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   Abstract—The paper  addresses  the  decentralized  optimal  con-
trol  and  stabilization  problems  for  interconnected  systems  sub-
ject to asymmetric information. Compared with previous work, a
closed-loop optimal solution to the control problem and sufficient
and  necessary  conditions  for  the  stabilization  problem  of  the
interconnected  systems  are  given  for  the  first  time.  The  main
challenge  lies  in  three  aspects:  Firstly,  the  asymmetric  informa-
tion  results  in  coupling  between control  and estimation  and fail-
ure  of  the  separation  principle.  Secondly,  two  extra  unknown
variables  are  generated  by  asymmetric  information  (different
information  filtration)  when  solving  forward-backward  stochas-
tic  difference  equations.  Thirdly,  the  existence  of  additive  noise
makes  the  study  of  mean-square  boundedness  an  obstacle.  The
adopted  technique  is  proving  and  assuming  the  linear  form  of
controllers and establishing the equivalence between the two sys-
tems with and without additive noise. A dual-motor parallel drive
system  is  presented  to  demonstrate  the  validity  of  the  proposed
algorithm.
    Index Terms—Asymmetric  information,  decentralized  control,  for-
ward-backward  stochastic  difference  equations,  interconnected  sys-
tem, stalibization.
  

I.  Introduction

INTERCONNECTED systems have been found widely in a
considerable quantity of fields and practical application sce-

narios,  such  as  smart  grids,  formation  flight,  sensor  network
and cyber-physical systems [1]–[4], which consist of numeri-

cal subsystems. To realize a common goal, subsystems exchan-
ge and share partial information through the network to make
an  individual  decision  where  communication  delay  occurs
inevitably due to the limited bandwidth and cache capacity of
nodes.  Owing to the information available to each subsystem
being  incomplete  and  different,  decentralized  control  with
asymmetric information has proven to be an effective control
scheme to achieve a desirable performance of the system.

F1 ⊆ F2 F1,F2

F1 , F2
F1 ⊈ F2

The decentralized control with asymmetric information is a
kind of control scheme where the decision-maker of each sub-
system  or  station  accesses  different  information  to  make  a
decision,  which  could  be  traced  back  to  team  decision  prob-
lem [5] and was further studied by Radner [6]. The decentral-
ized optimal control  problem with asymmetric information is
challenging  since  the  optimal  control  law  may  be  nonlinear
[7],  [8].  Paramount  attention  has  been  paid  to  decentralized
control problem over the past decades [9]–[16]. Just to name a
few,  [12]  provided  a  dynamic  program  for  the  decentralized
control  problem with  local  and remote  controllers  employing
the  approach  of  common  information.  In  [13],  decentralized
optimal control for a networked control system with asymmet-
ric  observations  was  studied  with  the  assumption  of  linear
controllers. The stabilizing solution was derived under decen-
tralized controllers for the multiplicative-noise stochastic sys-
tems  in  [14].  Nevertheless,  the  results  derived  in  the  afore-
mentioned  literature  mainly  pertain  to  the  decentralized  con-
trol  subject  to  special  asymmetric  information  structure,  e.g.,

, where  denote the information sets available to
two  controllers  of  the  system  respectively,  while  the  more
general  asymmetric  information  structure,  i.e.,  and

 has not been investigated.
Information  structure  may  determine  the  complexity  and

tractability  of  the  decentralized  optimal  control  problem  in
essence,  hence  playing  a  decisive  role,  as  mentioned  in  [7],
[8].  The  decentralized  control  with  a  more  general  informa-
tion structure where the relationship between the two informa-
tion sets available to two controllers does not belong to inclu-
sion has attracted lots of research and topics [17]–[22]. In par-
ticular,  with  a  periodic  sharing  information  pattern,  [19]
addressed  the  optimal  control  problem  and  proved  that  the
periodic  sharing  pattern  has  a  non-classical  separation  prop-
erty.  In  [20],  one  step  delayed  control  sharing  was  studied
applying the dynamic programming method.  In [21],  the dis-
tributed LQG problem with the varying communication delay
case was dealt with based on the information hierarchy graph.
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In [22],  optimal  control  law was derived for  a  class  of  lower
block triangular systems. Great progress has been made, how-
ever, most works mentioned above are involved in the finite-
horizon  optimal  control  problem  and  few  efforts  have  been
devoted  to  the  infinite-horizon  stabilization  problem  even
though it is a fundamental problem.

Given the discussion above, the decentralized control prob-
lem  subject  to  asymmetric  information  has  not  been  fully
explored,  which  makes  further  study  necessary.  We  are
inspired by the previous work [23] where the optimal control
policy  was  derived  using  a  decomposition  method  of  system
state and control input based on noise history with the control
weighting matrix positive definite. It is noted that the optimal
controllers  proposed  in  [23]  are  dependent  on  the  noise  his-
tory,  which  is  essentially  an  open-loop  control  and  hard  to
realize  from  the  perspective  of  implementation  due  to  the
unmeasurable  additive  noises.  Furthermore,  the  infinite-hori-
zon  stabilization  problem  was  not  taken  into  consideration
either.

To get a closed-loop optimal solution as well as a complete
stabilization  solution,  an  interconnected  system  subject  to
asymmetric information is considered in this paper, where the
state information of a subsystem is transmitted to another sub-
system with  one step  communication delay to  make the  con-
trol policy, whereas the control input does not share. This kind
of  model  derives  from  production  cases,  the  economic  dis-
patch  of  the  power  system  for  example.  The  whole  power
demand is distributed among the generating units, where each
unit (subsystem) has some local information on its own envi-
ronment  and  shares  information  through  the  network  with
time  delay  to  minimize  the  total  operating  cost.  Compared
with  [23],  for  the  finite-horizon  case,  the  solution  to  the  for-
ward-backward  stochastic  difference  equations  (FBSDEs)  is
presented  by  applying  the  stochastic  maximum  principle.
Based  on  the  solution,  we  obtain  closed-loop  optimal  con-
trollers  and  performance  in  terms  of  the  solution  to  the  Ric-
cati equation under the assumption that the control weighting
matrix  is  positive  semidefinite.  In  addition,  for  the  infinite-
horizon case, we show the system is mean-square bounded if
and only if the algebraic Riccati equation admits a unique pos-
itive definite solution.

