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   Abstract—This paper considers a linear-quadratic (LQ) mean-
field  game  governed  by  a  forward-backward  stochastic  system
with  partial  observation  and  common  noise,  where  a  coupling
structure enters state equations,  cost functionals and observation
equations.  Firstly,  to  reduce the  complexity  of  solving the  mean-
field game, a limiting control problem is introduced. By virtue of
the  decomposition  approach,  an  admissible  control  set  is  pro-
posed.  Applying  a  filter  technique  and  dimensional-expansion
technique, a decentralized control strategy and a consistency con-
dition  system  are  derived,  and  the  related  solvability  is  also
addressed.  Secondly,  we  discuss  an  approximate  Nash  equilib-
rium  property  of  the  decentralized  control  strategy.  Finally,  we
work out a financial problem with some numerical simulations.
    Index Terms—Decentralized  control  strategy, ϵ-Nash  equilibrium,
forward-backward stochastic system, mean-field game, partial obser-
vation.
  

I.  Introduction

THE  stochastic  differential  game  problem  within  large-
population system has attracted increasing attentions from

various areas. A large-population system is distinguished with
numerous agents,  where the states  or  the  cost  functionals  are
coupled via a coupling structure. In view of the highly compli-
cated coupling term, it is not feasible or effective to study the
exact  Nash  equilibrium  relying  on  all  agents’ exact  states.
Alternatively,  an  available  and  effective  idea  is  to  design  an

approximate Nash equilibrium only based on each individual’s
information.  The  mean-field  method  independently  proposed
by  [1]  and  [2]  provides  an  effective  technique  to  solve  the
large-population game problem. With the mean-field method,
a complex mean-field game problem can be converted into a
series  of  classical  control  problems;  as  a  result,  the  curse  of
dimensionality  is  overcome  and  computational  complexity  is
reduced.  Reference [2] studied a mean-field game, where the
dynamic  systems  are  asymmetric,  and  the  analysis  for  the ϵ-
Nash  equilibrium was  given.  Reference  [3]  established  some
results showing the unique solvability of stochastic mean-field
games. Some recent works can be found in: [4], [5] for mean-
field  games  with  the  Stackelberg  structure,  [6]–[8]  for  game
models  with  the  linear-quadratic  (LQ)  framework,  [9]−[11]
for game models with jumps, [12]–[14] for game models with
state or control constraints, [15], [16] for game problems with
social  optimality,  [17],  [18]  for  backward  stochastic  mean-
field  games,  [19]  for  Nash  equilibriums  of  game  problems,
and [20]–[24] for stochastic mean-field control problems.

We point out that in the mean-field game, there are numer-
ous  agents  with  complicated  interactions,  and  the  state-aver-
age is approximated by a frozen term; thus, the optimal strat-
egy  can  be  computed  off-line.  However,  in  the  mean-field
control  problem,  the  mathematical  expectation  of  state  is  a
part  of  the  state,  which  is  influenced  by  the  control  process.
As a result, the strategies derived from a mean-field game and
mean-field control  are called ϵ-Nash equilibrium and optimal
control, respectively.

Note  that  the  mentioned  works  above  focus  on  the  mean-
field game problem governed by a stochastic differential equa-
tion  (SDE)  or  backward  SDE  (BSDE).  However,  we  often
encounter such a scenario in reality.  For example,  the wealth
level  and  education  investment  level  satisfy  an  SDE  and  a
BSDE (see Section V), respectively. It is well known that for-
ward-backward SDE (FBSDE) is a well-defined dynamic sys-
tem,  which  provides  a  tool  to  characterize  and  analyse  the
problem above. A coupled (fully or partially coupled) FBSDE
involves the feature of both SDE and BSDE, and it is a combi-
nation  of  them  in  structure,  which  may  degenerate  to  either
one  if  the  other  vanishes.  Furthermore,  FBSDE is  applied  to
illustrate  many  behaviors  of  economics,  finance  and  other
fields, such as large scale investors, recursive utility, etc.

