
are  related  to  the  diagonal  elements  of  that  satisfy  the
condition .

nv VĤk
ΛĤk

Λ
j
Ĥk
≤ 1
ϵv

√
β1+β2 V j

Ĥk

V jT
Ĥk

sk ≥ ϵv||sk ||
TĤk

nv r̂k TĤk

Therefore,  we  select  the  column  vectors  in  corre-
sponding to the diagonal elements of  that satisfy the con-
dition ,  which  makes  it  possible  for  to

satisfy . We  can  then  construct  a  new  matrix
 with  columns and find a vector  such that  satis-

fies the following inequality:
 

||sk −TĤk
r̂k || ≤

√
1− ϵ2v nv||sk || (34)

ϵ2v nv ≤ 1 ||T T
Ĥk

sk || ≥ ϵ2v nv||sk ||
||T T

Ĥk
sk || ≤ ||VT

Ĥk
sk || = ||sk ||

where  according to the conditions 
and .

sk
TĤk√

1− ϵ2v nv||sk || ϵv

nv
TĤk

Θk

In practice, the degree of correlation between  and the col-
umn  vectors  in  can  be  estimated  using  the  threshold  of

, allowing us to choose suitable values for  and
 to ensure a satisfactory degree of correlation. Therefore, we

can utilize  to replace  in the calculation.
Φ̂h(k)

ˆ̄Mh:k

2)  Method  of  Tackling  the  Effect  of  Noise  in : In  the
noisy case, due to the noise on  in step k, (12) becomes
 

ˆ̄Mh:k sk = sh+ er
Mk (35)

er
Mk =

˜̄Mh:k sk skwhere .  Furthermore,  by  representing  using
Theorem 2’s result, we have
 

er
Mk ≈ ˜̄Mh:kTĤk

r̂k (36)

Φh(i)and  the  calculation  of  in  the  noisy  case  can  be  formu-
lated as follows:
 

Φ̂h(k)r̂k =
ˆ̄Mh:kTĤk

r̂k ≈ sh+ er
Mk. (37)

Therefore, after performing SVD in the noise case (37), we
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have
 

Φ̂h(k) =WΦ̂h(k)
ΛΦ̂h(k)

VT
Φ̂h(k)
.

Φh(i)

Furthermore, from the result of Theorem 2, the formula for
calculating of  can be expressed as
 

Φ′h(k)r̂k = M̄h:kTĤk
r̂k ≈ sh. (38)

˜̄Mh:k = M̄h:k − ˆ̄Mh:k

It is clear that the remaining effect originates from the noise
term, .

We propose a lemma to clarify this effect below.
|| ˜̄Mh:k ||FLemma  3: The  Frobenius  norm  of  matrix  is

bounded and satisfies the following condition:
 

|| ˜̄Mh:k ||F ≤ γk (39)
γk = (|| ˆ̄Mk ||F + bk) γk−1 + bk || ˆ̄Mh:k − 1||F bk =√

Tr( ˜̄f T
x(k)

˜̄fx(k)+
˜̄FT

x(k)
˜̄Fx(k)) =

√
ψ f

xϵx +ψF
x ϵx γ1 = ||M̃1||F =

bk

where , 

 and 
 

MkProof: First, from the definition of , it obtains
 

M̃k =

 ˜̄fx(k)
˜̄Fx(k)

0n f×n 0n f

 . (40)

From this equation, we have
 

||M̃k ||F ≤
√

Tr( ˜̄f T
x(k)

˜̄fx(k)+
˜̄FT

x(k)
˜̄Fx(k)) = bk.

˜̄Mh:k = M̄k M̄h:k−1− ˆ̄Mk
ˆ̄Mh:k−1Since ,

 

|| ˜̄Mh:k ||F = ||M̄k
˜̄Mh:k−1+

˜̄Mk
ˆ̄Mh:k−1||F

≤ ||M̄k ||F || ˜̄Mh:k−1||F + || ˜̄Mk ||F || ˆ̄Mh:k−1||F (41)
||M̄k ||F ≤ || ˆ̄Mk ||F + || ˜̄Mk ||Fwhere .

Then, we have
 

|| ˜̄Mh:k ||F ≤ γk = (|| ˆ̄Mk ||F +bk)γk−1+bk || ˆ̄Mh:k−1||F . (42)

■

Φ̂h(k) WΦ̂h(k)

Φ̂′h(k)

The  following  part  is  proposed  to  clarify  the  condition  of
singular-value of , whose related column vector in 
is the possible null space of .