In this paper, the problems of decentralized optimal control
and  stabilization  for  interconnected  systems  involving  asym-
metric  information  are  investigated.  The  main  challenge  lies
in threefold: The first is the coupling between control and esti-
mation  resulting  from  asymmetric  information  structure,
which  makes  the  classical  separation  principle  no  longer
applicable.  The  second  refers  to  finding  the  solution  to  the
FBSDEs.  Specifically,  the  information  available  to  two  con-
trollers  is  partial  because  of  one  step  communication  delay,
and  the  different  information  filtration  (asymmetric  informa-
tion) leads to two extra unknown variables when solving FBS-
DEs. The above two obstacles could be overcome by proving
that  the  asymmetric  information  structure  is  featured  by  the
partially nested information structure and thus a linear form of
the optimal controllers could be deduced. Thirdly, the study of
the  stabilization  problem  for  the  system  involving  additive

noise  is  challenging,  and  merely  a  sufficient  condition  could
be  derived  [24].  It  shall  be  dealt  with  by  constructing  an
equivalent  relationship  between  the  systems  involving  and
without additive noise.

The contribution of the work is summarized below. A com-
plete solution to the problem of decentralized optimal control
and  stabilization  for  the  interconnected  system  subject  to
asymmetric information is provided for the first time. For the
finite-horizon  case,  the  equivalent  conditions  for  the  unique
solvability  of  the  optimal  control  problem  with  asymmetric
information are obtained by adopting the stochastic maximum
principle. Based on the solution of the FBSDEs, the necessary
and sufficient conditions for the decentralized optimal control
problem are given, as well as the analytical expression for the
closed-loop optimal controllers in terms of the solution to the
proposed  Riccati  equation.  For  the  infinite-horizon  case,  the
necessary  condition  of  the  mean-square  stabilization  is  pre-
sented for the system without additive noises. On the basis of
the results and relationship between the two systems, the nec-
essary and sufficient conditions for the mean-square bounded-
ness of the system with additive noise are attained.

The remainder of the paper is structured as follows: In Sec-
tion  II,  the  finite-horizon  decentralized  optimal  control  prob-
lem is studied. The stabilization and optimal control problem
for the infinite-horizon are investigated in Section III. Numer-
ical examples are provided in Section IV. Concluding remarks
are presented in Section V. Relevant proofs are detailed in the
appendices.

Rn

∆ > 0 ≥ 0
∆

E
Z(k) σ
zk Tr(·) A†

0i× j
i× j 0

F � blkdiag{A,B,C,D}

F

The following notations and definitions will be used. Nota-
tions:  denotes the n-dimensional Euclidean space. I means
the unit matrix with the appropriate dimension.  (or )
denotes that  is a positive definite (or positive semidefinite)
matrix.  stands  for  the  mathematical  expectation  operator.

 denotes the -algebra generated by the random variable
.  means  the  trace  of  a  matrix,  and  denotes  the

Moore-Penrose  inverse  of  matrix A and A' represents  the
transpose  of  the  matrix A.  represents  a  matrix  of  dimen-
sions  with  all  zero  elements  and  means  a  zero  matrix
with  compatible  dimensions.  stands
for  a  block  diagonal  matrix  created  by  aligning  the  input
matrices A, B, C, D along the diagonal of .  

II.  Finite Horizon Case
  

A.  Problem Formulation
The system to be studied is given by

  x1
k+1

x2
k+1

 =  A11 A12

A21 A22

  x1
k

x2
k


+

 B1 0
0 B2

  u1
k

u2
k

+  ω1
k

ω2
k

 (1)

xi
k ∈ R

ni ui
k ∈ R

mi ωi
k ∈ R

ni

i Ai j,Bi

xi
0

xi
0 ∼ N(x̄i

0,Σ
i
0),Σi

0 > 0
ωi

k ωi
k ∼ N(0,W i) ωi

k

where ,  and  respectively  are  state,
control input and process noise of the th subsystem.  are
constant matrices with compatible dimensions. Initial state 
is  a  Gaussian  variable  with .  The  noise

 is  Gaussian  process with .  Moreover,  is
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ω
j
k i , j xi

0 ωi
krelated  with  for ;  and  are  independent  of  each

other.
By expanding the dimension of state and noise respectively,

system (1) could be rewritten as
 

xk+1 = Axk + B̄1u1
k + B̄2u2

k +ωk (2)

A =
[

A11 A12
A21 A22

]
, B̄1 =

[
B1

0n2×m1

]
, B̄2 =

 0n1×m2

B2

 ,
xk =

 x1
k

x2
k

 ωk =

 ω1
k

ω2
k


ωk ∼ N(0,W) x0 ∼ N(x̄0,

Σ0),Σ0 > 0

where   

, . The noise and initial state of expan-

ded  dimension  respectively satisfy , 
.

The associated cost functional is of the form
 

J = E
{ N∑

k=0

[
x′kQxk + (u1

k)′R1u1
k + (u2

k)′R2u2
k

]
+ x′N+1HxN+1

}
(3)

Q ≥ 0,R1 ≥ 0,R2 ≥ 0 H ≥ 0where  and  are  the  weighting
matrices with compatible dimensions.

Ri

R > 0

Remark 1: It should be emphasized that the control weight-
ing  matrix  in  the  cost  functional  (3)  is  positive  semidefi-
nite, which is a weaker condition than that of the work in [23]
where the assumption  was made.

In the interconnected system (2), the state of a subsystem is
transmitted to another subsystem through the network connec-
tion with  one step time required.  Thus the information avail-
able to two controllers (subsystems) is as follows:
 

u1
k :
{
x1

0, . . . , x
1
k−1, x

1
k , x

2
0, . . . , x

2
k−1

}
u2

k :
{
x2

0, . . . , x
2
k−1, x

2
k , x

1
0, . . . , x

1
k−1

}
.

We introduce the following information sets:
 

F c
k = {x0, . . . , xk−1} (4)

 

F 1
k =
{
x0, . . . , xk−1, x1

k

}
=
{
F c

k , x
1
k

}
(5)

 

F 2
k =
{
x0, . . . , xk−1, x2

k

}
=
{
F c

k , x
2
k

}
. (6)

Remark  2: In  this  paper,  we  assume  there  exists  one  step
communication  delay  to  guarantee  the  information  propaga-
tion  is  no  slower  than  the  dynamics  propagation  through  the
plant.  Actually,  such  an  assumption  of  one  step  communica-
tion delay is commonly found in previous research [20], [22].

F 1
k u1

k F 2
k

u2
k

Problem 1: Find -measurable controller  and -mea-
surable controller  to  minimize the cost  functional  (3)  sub-
ject to system (2).

F i
k−1 ⊂ F

j
k

Remark  3: Note  that  the  proposed  information  structure  is
characterized by .  It  conforms to  a  partially  nested
information  pattern,  which  indicates  that  the  optimal  control
policy is linear (see Definition 3 and Theorem 2 in [25]).