In  some  existing  mean-field  game  literature,  the  authors
assume  that  all  agents  can  access  the  full  information.  How-
ever, in reality it is unrealistic for agents to do so. Due to the
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dynamic system, the agents need to make decisions based on
real-time  information.  For  example,  in  an  integrated  energy
system [25] affected by weather, temperature and humidity, it
is difficult to guarantee the accuracy of measured data. Thus,
the  study  of  the  control  and  game  problem  with  incomplete
information  has  important  practical  value;  one  can  refer  to
[26]–[30] for more information.

Inspired by the content above, we study a mean-field game
governed  by  FBSDE  with  partial  observation  and  common
noise, which plays a vital role in both theoretical research and
practical application. Although there are some existing works
on a mean-field game with an incomplete information scheme,
this work presents many advancements. In order to avoid con-
fusion,  we  list  the  differences  and  contributions  of  this  work
item by item.

Zi(·)

1) The large-population system is more general in the paper.
In this work, the dynamic system is more general than that of
[31],  [32],  where  the  diffusion  term  (see  (1)  below)
enters the drift term of BSDE. It is well known that the solu-
tion  of  BSDE  is  a  pair,  which  has  two  parts,  the  backward
state  and  the  diffusion  term.  The  analysis  and  processing  of
the diffusion term is challenging, and thus it is usually absent
from  the  drift  term  in  many  research  works.  As  a  conse-
quence,  the  resulting  Hamiltonian  system involves  fully  cou-
pled conditional mean-field FBSDEs, and it is extremely chal-
lenging to solve. In order to overcome this difficulty, employ-
ing convex analysis theory, we prove the unique solvability of
Problem II and the optimality system. Moreover, [33] studied
a mean-field game driven by BSDE with partial  information,
and  derived  an ϵ-Nash  equilibrium  via  the  stochastic  maxi-
mum principle and optimal filtering.

2)  Compared  with  [33],  the  state  of  this  paper  is  governed
by an FBSDE with partial observation instead of a BSDE with
partial information. The BSDE studied in [33] is usually used
to describe some financial  problems with prescribed terminal
conditions,  which  can  not  characterize  the  recursive  utility
optimization  problems,  principal-agent  problems  in  continu-
ous time, etc. FBSDE provides an effective tool to investigate
the  above  problems.  Employing  the  optimal  filter  technique,
decomposition  technique  and  dimensional-expansion  tech-
nique, we obtain a feedback form of the decentralized control
strategy  relying  on  the  optimal  filter  of  the  forward  state
instead of backward state given in [33].

3) Different from [31], employing a dimensional-expansion
technique and introducing two ordinary differential equations
(ODEs),  we  obtain  the  solvability  of  the  consistency  condi-
tion.  Since  the  initial  and  terminal  conditions  of  consistency
condition (20)–(25), (27), (28) and (34) below are mixed, their
solvability  is  extremely  difficult  to  derive.  By  virtue  of  the
dimensional-expansion technique and two ODEs, the solvabil-
ity of the consistency condition is derived. However, the solv-
ability  of  the  consistency  condition  in  [31]  is  discussed  by  a
contraction mapping technique with a strong assumption, and
it  holds  in  some special  cases.  Thus,  our  results  obtained are
more universal.

4)  Unlike  [27],  by  virtue  of  Riccati  equation  approach,  we
obtain  a  feedback  form  of  the  decentralized  control  strategy.
Introducing eight ODEs, we decouple the complicated Hamil-

tonian system, and propose a feedback form of the decentral-
ized control  strategy.  However,  [27]  gave an open-loop form
of the optimal control via the stochastic maximum principle.

5)  Last  but  not  least,  this  work  significantly  improves  the
description and resolution of the mean-field game with partial
observation.  In  addition,  this  work  compensates  for  the  defi-
ciencies  and  flaws,  and  the  results  obtained  are  more  elabo-
rate and rigorous than some existing works. See [32] for more
results regarding a mean-field game with partial observation.

The  rest  of  this  paper  is  structured  as  follows.  We  formu-
late a mean-field game problem in Section II. We investigate a
limiting  control  problem associated  with  an  individual  agent,
providing a decentralized control strategy via the consistency
condition and optimal filter in Section III. Section IV is dedi-
cated  to  the ϵ-Nash  equilibrium  property  of  a  decentralized
control  strategy.  We  give  a  financial  example  and  provide
some remarks in Sections V and VI, respectively.  