Φ̂h(k)Theorem 3: The singular-value of , corresponding to
 

||ZT
Φ′h(k)

W j
Φ̂h(k)
|| ≥ ϵa

lies in the set that
 

Λ
j
Φ̂h(k)
≤ 1
ϵa

√
γkN (43)

ZΦ′h(k)

Φ′h(k) ZΦ′h(k)
= null(Φ′h(k)) ϵa

where  denotes  the  null  space  of  the  column  space  of
 as  and  is a positive scalar.

||ZT
Φ′h(k)

W j
Φ̂h(k)
||

WΦ̂h(k)
Φ′h(k)

ϵa

Here,  indicates  that  the  projection  of  the j-th
column  vector  of  on  the  null  space  of  is  larger
than .

Proof: First, from (37) and (38), we have
 

ZT
Φ′h(k)
Φ̂h(k) = ZT

Φ′h(k)

˜̄Mh:kTĤk
. (44)

Φ̂h(k) Φ̂h(k) =

WΦ̂h(k)
ΛΦ̂h(k)

VT
Φ̂h(k)

By  performing  SVD  on ,  we  have 
. Thus, from (44), we have

 

Tr(ΛT
Φ̂h(k)

WT
Φ̂h(k)

ZΦ′h(k)
ZT
Φ′h(k)

WΦ̂h(k)
ΛΦ̂h(k)

)

= Tr(T T
Ĥk

˜̄MT
h:kZΦ′h(k)

ZT
Φ′h(k)

˜̄Mh:kTĤk
) (45)

r̂o
k = r̂k/||r̂k || pΦ̂h(k)

= VT
Φ̂h(k)

r̂o
kwhere  is a unit vector. Since  is a

unit vector, the left hand side of this equation satisfies
 

Tr(ΛT
Φ̂h(k)

WT
Φ̂h(k)

ZΦ′h(k)
ZT
Φ′h(k)

WΦ̂h(k)
ΛΦ̂h(k)

)

≤ Tr(ΛT
Φ̂h(k)
ΛΦ̂h(k)

WT
Φ̂h(k)

ZΦ′h(k)
ZT
Φ′h(k)

WΦ̂h(k)
). (46)

ZΦ′h(k)
WΦ̂h(k)

ZΦ′h(k)
= [n1, . . . ,n js ] WΦ̂h(k)

= [W1
Φ̂h(k)
, . . . ,WN

Φ̂h(k)
]

ΛT
Φ̂h(k)

WT
Φ̂h(k)
×

ZΦ′h(k)
ZT
Φ′h(k)

WΦ̂h(k)
ΛΦ̂h(k)

((W jT
Φ̂h(k)

n1)2+ · · ·+
(W jT
Φ̂h(k)

n js )
2)Λ j2
Φ̂h(k)

Λ
j
Φ̂h(k)

ΛΦ̂h(k)
(W jT
Φ̂h(k)

n1)2+ · · ·+ (W jT
Φ̂h(k)

n js )
2

W j
Φ̂h(k)

Φ̂h(k) (W jT
Φ̂h(k)

n1)2+ · · ·+ (W jT
Φ̂h(k)

n js )
2 = 0

W j
Φ̂h(k)

Φ′h(i)

Λ
j
Φ̂h(k)

Tr(ΛT
Φ̂h(k)
ΛΦ̂h(k)

×
WT
Φ̂h(k)

ZΦ′h(k)
ZT
Φ′h(k)

WΦ̂h(k)
)

Each column vector  in  and  can be represented
as  and ,  it  is

clear  that j-th  diagonal  element  of  matrix 

 can be calculated as 

 where  represents  the j-th  diagonal

element in . Here, value of 

evaluates  the  relation  between  column vector  and  null

space of . When , it rep-

resents that  is completely not in the null space of 

and  have  no  effects  on  the  value  of 

.

Moreover, for the left hand side of (45), we have
 

Tr(T T
Ĥk

˜̄MT
h:kZΦ′h(k)

ZT
Φ′h(k)

˜̄Mh:kTĤk
)

≤ Tr(TĤk
T T

Ĥk

˜̄MT
h:kZΦ′h(k)

ZT
Φ′h(k)

˜̄Mh:k)

≤ || ˜̄Mh:k ||2F N2 = γkN2. (47)

Therefore, the right-hand side of (45) satisfies
 

Tr(ΛT
Φ̂h(k)

WT
Φ̂h(k)

ZΦ′h(k)
ZT
Φ′h(k)

WΦ̂h(k)
ΛΦ̂h(k)

)

≤ γkN2 (48)
which indicates that
 ∑

j

Λ
j2
Φ̂h(k)

[WT
Φ̂h(k)

ZΦ′h(k)
ZT
Φ′h(k)

WΦ̂h(k)
] j ≤ γkN2

(49)

[WT
Φ̂h(k)

ZΦ′h(k)
ZT
Φ′h(k)

WΦ̂h(k)
] jwhere  maximum  value  of  each  is

one and
 ∑

j

[WT
Φ̂h(k)

ZΦ′h(k)
ZT
Φ′h(k)

WΦ̂h(k)
] j ≤ N −1.