Remark  4: The  problem  studied  in  this  paper  is  different
from the  previous  works  [23],  [26].  In  [26],  the  system with
uncorrelated  subsystem  noises  was  dealt  with,  however,  the
results could not be extended to the case with correlated sub-
system  noises.  By  contrast,  we  remove  the  assumption  that

subsystem  process  noises  are  uncorrelated.  Compared  with
[23], we aim to find the optimal closed-loop solution with the
relaxer condition rather than an open-loop solution.  

B.  Equivalent Conditions of the Solvability of Problem 1
In  this  section,  stochastic  maximum principle  is  applied  to

(2) and (3) to transform the solvability of the Problem 1 into
that of the FBSDEs.

Lemma 1: Assume Problem 1 could be solved uniquely, the
optimal controllers meet the following equations:
 

0m1×1 = E[B̄′1λk |F 1
k ]+R1u1

k (7)
 

0m2×1 = E[B̄′2λk |F 2
k ]+R2u2

k (8)
λkwhere  satisfies

 

λk−1 = E[A′λk |F 1
k ,F

2
k ]+Qxk (9)

 

λN = HxN+1. (10)
Conversely,  if  FBSDEs  (2)  and  (7)−(10)  admit  a  unique

solution, then Problem 1 could be solved uniquely.
Proof: The  details  of  the  proof  are  omitted  here,  which  is

similar to [27], [28]. ■
u1

k u2
k

F c
k = F

1
k ∩F

2
k

u1
k u2

k

It is evident that the information sets available to  and 
have  an  interaction,  that  is, ,  which  indicates
that  and  are related to each other. To make the solvabi-
lity  of  the  FBSDEs easier  and obtain  the optimal  controllers,
the equivalent FBSDEs are obtained via the following defini-
tions:
 

û1
k = E[u1

k |F
c
k ], ũ1

k = u1
k − û1

k (11)
 

û2
k = E[u2

k |F
c
k ], ũ2

k = u2
k − û2

k . (12)
Obviously, we have that

 

E[ũ1
k |F

1
k ] = ũ1

k , E[ũ2
k |F

2
k ] = ũ2

k . (13)
And system (2) can be further transformed as

 

xk+1 = Axk +Bûk + B̄1ũ1
k + B̄2ũ2

k +ωk (14)

B =
[
B̄1 B̄2

]
ûk =

 û1
k

û2
k

with , .

Lemma 2: Problem 1 is uniquely solvable if and only if the
FBSDEs below are uniquely solvable:
 

0m×1 = E[B′λk |F c
k ]+Rûk (15)

 

0m1×1 = E[B̄′1λk |F 1
k ]−E[B̄′1λk |F c

k ]+R1ũ1
k (16)

 

0m2×1 = E[B̄′2λk |F 2
k ]−E[B̄′2λk |F c

k ]+R2ũ2
k (17)

R = blkdiag{R1,R2} λkwhere ,  is as (9) and (10).

F c
k

Proof: In  view of  Lemma 1,  the key to  verify Lemma 2 is
establishing the equivalence of (7), (8) and (15)−(17). Taking
conditional  expectation  on  both  sides  of  (7)  and  (8)  with
regard to , it follows:
 

0m1×1 = E[B̄′1λk |F c
k ]+R1û1

k (18)
 

0m2×1 = E[B̄′2λk |F c
k ]+R2û2

k . (19)
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û1
k û2

kEquation (15) could be obtained by augmentating  and .
Then subtracting (18) from (7), we have (16). Similarly, sub-
tracting  (19)  from  (8),  (17)  follows.  Therefore,  (7)  and  (8)
could be equivalently represented as (15)−(17) and Lemma 2
holds. ■  

C.  Main Results
The  major  results  shall  be  presented  in  three  steps  in  this

section: deduce the feedback forms of the controllers, give the
optimal estimation and demonstrate the solution to Problem 1.
The first part is shown now.

ûc
k ũ1

k ũ2
k

ûc
k

F c
k x
λ ûc

k
E
[
xk |F c

k

]

As mentioned in Remark 3, the optimal controllers we aim
to  find  are  in  linear  forms.  To  this  end,  the  linear  feedback
forms of ,  and  will be deduced based on Lemma 2 and
the projection principle, respectively. Firstly, from (15), the 
is -measurable.  Coupled  with  the  relationship  between 
and  presented  in  (10),  it  is  inferred  that  is  in  the  feed-
back form of , i.e.,
 

ûk = KkE
[
xk |F c

k

]
. (20)

Secondly, by virtue of the projection principle, we have
 

E[B̄′1λk |F 1
k ] = E[B̄′1λk |F c

k ]+Ξ1
k

{
x1

k −E
[
x1

k |F
c
k

]}
E[B̄′2λk |F 2

k ] = E[B̄′2λk |F c
k ]+Ξ2

k

{
x2

k −E
[
x2

k |F
c
k

]}
Ξi

k = E
[
B̄′iλk
{
xi

k − E
[
xi

k |F
c
k

] }′]E[{xi
k −E

[
xi

k |F
c
k

] }{
xi

k −
E
[
xi

k |F
c
k

] }′]−1
, i = 1,2. ũi

k

xi
k −E

[
xi

k |F
c
k

]
where 

 Along with (16) and (17), it implies 
could  be  expressed  as  the  feedback  form  of  the  innovation
process , i.e.,
 

ũ1
k = K1

k

{
x1

k −E
[
x1

k |F
c
k

]}
(21)

 

ũ2
k = K2

k

{
x2

k −E
[
x2

k |F
c
k

]}
. (22)

Kk Ki
k

Consequently,  we  can  conclude  from  (20)−(22)  the  key  to
obtain  optimal  controllers  is  to  get  feedback  gain  and 
and related iterative process of states estimated by the partial
information (4)−(6).