II.  Problem Formulation and Preliminary

N = {1, . . . ,N} (Ω,F , (Ft)0≤t≤T ,P)
{W(·),Wi(·) : i ∈ N}

(N +1) E
P FW

t = σ{W(r) : 0 ≤ r ≤ t}
S | · | Aτ

x(·) x(·)
L2 E

r T
0 |x(t)|2dt

Let .  Let  denote  a  com-
plete, filtered probability space, where  is a

-dimensional  Brownian  motion  on  it.  Let  be  the
expectation  with  respect  to ,  and .
Let  be an Euclidean space with norm . Let  be the trans-
pose of matrix A. For any stochastic process , we call 
is -bounded,  if  is  bounded.  For  convenience,
we introduce two spaces as follows.
L2
G(0,T ;S) = {ξ : [0,T ]×Ω→ S|ξ(·) Gt

E
r T

0 |ξ(t)|2dt < +∞}
 is the -adapted stoch-

astic process satisfying ;
L∞(0,T ;S) = {ξ : [0,T ]→ S|ξ(·)

}.
 is  the  uniformly  bounded

stochastic process

Ai

In this work, we investigate a mean-field game involving N
agents,  where  the  dynamics  system  of  agent  satisfies  an
FBSDE
 

dXi(t) =
[
A(t)Xi(t)+B(t)ui(t)+G(t)X(N)(t)

+ Ḡ(t)
]
dt+σ(t)dWi(t)+ σ̄(t)dW(t)

−dYi(t) =
[
C1(t)Yi(t)+C2(t)Zi(t)+C3(t)Xi(t)

+D(t)ui(t)+F(t)X(N)(t)+ F̄(t)
]
dt

−
N∑

j=1

Zi j(t)dW j(t)−Zi(t)dW(t)

Xi(0) = ai0, Yi(T ) = HXi(T ), i ∈ N

(1)

A(·), B(·), G(·), Ḡ(·), σ(·), σ̄(·), C1(·)
C2(·), C3(·), D(·), F(·), F̄(·)
[0,T ] ai0 ui(·) Xi(·)
(Yi(·),Zi1(·), . . . ,ZiN(·),Zi(·))

Ai

X(N)(·) = 1
N

∑N
i=1Xi(·) Wi(·) W(·)

W(·)

where  the  coefficients ,
 are  deterministic  functions  on

,  is a random variable, H is a constant; ,  and
 represent  the  control  strategy,

the  forward  and  backward  components  of  state  of  agent ,
respectively; ;  and  stand  for
the individual and common random noises, respectively. Here,
the  common  noise  can  be  interpreted  as  some  global
uncertainties,  such  as  the  macro-economic  scenario,  tax  pol-
icy  and  interest  rate,  which  influences  all  agents’ states  in  a
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Wi(·)
Ai

Ft = σ{W(r),Wi(r),ai0 : 0 ≤ r ≤ t, i ∈ N}
Ui = {ui(·)|ui(·) ∈ L2

F (0,T ;R)}, i ∈ N

large-population  system.  Different  from  the  common  noise,
the  individual  noise  can  be  regarded  as  some  local
uncertainties,  which only influences agent .  The full  infor-
mation is denoted by .
Let .

The observation process and cost functional are
 dYi(t) =

[
f (t)Xi(t)+g(t)X(N)(t)+h(t)

]
dt+dWi(t)

Yi(0) = 0, i ∈ N
(2)

and
 

Ji(ui(·),u−i(·)) =
1
2
E
{w T

0

[
Q1(t)

(
Xi(t)−X(N)(t)

)2

+2Q̄1(t)
(
Xi(t)−X(N)(t)

)
+R(t)u2

i (t)

+2r(t)ui(t)
]
dt+K1X2

i (T )+2K̄1Xi(T )

+K2Y2
i (0)+2K̄2Yi(0)

}
(3)

u−i(·) = (u1(·), . . . ,ui−1(·),ui+1(·), . . . ,uN(·))
f (·),g(·),h(·),Q1(·), Q̄1(·),R(·),r(·)

[0,T ] K1, K̄1,K2, K̄2

where ,  the  coeffi-
cients  are deterministic func-
tions on , and  are constants.