Here, from (49), when
 

[WT
Φ̂h(k)

ZΦ′h(k)
ZT
Φ′h(k)

WΦ̂h(k)
] j ≥ ϵ2a

we have
 

Λ
j
Φ̂h(k)
≤ 1
ϵa

√
γkN.

■
ϵa ≤ 1 W j

Φ̂h(k)
With  the  selection  of  high ,  vector  exhibits  a
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Φ′h(k)high correlation with the null space of .
{x̂, û}is

is = 1 : Ξs
{x,u}

Here,  we  utilize  data  from  multiple  observations ,
where  denotes the multiple samples of data for one
original  set  of  system  states  and  control  input  pairs .
Online measurement can be conducted using different sensors.

W j,is

Φ̂h(k)
∀ j ≤ N

Λ
j,is

Φ̂h(k)
≤ 1
ϵa

√
γkN T is

Φ̂h(k)

is
{x̂, û}is

From Theorem 3, we select  corresponding to

 for  constructing  subspace  with  each
observations. Here, the superscript  denotes that the matrix is
obtained using the data of .

null(Φh(k))

T is
Φ̂h(k)

Thus, to replace the calculation of  in Algorithm 1
to tackle the noises, we select  using
 

ΓT o
Φ̂h(k)
= ΓT 1

Φ̂h(k)

∩ · · ·∩ΓT is
Φ̂h(k)

(50)

with calculating
 

T o
Φ̂h(k)
= null(

[
null(T 1

Φ̂h(k)
)T · · · null(T is

Φ̂h(k)
)T
]
) (51)

ΓT is
Φ̂h(k)

T 1
Φ̂h(k)

where  represents  the  column  vector  space  of  matrix

.

The total calculation in noisy case is shown in Algorithm 2.

Algorithm 2 Online Implementation (Noise Case)

{xi,ui}is , ||q||Input: 
shOutput: 

Initialization :
His

h Φ
is
h(h) {x,u}is T 1

Φ̂h(k)
, . . . ,

T is
Φ̂h(k)

1:  Compute  and  using  and  reconstruct 

.
Ωs = T o

Φ̂h(h)
2:  Initialize  matrix  following  (51)  which  represents  the

intersection of possible-solution spaces.
LOOP Process

i = h+13: for  to K do
ūi ∈ int(U)4: 　if  then

ūi−1 < int(U)5: 　　if  then
T o
Φ̂h(i)

Ωs = T o
Φ̂h(i)

6: 　　　Calculate  and reinitialize 
7: 　　　Continue.
8: 　　end if

T o
Φ̂h(i)

null(T o
Φ̂h(i)

) null(Ωs)9: 　　Calculate ,  and .
ΓΩs ∩ΓT o

Φ̂h(i)

Yh(i) = [null(T o
Φ̂h(i)

)T ,null(Ωs)T ]T Yh(i)

ΓΩs Ωs

10:  　 　 Calculate  by  constructing  the  matrix

 and  compute  the  null  space  of .
Here,  denotes the vector space of .

rank(Yh(i)) < N −111: 　　if  then
Ωs = null(Yh(i))12: 　　　Update 

13: 　　end if
rank(Yh(i)) = N −114: 　　if ( ) then
Ωs Ωs = null(Yh(i))15: 　　　  is decreased to a vector with .

16: 　　　Get the unique solution following (19).
17: 　　end if
18: 　end if
19: end for

sh20: return 

,

3) Calculation With Control  Constraints: When there exist
control  constraints  and  noise  in  data  we  replace  the  calcula-
tion procedure for the control constraints with 


ΓΩh:i = ΓΩh:i−1 ∩ΓT o

Φ̂h()
, ūi ∈ int(U) & ūi−1 ∈ int(U)

Reinitialize ΓΩh:i , ūi ∈ int(U) & ūi−1 < int(U)
S kip the S tep, Otherwise.

(52)
ūi

{x,u}is

where  represents the mean value of the control input of the
multiple data series .  

V.  Simulation Examples

We perform several  simulations in different cases to verify
the effectiveness of our method.

To ensure the reproducibility of the calculation process, we
reinitialize a new IOC calculation cycle in all simulations after
obtaining  a  result  in  step i.  This  also  allows  us  to  verify  the
performance  of  the  algorithm  under  different  initial  condi-
tions,  as  the  initial  state  at  the  start  of  each  new  calculation
cycle of SIOC will be different from the previous one.  