E
[
xk |F c

k

]
, E
[
xi

k |F
c
k

]
, E
[
xk |F i

k

]
E
[
xi

k |F
i
k

]
xi

k =

Iixk, (I1 = [ In1 0n1×n2 ], I2 = [ 0n2×n1 In2 ])
xk xi

k

Now  we  are  in  a  position  to  present  iterative  process  of
 and .  Since 

,  we  give  the
estimation of augmented state  instead of  for simplicity.
 

x̂c
k+1/k+1 = E[xk+1|F c

k+1]

= Axk +Bûk + B̄1ũ1
k + B̄2ũ2

k (23)
 

x̃c
k+1/k+1 = xk+1− x̂c

k+1/k+1 (24)

x̂c
0/0 = x̄0.with initial value 

 

x̂k+1/k = E[xk+1|F 1
k ]

= Ax̂k/k +Bûk + B̄1ũ1
k + B̄2E

[
ũ2

k |F
1
k

]
= (A+ B̄1K1

k I1+ B̄2K2
k I2)x̂k/k

+ (BKk − B̄1K1
k I1− B̄2K2

k I2)x̂c
k/k (25)

 

ˆ̂xk+1/k = E[xk+1|F 2
k ]

= A ˆ̂xk/k +Bûk + B̄1E
[
ũ1

k |F
2
k

]
+ B̄2ũ2

k

= (A+ B̄1K1
k I1+ B̄2K2

k I2) ˆ̂xk/k

+ (BKk − B̄1K1
k I1− B̄2K2

k I2)x̂c
k/k. (26)

The estimation error covariance is as follows:
 

E[(xk+1− x̂c
k+1/k+1)(xk+1− x̂c

k+1/k+1)′]

= E
{
[(Axk +Bûk + B̄1ũ1

k + B̄2ũ2
k +ωk)

− (Axk +Bûk + B̄1ũ1
k + B̄2ũ2

k)]

× [(Axk +Bûk + B̄1ũ1
k + B̄2ũ2

k +ωk)

− (Axk +Bûk + B̄1ũ1
k + B̄2ũ2

k)]′
}
=W. (27)

As shown in Lemma 2, to solve Problem 1 is converted into
solving  FBSDEs  (9),  (10),  (14)−(17).  To  get  the  solution  to
FBSDEs and derive optimal closed-loop feedback gain explic-
itly, we introduce the following two backward recursion equa-
tions one of which is a Riccati equation:
 

Pk = A′Pk+1A+K′kΥkKk +Q (28)
 

P̃k = A′Pk+1A+K′kΥkK̃k +Q (29)
where
 

Kk = −Υ−1
k Mk

K̃k = blkdiag{K1
k ,K

2
k }

Ki
k = −(Υi

k)−1Mi
k, (i, j = 1,2&i , j)

Υk = B′Pk+1B+R

Υi
k = B̄′i Pk+1B̄i+Ri

Mk = B′Pk+1A

Mi
k = B̄′i Pk+1(A+ B̄ jK

j
k I j)I

†
i

(30)

PN+1 = P̃N+1 = Hwith terminal values .
The solution to Problem 1 is shown as follows.

Υk

Υi
k k = N, . . . ,0

Theorem 1: Problem 1 has a  unique solution if  and only if
the  difference  equations  (28)−(30)  are  well  defined,  i.e., 
and  are invertible for . Under the situation, the
associated optimal controllers are given by
 

ũ1
k = − [I 0]Υ−1

k Mk x̂c
k/k − (Υ1

k)−1M1
k (x1

k − x̂1c
k/k) (31)

 

ũ2
k = − [0 I]Υ−1

k Mk x̂c
k/k − (Υ2

k)−1M2
k (x2

k − x̂2c
k/k) (32)

Υk,Υ
i
k,Mk Mi

kwhere ,  and  are as in (30).  And the solution to
FBSDEs satisfies the following relationship:
 

λk−1 = Pk x̂c
k/k + P̃k(xk − x̂c

k/k). (33)
Moreover, the associated performance is as

 

J∗N = E[x′0P0 x̂c
0/0+ x′0P̃0(x0− x̂c

0/0)]+
N∑

k=0

Tr[WP̃k+1]. (34)

Proof: Please see Appendix A. ■
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Remark  5: Differently  from  [23]  which  derived  an  open-
loop optimal  solution using a  decomposition method for  sys-
tem state and control input based on noise history, Theorem 1
presents  a  closed-loop  optimal  solution  to  finite-horizon
decentralized control problem subject to asymmetric informa-
tion by applying the stochastic maximum principle. It is noted
that the stochastic maximum principle, an effective and pow-
erful  tool  in  optimal  control  theory,  is  widely  employed  to
address optimization problems, see [13], [27], [28]. Moreover,
the infinite-horizon stabilization problem will be dealt with in
the next section, while it was not considered in [23].  

III.  Stabilization Problem and Infinite Case
  

A.  Problem Formulation
The  infinite-horizon  stabilization  problem  will  be  investi-

gated  in  this  section.  To  begin  with,  the  system  (2)  without
additive noise is  considered.  Thus,  the system studied can be
expressed as
 

xk+1 = Axk + B̄1u1
k + B̄2u2

k (35)

x0
x̄0 Σ0

where  the  initial  state  is  a  Gaussian  random  vector  with
mean and covariance  and ,  respectively.  The  cost  func-
tional is given as
 

J = E
∞∑

k=0

[
x′kQxk + (u1

k)′R1u1
k + (u2

k)′R2u2
k

]
. (36)

x̂c
k/k (xi

k − x̂ic
k/k)

Remark  6: It  should  be  emphasized  that  for  the  case  with-
out  additive  noise,  the  and  to  be  stated  below
are reduced respectively to:
 x̂c

k/k = xk

xi
k − x̂ic

k/k = 0.
(37)

Firstly, we introduce two definitions.
ui

k
limk→∞ E(x′k xk) = 0

x0

Definition 1: Without , the system (35) is said to be mean-
square  stable  if  it  holds  that  for  any  ini-
tial value .

F 1
k−1 u1

k = Γ1 x̂c
k/k −L1(x1

k − x̂1c
k/k)

F 2
k u2

k = Γ2 x̂c
k/k −L2(x2

k − x̂2c
k/k),k ≥ 0

Γ1 Γ2 L1 L2

x0

Definition 2: We call  system (35)  mean-square stabilizable
if there exists -measurable  and

-measurable  with constant
matrices , ,  and ,  the  closed-loop  system  of  (35)
could be asymptotically mean-square stable for any initial val-
ues .

xk+1 = Axk + B̄1u1
k+

B̄2u2
k ,yk = Dxk

N ≥ n yk = 0,a.s. ∀0 ≤ k ≤ N⇒ x0 = 0

Definition  3: The  following  system: 
 or (A, D) is called exactly observable if for any

, 
Then  two  standard  assumptions  are  made  below.  The  first

guarantees the existence of unique pair of controllers, and the
second is a standard assumption for the mean-square stabiliza-
tion problem [29]:

R1 > 0 R2 > 0 Q = D′D ≥ 0Assumption 1: ,  and .
(A,Q1/2)Assumption 2:  is exactly observable.

Before the main problem and results are given, the Lemma
3 is shown.