Assumption 1: i) The coefficients of (1)–(3) satisfy
 

A(·),B(·),G(·),Ḡ(·),σ(·), σ̄(·) ∈ L∞(0,T ;R)

C1(·),C2(·),C3(·),D(·),F(·), F̄(·) ∈ L∞(0,T ;R)

f (·),g(·),h(·) ∈ L∞(0,T ;R), H ∈ R
Q1(·), Q̄1(·),R(·),r(·) ∈ L∞(0,T ;R)

Q1(·),R(·) > 0, K1,K2 > 0, K̄1, K̄2 ∈ R.
{ai0}Ni=1

E|ai0|2 < +∞ a0 σ0 > 0
{W(·),Wi(·), i ∈ N}

ii)  are mutually independent and have the same dis-
tribution  with ,  mean  and  variance ,
independent of .

Xi(·) X(N)(·)

X(N)(·) Ft∑N
j=1Zi j(·)dW j(·) Zi(·)dW(·)

Yi(·)
Zi j(·)

Remark  1: Note  that  the  partially-coupled  forward-back-
ward stochastic system (1) and observation process (2) rely on
control  via  and ,  which  makes  the  large-popula-
tion game problem more challenging and has more important
theoretical  significance,  compared  with  [5],  [8],  [13],  [15],
[18], [32]. Moreover, due to the fact that  is -adapted,
the terms  and  are  introduced in
the second equation of (1) to ensure the adaptiveness of .
However,  is not introduced in the drift term of the sec-
ond equation of (1). Otherwise, it will be extremely difficult to
design  a  decentralized  control  strategy.  Hereafter,  we  will
drop the time variable t for simplicity.

ui ∈ Ui (i ∈ N)
(Xi,Yi,Zi1, . . . ,ZiN ,Zi) ∈

L2
F (0,T ;RN+3) Yi ∈ L2

F (0,T ;R)

Lemma 1: Under Assumption 1, for any  , (1)
and  (2)  admit  unique  solutions 

 and , respectively.
Proof: See Appendix A. ■
Now we state an FBSDE mean-field game problem.

ũ(·) = (ũ1(·), . . . , ũN(·))Problem I: Seek  such that
 

Ji(ũi(·), ũ−i(·)) = inf
ui(·)∈Ūi

Ji(ui(·), ũ−i(·))

ũ−i = (ũ1, . . . , ũi−1, ũi+1, . . . , ũN) Ūi (i ∈ N)where ,  and   is  given
in Definition 1 below.

In  this  paper,  our  aim  is  to  seek  an ϵ-Nash  equilibrium  of

game Problem I, whose main process is addressed as follows.
Employing the mean-field method, we convert the game Prob-
lem I into a limiting control Problem II. Decoupling the opti-
mality system, we propose a decentralized control strategy via
the  consistency  condition,  whose  approximate  Nash  equilib-
rium property is also verified with FBSDE theory.  

III.  A Limiting Control Problem

FW
t L2 x0

X(N) N→ +∞

This  section  aims  to  investigate  a  limiting  control  problem
associated  with  Problem I.  Due  to  the  common  noise W,  we
employ an -adapted and -bounded stochastic process 
to approximate  as .