A.  Simulation 1: Comparison With [16]
This  section  illustrates  our  method  with  simulation  in  the

settings of nonlinear system. The system dynamics are
 

xk+1 = f (xk)+Buk (53)
xk ∈ R3 uk ∈ R2 f (xk) ∈ R3×1 B ∈ R3×2

f (xk)
where , , ,  and .  We select

 and B as
 

f (xk) =


sin(x1

k)

sin(x2
k)

sin(x3
k)

 , B =


1 0
0 1

0.5 −0.5


x j

k xk

xk x0 [0.38,−0.02,0.19]T
where  denotes  the j-th  element  in  vector .  The  initial
value of , denoted as , is selected as .

The cost function selected in the simulations is
 

V(x, t) =
∞∑

k=0

1
2

(xT
k Qxxk +uT

k Quuk) (54)

Qx

qx = [0.0006,0.0002,0.002]T Qu

qu = [1,1]T

q = [qT
x ,q

T
u ]T

where  is  a  diagonal  matrix  with  its  diagonal  elements  as
vector , and  is also a diagonal
matrix with its diagonal elements as vector . Here,
we  suppose  that  the  norm of  vector  selected  as
1.4142 is known prior.

∂ f (xk)
xk

cos(xi
k)∀1 ≤ i ≤ 3Here, the diagonal matrix  with  on its

diagonal position satisfies the invertible assumption.
We recover the cost weights in (56) and compared the simu-

lation results with the results of [16] according to two aspects:
the  number  of  time steps  required  to  recover  the  cost  weight
vectors in each cycle (Figs. 1 and 2) and the recovery error of
the cost weights (Figs. 3 and 4).

Fig. 1 shows the result of the step performed in our method,
while Fig. 2 shows  the  result  in  [16].  The  horizontal  axes  in
both  figures  represent  the  total  steps  during  the  simulations.
The dotted blue line is  the end of each cycle while its  height
related to the left vertical axis is the number of steps spent in
each  IOC cycle.  The  red  lines  in  these  two  figures  represent
the  dimension  variation  of  the  intersection  of  the  possible-
solution spaces whose value relates to the right vertical axis.

ΓΩh:iThe  result  in Fig. 1 shows  that  the  dimension  of 
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decreases in every step in each calculation cycle and that  the
maximum number of  steps in  one cycle  is  1.  Compared with
our  result,  the  dimension  of  the  possible-solution  spaces  in
[16], does not decrease continually. As a result, the number of
steps of one cycle for [16] in Fig. 2 is always larger than that
in our method.

e = ||q̂−q|| q̂
Figs. 3 and 4 show the recovery error of both methods cal-

culated by  where  denotes the estimation vector of
q.  From these two figures, it  is clear that the estimation error
of our method is minor.  Therefore,  our proposed method can
effectively improve the calculation speed while preserving the
recovery accuracy of IOC.  

B.  Simulation 2: When Jacobian is not Invertible
In Simulation 2,

 

xk+1 = Axk +Buk (55)

A =

 0.9 1.8 0
0.13 0.26 0
0.38 0.76 1

 B =0.0284 0.0142
0.0020 0.0010
0.0056 −0.0028


where A and B are  selected  as , 

.

Here,  the  system matrix, A,  does  not  satisfy  the  Jacobian’s
invertibility assumption, but it satisfies the Jacobian’s positiv-
ity assumption. In this case, [16] cannot be applied. The cost
function selected in the simulation is
 

V(x, t) =
∞∑

k=0

1
2

(xT
k Qxxk +uT

k Quuk) (56)

Qx
qx = [1,4,2]T Qu

qu = [3,1]T

q = [1,4,2,3,1]T

where  is  a  diagonal  matrix  with  its  diagonal  elements  as
vector ,  and  is  a  diagonal  matrix  with  its
diagonal  elements  as  vector .  Here,  we  suppose
that the norm of vector  selected as 5.5678 is
known prior.

U ≜ {uki ≥ −0.2 ∀i} uki uk

Moreover, the control-constraint problem is also considered:
 where  denotes the i-th element of 

Fig. 5 shows the calculation steps in every cycle, which is 1.
Here, similarly to the result obtained in Simulation 1, the vari-
ation in the dimension of the possible-solution spaces verifies
Theorem 1, and the variation in the dimension of the possible-
solution  spaces  after  the  activation  of  the  control  constraints
shows that the proposed algorithm is effective for handling the
control constraint problem.
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Fig. 5.     Steps performed in our method for Simulation 2 are shown here.
The meaning of the lines is the same as in Fig. 1.
 

Fig. 6 shows  the  estimation  error  in  this  simulation.  Even
when A is  rank  deficient  and  control  constraints  exist,  the
errors in all cycles are still extremely small, which shows that
the proposed method can effectively recover the required cost
weights with considerable accuracy.