Pk P̃k K̃k Ki
k Υk Υ

i
k Mk Mi

kFor  convenience, , , , , , , ,  in

Pk(N) P̃k(N) K̃k(N) Ki
k(N)

Υk(N) Υi
k(N) Mk(N) Mi

k(N) N
(28)−(30)  are  rewritten  as , , , ,

, , ,  to  make  the  time  horizon 
explicit for the finite-horizon case.

Lemma 3: With Assumptions 1 and 2, if there exist stabiliz-
ing controllers to make the system (35) mean-square stabiliz-
able, the algebraic Riccati equation (38) admits a unique posi-
tive definite solution P
 

P = A′PA+K′ΥK +Q (38)
 

P̃ = A′PA+K′ΥK̃ +Q (39)
where
 

K = −Υ−1M

K̃ = blkdiag{K1,K2}

Ki = −(Υi)−1Mi, (i, j = 1,2 & i , j)

Υ = B′PB+R

Υi = B̄′i PB̄i+Ri

M = B′PA

Mi = B̄′i P(A+ B̄ jK jI j)I
†
i .

(40)

Proof: Please see Appendix B. ■
Remark 7: Noting that since the additive noise is not consid-

ered for the system here, the algebraic equations (38)−(40) in
Lemma 3 are reduced to (38) and (41).
 

K = −Υ−1M

Υ = B′PB+R

M = B′PA.

(41)

Next  we  will  investigate  the  boundedness  problem  of  the
system (2). The associated performance is given by
 

J̃ = lim
N→∞

1
N

N∑
k=0

E[x′kQxk + (ûk)′Rûk

+ (ũ1
k)′R1ũ1

k + (ũ2
k)′R2ũ2

k]. (42)

Problem 2 to be investigated is shown below.
F 1

k u1
k

F 2
k u2

k

Problem 2: Find a pair of controllers -measurable  and
-measurable  to  make  system  (2)  mean-square  bounded

and to minimize cost functional (42).  

B.  Solution to Problem 2
The main results are presented in the following theorem.
Theorem 2: Under  Assumptions  1  and  2,  the  system (2)  is

mean-square bounded if and only if there exists a unique posi-
tive definite solution P to the algebraic equation (38).  In this
case, the stabilizing controllers satisfy
 

u1
k = − [I 0]Υ−1Mx̂c

k/k − (Υ1)−1M1(x1
k − x̂1c

k/k) (43)
 

u2
k = − [0 I]Υ−1Mx̂c

k/k − (Υ2)−1M2(x2
k − x̂2c

k/k). (44)

Moreover,  the  stabilizing  controllers  could  minimize  the
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cost functional (42) which is calculated as
 

J∗ = E[x′0Px̂c
0/0+ x′0P̃(x0− x̂c

0/0)]. (45)
Proof: Please see Appendix C. ■  

IV.  Numerical Examples

Consider  a  dual-motor  parallel  drive  system as  depicted  in
Fig. 1.  The  dynamics  of  a  single  motor  system  can  be
described as
 

Jθ̈ = −((kv+∆kv)θ̇+ (kc+∆kc)sign(θ̇))+bu−Td (46)
J, θ,kv kc

sign() b Td
∆kc ∆kv

where  and  denote  inertia  moment,  position  output,
viscous  friction  coefficient  and  Coulomb  friction  coefficient,
respectively.  is signum function,  is control gain,  is
external disturbance, and  and  are parametric perturba-
tions.
 

Subsystem 1

Controller 1

Coupling
and load

{x0
1, x1

1, ..., x1
k − 1}

{x0
2, x1

2, ..., x2
k − 1}

Motor 1 Motor 2

Controller 2

Subsystem 2

θk
1 θk

2

 
Fig. 1.     Overview of dual-motor drive system.
 

A, B̄1 B̄2

In  this  system,  the  dual-motor  should  achieve  the  goal  of
tracking  a  specified  rotational  angle  while  ensuring  that  the
velocities  of  both motors  tend to  0.  Thus,  a  linearized model
gives  a  sufficient  description  of  the  system  behavior  with
these conditions. The discrete-time model for a dual-motor is
given as (2) through linearing and one step forward discretiza-
tion to (46). The matrices  and  are detailed as
 

A =


1 Ts 0 0
γ1 δ1 γ1 0
0 0 1 Ts

γ2 0 γ2 δ2

 , B̄1 =


0

ku1

0
0

 , B̄2 =


0
0
0

ku2


γi = −Tskr/Ji, δi = −Tskv/Ji+1, (i = 1,2), Ts

xk = [ (∆θ1k )′ (ν1k)′ (∆θ2k )′ (ν2k)′ ]′

∆θik = θ
i
k − θd θik θd

νik

xi
k = [ (∆θik)′ (νik)′ ]′

where   is the sam-
pling  time.  The  state ,
where  is  tracking deviation,  and  are  posi-
tion  output  and  desired  rotational  angle.  As  shown  in Fig. 1,
the  two  motors  are  installed  facing  each  other,  thus  the  two
motors  rotate  in  opposite  directions.  is  the  velocity  of  the
ith  motor,  and  the  corresponding  states  for  both  subsystems
are .

θd = 0 rad, Ts = 0.01 s, γ1 = −0.0526,

The  objective  of  this  paper  is  to  design  a  pair  of  optimal
controllers  to  achieve  position  tracking  and  make  velocities
of  both  motors  tend  to  0.  The  associated  parameters  referred
to  [30]  are  as  follows:  

γ2 = −0.0577, δ1 = 0.993, δ2 = 0.9923, ku1 = 0.4509, ku2 =

0.4308, N = 1000, x̄i
0 =
[

0 0
]′
, Σi

0 =

[
1 0
0 1

]
, W =

1 0 1.2 0
0 1 0 1.2

1.2 0 1.44 0
0 1.2 0 1.44

×10−3

Q =


10 0 0 0
0 5 0 0
0 0 10 0
0 0 0 5

 , R =
[

1 0
0 1

]

  

  

.  Set  the  weighting  matrices

.

∆θ1∗k ∆θ2∗k
∆θ1k ∆θ2k

The velocities and tracking deviations of the two motors are
shown in Fig. 2 and 3, respectively. It can be seen from Fig. 2
that  the  regulated  velocities  of  the  two  motors  tend  to  0  as
expected by applying the optimal controllers in Theorem 2. As
seen from Fig. 3,  and  are regulated tracking devia-
tions,  while  and  are  the  tracking  deviations  without
control.  It  shows  that  the  regulated  position  keeps  gradually
around the desired position and outperforms the case without
control,  which  indicates  that  the  proposed  control  strategy  is
effective.
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k
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V
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)

νk
1

vk
2

 
Fig. 2.     Velocities of the two motors.