Introduce a limiting state equation
 

dxi =
(
Axi+Bui+Gx0+ Ḡ

)
dt+σdWi+ σ̄dW

−dyi =
(
C1yi+C2zi+C3xi+Dui+Fx0+ F̄

)
dt

− ziidWi− zidW

xi(0) = ai0, yi(T ) = Hxi(T ), i ∈ N

(4)

a limiting observation process and a limiting cost functional
 dȲi = ( f xi+gx0+h)dt+dWi

Ȳi(0) = 0
(5)

 

Ji(ui(·)) =
1
2
E
{w T

0

[
Q1(xi− x0)2+2Q̄1 (xi− x0)

+Ru2
i +2rui

]
dt+K1x2

i (T )+2K̄1xi(T )

+K2y2
i (0)+2K̄2yi(0)

}
.

ui
Ȳi Ȳi ui

ui Ȳi

As for the stochastic control problem with observation pro-
cess, it is natural to select the strategy  based on observation
process ,  where  relies  on .  Then,  the  classical  varia-
tional approach is unavailable due to the circular dependence
between  and . In order to overcome this obstacle, employ-
ing  the  decomposition  technique,  we  split  the  state  equation
and observation process into
 

(xi,yi,zii,zi) =
(
x0

i ,y
0
i ,z

0
ii,z

0
i

)
+

(
x1

i ,y
1
i ,z

1
ii,z

1
i

)
and
 

Ȳi = Ȳ0
i + Ȳ1

i

(x0
i ,y

0
i ,z

0
ii,z

0
i ) Ȳ0

i ui (i ∈ N)where  and  are independent of  .
(x0

i ,y
0
i z0

ii z0
i ) Ȳ0

iDefine the processes , ,  and  by
 

dx0
i = Ax0

i dt+σdWi

−dy0
i =

(
C1y0

i +C2z0
i +C3x0

i

)
dt− z0

iidWi− z0
i dW

x0
i (0) = ai0, y0

i (T ) = Hx0
i (T ), i ∈ N

(6)

and
 dȲ0

i = f x0
i dt+dWi

Ȳ0
i (0) = 0.

(7)

ui ∈ L2
FWi ,W

(0,T ;R) (i ∈ N)
(x1

i ,y
1
i z1

ii z1
i ) Ȳ1

i

Let   be  a  control  process.  Fur-
ther, we define , ,  and  by
 

 748 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 3, MARCH 2024





dx1
i =

(
Ax1

i +Bui+Gx0+ Ḡ
)
dt+ σ̄dW

−dy1
i =

(
C1y1

i +C2z1
i +C3x1

i +Dui+Fx0+ F̄
)
dt

− z1
iidWi− z1

i dW

x1
i (0) = 0, y1

i (T ) = Hx1
i (T ), i ∈ N

(8)

and
 dȲ1

i = ( f x1
i +gx0+h)dt

Ȳ1
i (0) = 0.

(9)

It  is  easy  to  determine  that  (6)–(9)  are  uniquely  solvable.
Introduce
 

xi = x0
i + x1

i , yi = y0
i + y1

i , zii = z0
ii+ z1

ii

zi = z0
i + z1

i , Ȳi = Ȳ0
i + Ȳ1

i . (10)
(xi,yi,zii,zi) ȲiItô’s formula and (6)–(10) imply that  and  are

the unique solutions of (4) and (5).
Let

 

F Ȳ0
i ,W

t = σ
{
Ȳ0

i (r),W(r) : 0 ≤ r ≤ t
}

F Ȳi,W
t = σ

{
Ȳi(r),W(r) : 0 ≤ r ≤ t

}
.

 

Ū0
i =

{
ui(·)| ui(·) is F Ȳ0

i ,W
t -adapted, and

E
w T

0
|ui(t)|2dt < +∞

}
, i ∈ N .

ui ∈ F Ȳi,W
t
x0 FW

t
F Ȳi,W

t

Then,  we define  as  the  admissible  control.  Note
that  the  limiting  process  is -adapted,  which  results  in
the presence of W in the filtration .

ui (i ∈ N)
Ai ui ∈ Ū0

i F Ȳi,W
t Ūi

Definition  1: A  control   is  called  admissible  for
agent ,  if  is -adapted.  We  denote  by  the
admissible control set.

ui ∈ Ūi (i ∈ N) F Ȳi,W
t = F Ȳ0

i ,W
tLemma 2: For any  , .