Fig. 7 shows a comparison between the original trajectories
of system states and control inputs and the trajectories gener-
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Fig. 1.     Steps  performed  in  our  method  for  Simulation  1  are  shown  here.
The orange line shows the variation of the dimension of the possible-solution
space  during  the  IOC cycles.  When  the  dimension  decreases  to  one,  it  indi-
cates that the cost weights vector has been successfully calculated, and a new
IOC cycle starts. The blue cycles show the total number of steps taken in one
IOC cycle.
 

 

Steps performed in each cycle
Dimension of the possible-solution space

25

20

10

15

5

0
200 40 60 80 100

8

6

4

2

0

Steps in inverse optimal control

St
ep

s p
er

fo
rm

ed
 in

D
im

en
si

on
 o

f p
os

si
bl

e-
so

lu
tio

n 
sp

ac
e

ea
ch

 c
yc

le

 
Fig. 2.     Steps performed in method of [16] for Simulation 1 are shown here.
The meaning of the lines is the same as in Fig. 1.
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Fig. 3.     Recovery errors of Simulation 1 by our method are shown here. The
blue circles represent the recovery error in each IOC cycle.
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Fig. 4.     Recovery errors of Simulation 1 by [16] are shown here. The mean-
ing of the lines is the same as in Fig. 3.
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ated using the recovered cost weights. The red and blue lines
in  the  figure  are  identical,  indicating  that  the  recovered  cost
weights can be used to replicate the original optimal trajecto-
ries. This demonstrates the potential of our method to be fur-
ther applied in demonstration tasks.  

C.   Simulation  3:  Verification  of  SIOC  Under  Different  Condi-
tions

x0

rand(3,3) rand(3,2)
10× rand(3,1)

4.0312×10−15

In Simulation 3, we conducted a comprehensive evaluation
of  the  proposed  SIOC  method  under  different  initial  condi-
tions  and  system  dynamics.  Specifically,  we  simulated 1000
different linear systems with randomly generated initial states
( ) and system matrices (A and B). All system settings A and
B used in our simulations were randomly generated using the
MATLAB function  for A and  for B and
the initial states were generated using . For each
system, we applied the SIOC method and evaluated its perfor-
mance in recovering the cost weights. Fig. 8 shows the recov-
ery errors of the SIOC method performed with 1000 different
system  dynamics  and  initial  states.  The  results  demonstrate
that  the  recovery  errors  are  consistently  very  small  (average
error  of ),  indicating  the  effectiveness  of  our
method.  

D.  Simulation 4: When There Exists Noise
Due to the decaying property of the state sequence and the

stationary  property  of  the  measurement  noise,  the  signal-to-
noise ratio (SNR) is defined as
 

S NR = 10log
Tr[cov(

[xtFutF

]
)]

Tr[cov(
[
x̃tF
ũtF

]
)]

(57)

tFwhere  represents the time index at which the IOC calcula-

A ∈ R3×3 B ∈ R3×2

tion is terminated. To verify the effectiveness of our method,
we  performed  simulations  at  several  noise  levels.  In  simula-
tions at  each noise level,  we performed simulation 100 times
with  different  system dynamics.  Here,  we  performed simula-
tions on linear  systems with  and  randomly
selected using matlab function rand(). The initial state is ran-
domly  selected,  and  noises  at  different  SNRs  are  generated
following the standard Gaussian distribution.

S NR =

S NR

||ŝh−sh ||
||sh ||

Fig. 9 shows  the  comparison  results  between  our  method
and  that  in  [16]  with  values  of  20,  65,  94,  191,  and
238,  respectively.  There  are  100  results  in  comparison  study
of  each ’s  settings.  In  the  simulations,  the  estimation
error  is  evaluated  by  relative-estimation  error,  defined  as

.
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Fig. 9.     Comparison of our method (blue points) with the method in [16]
(red points) under noisy conditions. 1) SNR = 20, 65, 94, 191, 238; 2) There
are 100 simulation samples in each selection of SNR.
 

From Fig. 9, it is clear that in our method, the relative-esti-
mation  errors  decrease  along  with  the  increase  in  the  SNR,
indicating  that  this  noise-tackling  method  can  be  utilized  in
the  noise-free  case.  Moreover,  a  comparative  study  with  the
method  in  [16],  revealed  that  our  SIOC  method  considering
noises is more robust in each setting of SNR.

Therefore,  from Simulations  1  and  2,  it  is  verified  that  the
proposed method can solve the online IOC problem even for
the systems that are not applicable in [16]. Our method effec-
tively  improves  the  calculation  speed  of  IOC.  From  Simula-
tion  4,  it  is  evident  that  the  proposed  method can  effectively
tackle the noise problem, which is not considered in the previ-
ous online IOC study.  