 
  

V.  Conclusion

The  decentralized  optimal  control  and  stabilization  prob-
lems for  interconnected systems subject  to  asymmetric  infor-
mation have been investigated. Firstly, employing the stochas-
tic maximum principle, an equivalent solvability condition for
the  problem  of  optimization  has  been  presented  in  terms  of
FBSDEs.  Based  on  the  equivalence,  a  complete  solution,  the
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Fig. 3.     Comparison of tracking deviations with and without control.
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necessary and sufficient conditions and an closed-loop explicit
form  of  controllers,  has  been  obtained  for  the  finite-horizon
case.  Furthermore,  under  standard  assumptions,  it  has  been
shown  that  the  system  is  mean-square  bounded  for  the  infi-
nite-horizon case if and only if the algebraic Riccati equation
admits  a  unique  positive  definite  solution.  In  the  future,  our
work  will  be  extended  to  the  multiplicative  noises  model,
interconnected systenms with d-step delayed information shar-
ing model and a large-scale system consisting of multi-subsys-
tem with d-step delay.  

Appendix A
Proof of Theorem 1

Υk,Υ
1
k Υ2

k
k = 0, . . . ,N

Using Lemma 2,  we will  show that  (15)−(17) are uniquely
solvable  if  and  only  if  and  are  invertible  for

 by induction.
For k = N, from (10), (14), and (15), we have

 

0m×1 = E[B′λN |F c
N]+RûN

= E[B′H(AxN +BûN + B̄1ũ1
N + B̄2ũ2

N +ωN)|F c
N]

+RûN

= (B′HB+R)ûN +B′HAx̂c
N/N

= ΥN ûN +MN x̂c
N/N . (47)

ΥN

KN KN = −Υ−1
N MN ûN

ûN = −Υ−1
N MN x̂c

N/N

From  Lemma  2,  we  could  obtain  that  (15)  for k = N is
uniquely solvable  if  and only if  is  invertible.  Along with
(20),  is  calculated  as .  Thus,  could  be
derived as .

In virtue of (16) and (21), we have
 

0m1×1 = E[B̄′1λN |F 1
N]−E[B̄′1λN |F c

N]+R1ũ1
N

= E[B′H(AxN +BûN + B̄1ũ1
N + B̄2ũ2

N +ωN)|F 1
N]

−E[B′H(AxN +BûN + B̄1ũ1
N + B̄2ũ2

N

+ωN)|F c
N]+R1ũ1

N

= (B̄′1HB̄′1+R1)ũ1
k

+ (B̄′1HA+ B̄′1HB̄′2K2
N I2)(x̂N/N − x̂c

N/N) (48)
 

= Υ1
N K1

N I1(x̂N/N − x̂c
N/N)+M1

k (x̂N/N − x̂c
N/N). (49)

Υ1
N (x̂N/N−

x̂c
N/N) K1

N = −(Υ1
k)−1M1

k ũ1
N = −(Υ1

N)−1×
M1

N(x1
N − x̂1c

N/N)

From (48), we derive that (16) is uniquely solvable for k = N
if  and  only  if  is  invertible.  (49)  holds  for  any 

,  hence  we  get  and 
.

Similarly, using (17) and (22), it follows:
 

0m2×1 = E[B̄′2λN |F 2
N]−E[B̄′2λN |F c

N]+R2ũ2
N ,

= E[B′H(AxN +BûN + B̄1ũ1
N + B̄2ũ2

N +ωN)|F 2
N]

−E[B′H(AxN +BûN + B̄1ũ1
N + B̄2ũ2

N

+ωN)|F c
N]+R1ũ1

N

= (B̄′2HB̄′2+R2)ũ2
k

+ (B̄′2HA+ B̄′2HB̄′1K1
N I1)( ˆ̂xN/N − x̂c

N/N) (50)
 

= Υ2
N K2

N I2( ˆ̂xN/N − x̂c
N/N)+M2

k ( ˆ̂xN/N − x̂c
N/N). (51)

Υ2
N ( ˆ̂xN/N−

x̂c
N/N) K2

N = −(Υ2
k)−1M2

k ũ2
N = −(Υ2

N)−1×
M2

N(x2
N − x̂2c

N/N)

From (50), we derive that (17) is uniquely solvable for k = N
if  and  only  if  is  invertible.  (50)  holds  for  any 

,  hence  we  get  and 
.

λN−1Subsequently,  the  will  be  calculated.  Using  (9),  we
obtain that
 

λN−1 = E[A′λN |F 1
N ,F 2

N]+QxN ,

= E[A′H(AxN +BûN + B̄1ũ1
N + B̄2ũ2

N

+ωN)|F 1
N ,F 2

N]+QxN

= (A′HA+Q+A′HBKN)x̂c
N/N

+ (A′HA+Q+A′HBK̃N)(xN − x̂c
N/N)

= PN x̂c
N/N + P̃N(xN − x̂c

N/N). (52)

k = n+1, . . . ,N
To complete the induction, we assume the following asser-

tions hold for . Namely, we assume

Υk Υi
k

1) Equations (15)−(17) are uniquely solvable if  and only if
 and  are invertible;
λk−12)  is of the form (33).

Then we shall  prove that the above assertions still  hold for
k = n.

Substituting (9) and (14) into (15), we have
 

0m×1 = E[B′λn|F c
n ]+Rûn,

= E[B′Pn+1 x̂c
n+1/n+1

B′P̃n+1(xn+1− x̂c
n+1/n+1)|F c

n ]+Rûn,

= (B′Pn+1B+R)ûn+B′Pn+1Ax̂c
n/n,

= Υnûn+Mn x̂c
n/n. (53)

Υn
ûn

From  (53),  the  solvability  of  (15)  for k = n is  that  is
invertible, thus  in (31) could be verified.

ui
kNext  we  will  calculate .  Using  an  argument  similar  to

(48)−(51), it follows:
 

0m1×1 = E[B̄′1λN |F 1
N]−E[B̄′1λN |F c

N]+R1ũ1
N

= (B̄′1HB̄′1+R1)ũ1
k + (B̄′1HA

+ B̄′1HB̄′2K2
N I2)(x̂N/N − x̂c

N/N) (54)
 

= Υ1
N K1

N I1(x̂N/N − x̂c
N/N)+M1

k (x̂N/N − x̂c
N/N) (55)

 

0m2×1 = E[B̄′2λN |F 2
N]−E[B̄′2λN |F c

N]+R2ũ2
N

= (B̄′2HB̄′2+R2)ũ2
k + (B̄′2HA

+ B̄′2HB̄′1K1
N I1)( ˆ̂xN/N − x̂c

N/N)

(56)

 

= Υ2
N K2

N I2( ˆ̂xN/N − x̂c
N/N)+M2

k ( ˆ̂xN/N − x̂c
N/N). (57)

Υi
N ũ1

k ũ2
k

From (54) and (56), the solvability of (16) and (17) for k = n
is that  is invertible.  and  are obtained as the form of
(55)−(57).