ui ∈ Ūi ui F Ȳ0
i ,W

t

x1
i F Ȳ0

i ,W
t Ȳ1

i Ȳi =

Ȳ0
i + Ȳ1

i F Ȳ0
i ,W

t F Ȳi,W
t ⊆ F Ȳ0

i ,W
t

F Ȳ0
i ,W

t ⊆ F Ȳi,W
t

Proof: For  any ,  since  is -adapted,  then  it
follows from (8) that  is -adapted, so is . Then, 

 is -adapted,  i.e., .  In  a  similar
way, we obtain . ■

We address a limiting control problem of Problem I.
Ai (i ∈ N) u∗i ∈ ŪiProblem II: For agent  , seek  such that

 

Ji(u∗i ) = inf
ui∈Ūi

Ji(ui). (11)

u∗i
(x∗i ,y

∗
i ,z
∗
ii,z
∗
i ) Ȳ∗i

u∗i

Then  is  an  optimal  (decentralized)  control  strategy  of
Problem II,  and  denote the state and observa-
tion associated with .

Ūi (i ∈ N) ui Ȳi

Ūi ⊆ Ū0
i

infu′i∈Ūi
Ji(u′i ) ≥ infui∈Ū0

i
Ji(ui)

infu′i∈Ūi
Ji(u′i ) ≤ infui∈Ū0

i
Ji(ui)

Note that since   depends on  via , the classical
variational  approach  is  not  proper  for  investigating  Problem
II.  It  follows  from  Definition  1  that ,  then

.  On  the  other  hand,  similar  to
Lemma  2.3  in  [34],  it  holds .
Then,
 

inf
u′i∈Ūi

Ji(u′i ) = inf
ui∈Ū0

i

Ji(ui).

Based  on  Lemma  1,  we  can  investigate  the  optimality  of

Ji(ui) Ū0
i Ū0

i on .  Moreover,  since  is  independent  of  control,
employing  the  classical  variational  method,  we  establish  sta-
tionarity  condition  (16)  and  Hamiltonian  systems  (17)  and
(18) in Lemma 3 below.

Lemma 1 implies
 

ĥi(t) = E
[
hi(t)

∣∣∣F Ȳi,W
t

]
= E

[
hi(t)

∣∣∣F Ȳ0
i ,W

t

]
.

F Ȳi,W
t

In  what  follows,  we  give  the  filtering  equation  of  the  first
equation of (4) with respect to . Set
 

f̃ = ( f ,0)τ, ḡ = (g,0)τ, h̃ = (h,0)τ

Ỹi = (Ȳi,W)τ, W i = (Wi,W)τ, σ̂ = (σ,σ̄).
Then the first equation of (4) and (5) are written as

 dxi =
(
Axi+Bui+Gx0+ Ḡ

)
dt+ σ̂dW i

xi(0) = ai0, i ∈ N
(12)

 dỸi = ( f̃ xi+ ḡx0+ h̃)dt+dW i

Ỹi(0) = (0,0)τ.
(13)

x̂i
Ỹi

Applying  Theorem  2.1  in  [35],  the  optimal  filtering  of
(12) with respect to  yields
 

dx̂i =
(
Ax̂i+Bui+Gx0+ Ḡ

)
dt+ (σ+ f P)

× [
dȲi− ( f x̂i+gx0+h)dt

]
+ σ̄dW

x̂i(0) = a0

(14)

where P is given by Bernoulli equation
 {

Ṗ+2(σ f −A)P+ f 2P2 = 0

P(0) = σ0
(15)

which admits a unique solution.
To investigate Problem II, we present the following lemma

first,  which tells  us that  Problem II  is  uniquely solvable with
Assumption 1.

Lemma  2: Let Assumption 1 hold.  Then, Problem II has a
unique decentralized control strategy.

Proof: See Appendix B. ■
Employing the classical variational method, we get
Lemma  3: Under Assumption 1, we have

 

u∗i = R−1
(
Dp̂∗i −Bq̂∗i − r

)
, i ∈ N (16)

(x∗i ,y
∗
i ,z
∗
ii,z
∗
i ) (p∗i ,q

∗
i ,k
∗
ii,k
∗
i )where  and  satisfy

 

dx∗i =
(
Ax∗i +Bu∗i +Gx0+ Ḡ

)
dt+σdWi+ σ̄dW

−dy∗i =
(
C1y∗i +C2z∗i +C3x∗i +Du∗i +Fx0+ F̄

)
dt

− z∗iidWi− z∗i dW

x∗i (0) = ai0, y∗i (T ) = Hx∗i (T )
(17)

 

dp∗i =C1 p∗i dt+C2 p∗i dW

−dq∗i =
[
Aq∗i −C3 p∗i +Q1(x∗i − x0)+ Q̄1

]
dt

− k∗iidWi− k∗i dW

p∗i (0) = −K2y∗i (0)− K̄2

q∗i (T ) = −Hp∗i (T )+K1x∗i (T )+ K̄1.