VI.  Discussion
  

A.  Computation Complexity

O(3(n+n f )3+ (n+n f )n′2+ (n+n f )(n+n f +n′)2)
The computational complexity of our method in one step is

 in  the  noise-
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Fig. 6.     Recovery errors of Simulation 2 by our method are shown here. The
meaning of the lines is the same as in Fig. 3.
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Fig. 7.     Comparison  of  original  trajectories  (system  states  and  control
inputs) with the trajectories using recovered cost weights.
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Fig. 8.     Verification of SIOC under different conditions (1000 different sys-
tem dynamics and initial conditions).
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n′

O((n+
n f )3+m(n+n f )2)

free  case,  where  is  the  dimension  of  the  possible-solution
space and it decreases as the step number increases. The com-
putational complexity of our method does not contain horizon
K,  it is typically less than that in [15], wherein the horizon K
was  contained  in  the  computation-complexity  calculation.
Conversely,  the  computational  complexity  of  [16]  is 

 in one step.
We conducted simulations using 1000 different system set-

tings  and  initial  states,  and  compared  the  calculation  time  of
our method with that of the previous method. The results, pre-
sented  in Fig. 10,  show  that  while  our  method  has  a  slightly
longer  calculation time in  one step  than the  previous  method
[16]  on average,  it  is  more stable,  with  less  variability  in  the
calculation  time  across  the  different  system  settings  and  ini-
tial  states.  Notably, our method requires fewer computational
steps, and therefore, the choice of the method with lower total
computational complexity may depend on the specific case.
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Fig. 10.     Calculation time in one step under different conditions (1000 dif-
ferent system dynamics and initial conditions): Our method versus previous
method [16].
   

B.  Importance of the Sequential Calculation of the IOC Method
This  paper  proposed  a  sequential  inverse  optimal  control

IOC method  that  derives  the  conditions  of  the  possible-solu-
tion space and tackling method for noisy data.

The  first  advantage  of  SIOC is  that  it  saves  computational
time. This is a significant advantage for programs that require
real time computing.

Secondly,  there  is  no  assurance  that  the  cost  weights  will
remain constant across all the previously well-selected feature
functions while studying the complex dynamic movements. In
[31], the authors suggested a method for calculating the multi-
phase  cost  weights  based  on  window  shifts,  and  when  using
this method to study complex motions, the length of the win-
dow must be minimized to recover the cost weight with multi-
phase  changes  in  high  precision.  In  this  case,  our  SIOC
method can be used to reduce the length of the window.

Additionally,  the  high  calculation  speed  of  the  SIOC strat-
egy  helps  to  lessen  the  impact  of  noise.  Notably,  achieving
noise reduction in the analysis of the observations from differ-
ent  steps  is  challenging,  and  this  process  must  be  completed
for the calculation of each different IOC method. The impact
of noise increases with the accumulated data step by step. The
method proposed introduces a calculation method for the IOC
with  a  minimum  number  of  steps,  and  this  high  calculation
speed helps to reduce the effect of noisy data on the final cost-
weight estimates.  

C.  Future Work
Although the problem of sequential IOC has been solved in

this  study  considering  the  calculation  speed  and  noisy  data,
the  algorithm  still  requires  improvement  in  the  following
areas.

1) It is possible to further improve the noisy-tackling ability
in  the  sequential  IOC  method.  Since  this  method  has  a  high
convergence  speed,  we  can  start  an  IOC  calculation  cycle  at
each step and obtain time-series groups of solutions. By theo-
retically  analyzing  the  result  in  each  calculation  cycle  and
considering the effect of the multiphase cost weight, it may be
possible  to  further  enhance  the  precision  of  the  estimation
result.  We  will  also  address  the  matter  of  special  system
dynamics  in  real-world  application  examples  where  the  sys-
tem  states  exhibit  insensitivity  to  changes  in  cost  weights.
This  insensitivity  magnifies  the  effect  of  noise  on  the  accu-
racy of the IOC calculation in noisy scenarios.

2)  It  is  also  required  to  discuss  the  selection  of  the  feature
function.  To  analyze  the  complex  nature  behavior,  the  selec-
tion of  the  feature  function will  highly  affect  the  approxima-
tion results. Additionally, the aforementioned problem of mul-
tiphase  cost  weights  is  highly  related  to  the  selection  of  the
feature function.

3)  In  addition,  while  the  SIOC  method  proposed  in  this
study  solves  the  online  recovery  of  the  cost  function,  further
investigation  could  be  undertaken  to  develop  effective  and
efficient  algorithms  for  online  tuning  of  the  control  input,
especially  crucial  in  control  problems  where  minimizing  a
specific cost function is challenging or selecting suitable cost
weights poses difficulties.  