λn−1Further,  will be given from (9), 
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λn−1 = E[A′λn|F 1
n ,F 2

n ]+Qxn

= E[A′Pn+1 x̂c
n+1/n+1+A′P̃n+1(xn+1

− x̂c
n+1/n+1)|F 1

n ,F 2
n ]+Qxn

= (A′Pn+1A+Q+K′nΥnKn)x̂c
n/n

+ (A′Pn+1A+Q+K′nΥnK̃n)(xn− x̂c
n/n)

= Pn x̂c
n/n+ P̃n(xn− x̂c

n/n)

which is the same as (33). Here ends the induction.

Υk Υi
k

Υk Υi
k k = N, . . . ,0

In  brief,  the  uniquely  solvability  of  (15)−(17)  is  trans-
formed  into  the  invertibility  of  and .  Then  employing
Lemma 2, we conclude that Problem 1 has a unique solution if
and  only  if  and  are  invertible  for .  More-
over, the optimal controllers are of the form of (31) and (32),
and the solution to FBSDEs (9), (10), (14)−(17), are also veri-
fied as (33).

Finally, the optimal cost functional will be calculated using
(31) and (33).

From (9), it yields
 

E[x′kλk−1− x′k+1λk]

= E[x′kQxk + (u1
k)′R1u1

k + (u2
k)′R2u2

k]−E[ω′kλk]. (58)
Adding from k = 0 to k = N on both sides of (58), one has

 

E[x′0λ−1− x′N+1λN]

= E[x′0λ−1− x′N+1Hx′N+1]

=

N∑
k=0

E[x′kQxk + (u1
k)′R1u1

k + (u2
k)′R2u2

k]−
N∑

k=0

E[ω′kλk].

(59)
From (59)  with  optimal  controllers  in  (31)  and (32),  it  fol-

lows:
 

J∗N = E[x′0λ−1− x′N+1λN]

= E[x′0λ−1]+
N∑

k=0

E[ω′kλk]

=

N∑
k=0

E[x′kQxk + (u1
k)′R1u1

k + (u2
k)′R2u2

k]+
N∑

k=0

E[ω′kλk]

= E[x′0P0 x̂c
0/0+ x′0P̃0(x0− x̂c

0/0)]

N∑
k=0

E
{
ω′k[Pk+1 x̂c

k+1/k+1+ P̃k+1(xk+1− x̂c
k+1/k+1)]

}

= E[x′0P0 x̂c
0/0+ x′0P̃0(x0− x̂c

0/0)]+
N∑

k=0

Tr[WkP̃k+1]. (60)

Thus (34) is obtained. ■  

Appendix B
Proof of Lemma 3

u1
k = Γ1xk u2

k = Γ2xk Γ1 Γ2

Under Assumptions 1 and 2, suppose there exist controllers
 and  with  constant  matrices  and  to

make  closed-loop  system  (35)  mean-square  stabilizable,  the
assertion that there exists a unique positive definite solution P

to (38) shall be proved.
Pk(N)Firstly, we will prove that  is convergent.

Without additive noise, the optimal cost (34) is turned to be
 

J∗N = E[x′0P0(N)x0]. (61)
E[x′0P0(N)x0] = J∗N ≤ J∗N+1 = E[x′0P0(N+

1)x0] x0 P0(N)
N

P0(N) u1
k = Γ1xk

u2
k = Γ2xk

limk→∞E(x′k xk) = 0
f1 > 0

Evidently, we have 
.  As  is  arbitrary,  it  could  be  obtained  that 

decreases  monotonically  with  respect  to .  Then  we  shall
show  the  boundedness  of .  Since  controllers 
and  could  mean-square  stabilize  system  (35),  we
have .  Following  from  [31],  we  have  that
there exists constant  satisfying
 

∞∑
k=0

E(x′k xk) ≤ f1E(x′0x0).

Q,Γ′1R1Γ1 Γ′2R2Γ2

f2
Consequently,  noting from (36) that  and 

are all bounded, there exists constant  such that
 

J = E
∞∑

k=0

[
x′kQxk + (u1

k)′R1u1
k + (u2

k)′R2u2
k

]
= E

∞∑
k=0

[
x′kQxk + x′kΓ

′
1R1Γ1x′k + x′kΓ

′
2R2Γ2x′k

]
≤ f2[ f1E(x′0x0)].

N > 0Thus for any , we could obtain from (61)
 

E[x′0P0(N)x0] = J∗N ≤ J ≤ f2[ f1E(x′0x0)]

P0(N)
P0(N) P0(N)

limN→∞ P0(N) = P

which indicates that  is bounded. Along with the mono-
tonic decreasing of , we have  is convergent, i.e.,

.
PN+1 = P̃N+1 = 0

N
Letting , the variables in (28)−(30) are time

invariant for , i.e.,
 

Pk(N) = Pk−s(N − s), P̃k(N) = P̃k−s(N − s)

Kk(N) = Kk−s(N − s), K̃k(N) = K̃k−s(N − s)

Ki
k(N) = Ki

k−s(N − s),Υk(N) = Υk−s(N − s)

Υi
k(N) = Υi

k−s(N − s),Mk(N) = Mk−s(N − s)

Mi
k(N) = Mi

k−s(N − s), s ≤ k ≤ N,0 ≤ s ≤ N.

limN→∞ Pk(N) = limN→∞ P0(N − k) = P
Pk(N)

Hence,  it  follows .
Thus,  is convergent.

N0 > 0
P0(N) > 0 N > N0 N ≥ 0
x , 0 E[x′0P0(N)x0] = 0 x0 = x

Secondly,  we  will  show  that  there  is  satisfying
 for  any .  If  not,  for  any ,  there  exists

 satisfying .  Assume ,  the  opti-
mal cost functional (34) satisfies
 

J∗N = E
∞∑

k=0

[
x∗
′

k Qx∗k + (u1∗
k )′R1u1∗

k + (u2∗
k )′R2u2∗

k

]
= E[x′P̃0(N)x] = 0

x∗k u1∗
k u2∗

k
R1 > 0

R2 > 0 Q ≥ 0

where  is  the optimal state trajectory,  and  represent
the  optimal  controllers.  As  stated  in  Assumption  1, ,

 and , we have
 

u1∗
k = 0, u2∗

k = 0, Q1/2x∗k = 0, 0 ≤ k ≤ N,N ≥ 0.
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x0 = x = 0 x = 0
N0 P0(N) > 0 N ≥ N0

P = limN→∞ P0(N) > 0

Assumption  2  implies ,  which  contradicts .
Namely,  there  exists  satisfying  for .
Thus,  has been shown.