(18)
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Equations  (16)–(18)  are  called  the  optimality  system  of
Problem  II.  By  Lemma  2,  Problem  II  is  uniquely  solvable,
which  signifies  the  unique  solvability  of  (16)–(18).  In  what
follows, we aim to decouple (17) and (18).

1+π1(t)π4(t) , 0 π1,π4Assumption  2: ,  where  are  given  by
(24) and (27) below, respectively.

Theorem   1: Under  Assumption  1,  (17)  and  (18)  admit
unique solutions with (16). Moreover, we have the relations as
follows:

i)
 q∗i = αp∗i +βx

∗
i +γ, i ∈ N

k∗ii = βσ,k
∗
i = αC2 p∗i +βσ̄

(19)

where
 β̇+2Aβ−R−1B2β2+Q1 = 0

β(T ) = K1
(20)

 {
α̇+ (C1+A−R−1B2β)α+R−1BDβ−C3 = 0

α(T ) = −H
(21)

 
γ̇+ (A−R−1B2β)γ+ (βG−Q1)Ex0+βḠ+ Q̄1

−R−1Bβr = 0

γ(T ) = K̄1.

(22)

ii)
 y∗i = π1 p∗i +π2x∗i +π3, i ∈ N

z∗ii = π2σ, z∗i = π1C2 p∗i +π2σ̄

where
 {

π̇2+ (A+C1−R−1B2β)π2+C3−R−1BDβ = 0

π2(T ) = H
(23)

 π̇1+
(
2C1+C2

2

)
π1+R−1(D−Bα)(Bπ2+D) = 0

π1(T ) = 0
(24)

 
π̇3+C1π3+

[
−R−1B(r+Bγ)+ Ḡ+C2σ̄

]
π2

+ (Gπ2+F)Ex0+ F̄ −R−1D(r+Bγ) = 0

π3(T ) = 0.

(25)

iii)
 

p∗i = −π4y∗i +π5, i ∈ N (26)
where
 π̇4−2C1π4+

[
C2

2π1+R−1D(D−Bα)
]
π2

4 = 0

π4(0) = K2

(27)

 

π̇5+
[
C2

2π1π4+R−1Dπ4(D−Bα)−C1
]
π5

+ [C2σ̄π2−R−1D(r+Bγ)+ F̄

+ (F +C3−R−1DBβ)Ex0]π4 = 0

π5(0) = −K̄2.

(28)

iv) With Assumption 2, we have
 

y∗i = (1+π1π4)−1 (π2x∗i +π3+π1π5), i ∈ N . (29)

Proof: See Appendix C. ■

Ex0

Ex0

Remark  2: Note  that  (20)–(24)  are  independent  of ,  in
the  light  of  Proposition  4.2  in  [36],  Riccati  equation  (20)  is
uniquely solvable. Then (21), (23) and (24) are uniquely solv-
able.  Moreover,  Bernoulli  equation  (27)  results  in  a  unique
solution. However, (22), (25) and (28) depend on , whose
solvability will be given in Lemma 4 below.