VII.  Conclusion

A  sequential  method  for  discrete-time  IOC  is  presented  in
this paper to realize the online estimation of cost  weights for
either  finite  or  infinite  horizon  optimal  control  in  cases  with
significant  data  noise.  This  method  calculates  the  possible-
solution space of the IOC and sequentially calculates the inter-
section of all solution spaces in each step. The conditions for
the  decrease  in  dimension  of  the  intersection  space  in  the
noise-free  case  are  clarified first.  When the dimension of  the
possible-solution  space  decreases  to  one,  the  remaining  vec-
tor in the intersection space is the required solution of the cost
weight  of  the  IOC.  In  the  noise  case,  an  adjusted  calculation
of the possible-solution space is proposed based on the analy-
sis of the noise effect. Finally, simulation results illustrate that
the  sequential  IOC algorithm is  effective,  has  a  high  conver-
gence speed, and can sequentially tackle the problem of noisy
data. More theoretical studies on the influences of the feature
function selection on the solution spaces should be conducted
for practical applications.  

Appendix
Proof of Theorem 1

ΓΩh:i−1 ⊆ ΓΦh(i) null(ΓΩh:i−1 ) ⊇ null(ΓΦh(i) )
ξ = [ξh · · · ξ j · · · ξi−1] ∈

RNz(i)×
∑i

j=h Nz( j)

Nz( j) ∀h ≤ j ≤ i
ΓΦh( j)

Proof: If ,  we have ,
indicating  that  a  full  rank  matrix 

,  exists,  which  satisfies  the  equation  below,
where  denotes the dimension of the null space
of :
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ξΩ̄h:i−1 = null(Φh(i))T (58)

Ω̄h:i−1 =


null(Φh(h))T

null(Φh(h+1))T

...

null(Φh(i−1))T

 .where 

It also means that
 

ξΩ̄h:i−1Φh(i) = 0Nz(i)×Np(i) (59)

Np(i) ≤ N Φh(i)
0Nz(i)×Np(i) ∈ RNz(i)×Np(i)

ξΩ̄h:i−1
Φh(i)

where  is the dimension of the vector space of .
 represents  the  zero  matrix.  Row  vec-

tor  space  of  is  an  orthogonal  complement  to  the  col-
umn vector space of .

M̄h: j M̄h: j ∀h ≤ j ≤ i−1
Here,  under  Assumption  1-1)  and  from  the  definition  of

, we know that  is invertible, it obtains
 

H jM̄−1
h: jΦh( j) = 0Nz(i)×Np(i).

Φh( j) = M̄h: jΘ j H j

Θ j

M̄−T
h: j HT

j
Φh( j)

ξo

Since  and  row  vector  space  of  is  the
orthogonal complement vector space of , it can get that col-
umn vector  space  of  matrix  is  the  null  space  of  col-
umn  vector  space  of .  Equation  (59)  can  be  satisfied  if
and only if there exists a nonzero matrix  satisfies
 

ξoΩ̄
′
h:i−1Θi = 0Nz(i)×Np(i) (60)

where
 

Ω̄′h:i−1 =



HhM̄h+1:i

...

H jM̄ j+1:i

...

Hi−1Mi


and
 

ξoΩ̄
′
h:i−1 = ξΩ̄h:i−1M̄h+1:i.

M̄h+1:iSince  is full rank, we have
 

rank(ξoΩ̄′h:i−1) = rank(ξΩ̄h:i−1M̄h+1:i) = rank(ξΩ̄h:i−1)

rank(Θi) = rank(Φh(i)).
ξΩ̄h:i−1

Φh(i)

Due to that  is an orthogonal complement to the col-
umn vector space of  that
 

rank(ξΩ̄h:i−1)+ rank(Φh(i)) = N

we have
 

rank(ξoΩ̄′h:i−1)+ rank(Θi) = N. (61)

ξoΩ̄
′
h:i−1

Θi ξs

From (60) and (61), it is known that the row vector space of
 is  an  orthogonal  complement  to  the  vector  space  of

, meaning that matrix , exists, which satisfies
 

[ξs Ii]



HhM̄h+1:i

...

H jM̄ j+1:i

...

Hi−1Mi

Hi


= 0Nz(i)×N (62)

Ii ∈ RNz(i)×Nz(i)where  is a unit matrix.

HhM̄h+1:i
...

H jM̄ j+1:i
...

Hi−1Mi
Hi


Nz(i)

Equation (62) also means that dimension of the null space of

the column vector space of  should be at least .