Ps

Ps > 0
J∗ = E[x′0Psx0] = E[x′0Px0] x0

Ps = P

Finally,  the  uniqueness  of  the  solution  to  (28)  is  shown as
follows.  Assume that  there  exists  another  solution  to  (28)
satisfying . Recall (61), the optimal cost functional is as

.  Since  is  arbitrary,  it  follows
that . ■  

Appendix C
Proof of Theorem 2

Sufficient: With Assumptions 1 and 2, if there exists a posi-
tive  definite  solution P to  (38)  we  will  demonstrate  (2)  is
mean-square bounded. In virtue of (2), (43) and (44), one has
 

E[x′k+1xk+1] = E
{
[Axk +BKxc

k/k + B̄1K1I1(xk − x̂c
k/k)

+ B̄2K2I2(xk − x̂c
k/k)+ωk]′

× [Axk +BKx̂c
k/k + B̄1K1I1(xk − x̂c

k/k)

+ B̄2K2I2(xk − x̂c
k/k)+ωk]

}
= E[x′k(A+BK)′(A+BK)xk]+

{
Tr[W(A

+ B̄1K1I1+ B̄2K2I2)′(A+ B̄1K1I1+ B̄2K2I2)]

−Tr[W(A+BK)′(A+BK)]+W
}
. (62)

limk→∞E(x′k xk)
It  is  evident  that  the  second  term  is  constant,  hence

 is  mean-square  bounded  iff  system  (63)  is
mean-square stable.
 

θk+1 = (A+BK)θk (63)
θ0 = x0with initial value .

Fk

Now we will  demonstrate the mean-square stability of sys-
tem (63). To this end, the Lyapunov function candidate  is
defined
 

Fk = E[θ′kPθk].

In virtue of (38)−(40), one has
 

Fk+1−Fk = E
{
θ′k[(A+BK)′P(A+BK)]θk − θ′kPθk

}
=−E[θ′k(K′RK +Q)θk] ≤ 0

Fk
P > 0 Fk ≥ 0 Fk

l l > 0 k = l
k = l+N l→∞

which indicates that  monotonically decreases with respect
to k. As ,  is bounded below, i.e,  is convergent.
Selecting an integer  satisfying , by adding from  to

 on  both  sides  of  above  equation  and  letting ,
one obtains
 

lim
l→∞

k=l+N∑
k=l

E[θ′k(K′RK +Q)θk] = lim
l→∞

Fl−FN+l+1 = 0.

liml→∞E[θ′lθl] = 0
limk→∞E[x′k xk]

Along  with  Assumption  1,  we  have .
Hence, we obtain that  is bounded, that is, (43)
and (44)  make system (2)  mean-square  bounded.  Finally,  we
shall prove that (43) and (44) minimize the performance (42).
Define
 

Ṽ(k) = E[x′kPx̂c
k/k + x′kP̃(xk − x̂c

k/k)]. (64)

k→∞ Ṽ(k)
limk→∞E[x′k xk] limk→∞E[x̃c′

k/k xc
k/k]

Noting  that  when ,  is  bounded  owing  to  the
boundedness of  and .

It follows:
 

Ṽ(k+1)− Ṽ(k)

= E
{
x′kQxk + û′kRûk + (ũ1

k)′R1ũ1
k + (ũ2

k)′R2ũ2
k

− (ûk +Kx̂c
k/k)′Υ(ûk +Kx̂c

k/k)

− [ũ1
k +K1(x1

k − x̂1c
k/k)]′Υ1[ũ1

k +K1(x1
k − x̂1c

k/k)]

− [ũ2
k +K2(x2

k − x̂2c
k/k)]′Υ2[ũ2

k +K2(x2
k − x̂2c

k/k)]
}

− trP̃W. (65)
k = 0 k = N

N→∞
Via taking summation from  to  on both sides of

(65) and letting , we have
 

J̃ = lim
N→∞

1
N

{
Ṽ(0)− Ṽ(N +1)+

N∑
k=0

trP̃W

+ (ûk +Kx̂c
k/k)′Υ(ûk +Kx̂c

k/k)

+ [ũ1
k +K1(x1

k − x̂1c
k/k)]′Υ1[ũ1

k +K1(x1
k − x̂1c

k/k)]

+ [ũ2
k +K2(x2

k − x̂2c
k/k)]′Υ2[ũ2

k +K2(x2
k − x̂2c

k/k)]
}

= trP̃W + (ûk +Kx̂c
k/k)′Υ(ûk +Kx̂c

k/k)

+ [ũ1
k +K1(x1

k − x̂1c
k/k)]′Υ1[ũ1

k +K1(x1
k − x̂1c

k/k)]

+ [ũ2
k +K2(x2

k − x̂2c
k/k)]′Υ2[ũ2

k +K2(x2
k − x̂2c

k/k)].

Υ ΥiSince  the  and  are  positive  definite,  the  optimal  con-
trollers to make above equation minimize are as (43) and (44),
and the associated cost functional is the same as (42).

Necessity:  Suppose  that  (2)  is  mean-square  bounded,  we
will prove there exists a unique positive definite solution P to
(38).

xk = sk + yk sk yk

From the perspective of the complete response of the linear
time  invariant  system,  we  could  split  system  (2)  into  two
parts, i.e., , where  and  are as
 

sk+1 = Ask +BKsk = (A+BK)sk (66)
 

yk+1 = Ayk +BKyc
k/k + B̄1K1I1(yk − ŷc

k/k)

+ B̄2K2I2(yk − ŷc
k/k)+ωk

= (A+ B̄1K1I1+ B̄2K2I2)(yk − ŷc
k/k)

+ (A+BK)ŷc
k/k +ωk (67)

s0 = x0 y0 = 0
sk yk

P > 0

with initial values  and , respectively. It is easy to
get  that  is  orthogonal  to .  Therefore,  the  mean-square
boundedness  of  the  system  (2)  is  equivalent  to  the  mean-
square stabilization of the system (35). Together with Lemma
3, we derive that the algebraic equation (38) admits a unique
solution  from the mean-square boundedness of the sys-
tem (2). ■
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