HiHere,  can be represented as
 

Hi =

[
H(i)1 H(i)2

H(i)3 H(i)4

]

=

 f̄ T
u(i−1) f̄ T

x(i) F̄T
u(i−1)+ f̄ T

u(i−1)F̄
T
x(i)

f̄ T
u(i) F̄T

u(i)

 (63)

H j M̄ j+1:i H jM̄ j+1:i ∀h ≤
j ≤ i−1
and  from  the  definition  of  and , 

 can be represented as
 

H jM̄ j+1:i =

[
H( j)1 H( j)2

H( j)3 H( j)4

]
(64)

where
 

H( j)1 = f̄ T
u( j−1) f̄ T

x( j) . . . f̄
T
x(i)

 

H( j)2 =F̄T
u( j−1)+

i∑
l= j

( f̄ T
u(l̄)

l−1∏
l̄= j−1

f̄ T
x(l̄−1))F̄

T
x(l)

 

H( j)3 = f̄ T
u( j) f̄ T

x( j+1) . . . f̄
T
x(i)

 

H( j)4 = F̄T
u( j)+

i∑
l= j+1

( f̄ T
u(l̄)

l−1∏
l̄= j

f̄ T
x(l̄−1))F̄

T
x(l).

Hi,Hi−1Mi, . . . ,HhM̄h+1:i
H(i)1 = H(i−1)3,H(i)2 = H(i−1)4 j > h
H( j)1 = H( j−1)3,H( j)2 = H( j−1)4

From the  structure  of ,  it  is  known
that  and for any , we always
have .

ξ̄
Equation  (62)  can  be  satisfied  if  and  only  if  there  exist  a

matrix  that can satisfy the equation below:
 [

ξ̄ Ii
]
H̄h:i = 0Nz(i)×Np(i) (65)

H̄h:i =



H(h)3 H(h)4
...

...
H( j)3 H( j)4
...

...
H(i−1)3 H(i−1)4
H(i)3 H(i)4


[ξ̄ Ii] = [ξ̄h · · · ξ̄ j · · ·

ξ̄i−1 Ii]
H̄h:i Ns(i)

where  and 

.  It  is also known that dimension of null space of col-
umn vectors in  should be at least .

H̄h:iHere, right hand side of  can be rewritten as one form as
 

H(h)4

...

H( j)4

...

H(i−1)4
H(i)4


= H̄uh:iH̄xh:i

CAO et al.: SEQUENTIAL INVERSE OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS 619 



where
 

H̄uh:i =



F̄T
u(h) f̄ T

u(h̄)
. . . . . . . . . f̄ T

u(h)
∏i−1

l̄=h
f̄ T
x( ¯l−1)

...
...

. . .
...

...
...

F̄T
u( j) 0 . . . f̄ T

u( j) . . . f̄ T
u( j̄)

∏i−1
l̄= j

f̄ T
x( ¯l−1)

...
...

...
...

. . .
...

F̄T
u(i−1) 0 . . . 0 . . . f̄ T

u( ¯i−1)

F̄T
u(i) 0 . . . 0 . . . 0



H̄xh:i =



I

F̄T
x(h)
...

F̄T
x( j)
...

F̄T
x(i−1)

[
ξ̄ I
]
H̄uh:iH̄xh:i = 0Nz(i)×n

and .  From (65),  it  is  known that  (65)  can  be

satisfied only if .

H̄uh:iH̄xh:i =


...

...

F̄T
u(i)

[
ξ̄ I
]
H̄uh:iH̄xh:i = 0Nz(i)×n [ξ̄ I]H̄uh:i = 0

Here,  since  is  not  a  zero  matrix,

 only happens when .
Based on the derivation above, it is known that

f̄u( j) ∀h ≤ j ≤ i−1a) When  are all full rank that
 

dim( f̄ T
u( j)) = m ∀h ≤ j ≤ i−1

dim(:)
F̄u(i)

H̄uh:i H̄uh:i

ξ̄ [ξ̄ I]H̄uh:i = 0Nz(i)×(n−h+1+m)

ξs ξ

where  represents  the  dimension  of  the  column  vector
space of the matrix, and  is full rank. From the structure of
matrix ,  is  also  full  rank,  indicating  that  there  exist
no  make .  Finally,  it  is  indicat-
ing that  let  (62)  is  not  satisfied and  let  (58)  is  not  satis-
fied. Therefore,
 

ΓΩh:i−1 ⊈ ΓΦh(i)

in this case.
dim( f̄ T

u( j)) < m ∀h ≤ j ≤ i−1 F̄u(i)

H̄uh:i

H̄uh:i

b) When  and  is  full  rank,
from the structure of matrix ,  dimension of null space of
column vector space of  satisfies
 

dim(null(H̄uh:i )) =
i−1∑
j=h

dim(null( f̄ T
u( j))). (66)

H̄h:i Ns(i) dim(H̄uh:i )
dim(H̄uh:i ) < Ns(i) ξ̄
ξs ξ

Since the dimension of the null space of the column vectors
in  should be at  least ,  when  calculated in
(66)  satisfies ,  make  (65)  is  not  satisfied.
Furthermore,  let  (62)  is  not  satisfied  and  let  (58)  is  not
satisfied. Therefore,
 

ΓΩh:i−1 ⊈ ΓΦh(i)

in this case. ■
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