Theorem  2: Under Assumptions 1 and 2, we get
 

u∗i = A2 x̂∗i +A1π3+A3π5−R−1(Bγ+ r), i ∈ N (30)

where
 

dx̂∗i =
(
Ax̂∗i +Bu∗i +Gx0+ Ḡ

)
dt+ (σ+ f P)

×
[
dȲi−

(
f x̂∗i +gx0+h

)
dt

]
+ σ̄dW

=

{
(A+BA2)x̂∗i +B

[
A1π3+A3π5−R−1(Bγ+ r)

]
+Gx0+ Ḡ+ (σ+ f P) f

(
x∗i − x̂∗i

)}
dt

+ (σ+ f P)dWi+ σ̄dW (31)
x̂∗i (0) = a0with , and

 A1 = R−1π4(Bα−D)(1+π1π4)−1

A2 = A1π2−R−1Bβ,A3 = A1π1+R−1(D−Bα).
(32)

Proof: Inserting the first equality of (19), (26) and (29) into
(16),  we  obtain  feedback  form  (30)  with  (32).  Moreover,  it
follows from (5) and (14), (31) holds. ■

Ūi

Ūi

Remark  3: We  point  out  that  Problem  II  is  distinguished
from [27] mainly in two aspects. i) The admissible control set
contains the common noise W.  Due to the presence of W,  we
construct  the  admissible  control  set  depending  on W in
Definition 1. Otherwise, once W is absent from , Lemma 1
will  not  hold.  Without  such  equivalence,  it  turns  out  to  be
really difficult  and challenging to study Problem II.  ii)  Intro-
ducing eight ODEs shown in Theorem 1, we get the decentral-
ized control  strategy in  a  feedback form,  instead of  an  open-
loop form given by [27].

x0In  what  follows,  we  analyse  the  limiting  process  and
(22),  (25)  and  (28).  Introduce  the  decentralized  control  strat-
egy:
 

u∗i = A2 x̂∗i +A1π3+A3π5−R−1(Bγ+ r), i ∈ N . (33)

Inserting (33) into the first equation of (1), we have
 

dX∗i =
{
AX∗i +B

[
A2 x̂∗i +A1π3+A3π5−R−1(Bγ+ r)

]
+GX∗(N)

+ Ḡ
}
dt+σdWi+ σ̄dW

X∗i (0) = ai0, i ∈ N

which implies that
 

dX∗(N) =
{
(A+G)X∗(N)+BA2 x̂∗(N)+B

[
A1π3

+A3π5−R−1(Bγ+ r)
]
+ Ḡ

}
dt

+σ
1
N

N∑
i=1

dWi+ σ̄dW
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X∗(N)(0) = 1
N

∑N
i=1 ai0 ρ(N) = 1

N
∑N

i=1 ρi ρ = X∗, x̂∗
N→ +∞

with , and  with .
Taking , we arrive at
 

dx0 =
[
(A+G+BA2)x0+B(A1π3+A3π5)

−R−1B(Bγ+ r)+ Ḡ
]
dt+ σ̄dW

x0(0) = a0

(34)

x̂∗(N) x0where  we  approximate  by ,  and  it  will  be  proven  in
Lemma 6 below. Equations (20)–(25),  (27) and (28) together
with (34) are called the consistency condition.

E[·]Taking  on both sides of (34), it yields
 

dEx0 =
[
(A+G+BA2)Ex0+B(A1π3

+A3π5)−R−1B(Bγ+ r)+ Ḡ
]
dt

Ex0(0) = a0.

(35)

U(·) U(·)Assumption 3: We assume that  is invertible, where 
is given in Appendix D.

Lemma 4: Under Assumptions 1–3, (22), (25), (28) and (35)
are solvable.

Proof: See Appendix D. ■

x0 FW
t L2

According  to  the  analysis  above,  limiting  equation  (34)  is
solvable, and its solution  is -adapted and -bounded.
  

IV.  ϵ-Nash Equilibrium of Problem I

(u∗1, . . . ,u
∗
N)

Now we focus on verifying the ϵ-Nash equilibrium property
of  obtained in Section III.

(u∗1, . . . ,u
∗
N)
ϵ = ϵ(N) ≥ 0 limN→+∞ ϵ(N) =

0

Definition 2:  is called an ϵ-Nash equilibrium of
Problem  I,  if  there  exists  with 
 such that

 

Ji(u∗i ,u
∗
−i) ≤ Ji(ui,u∗−i)+ ϵ, i ∈ N

ui ∈ Ūi

Ai

when  an  admissible  alternative  strategy  is  taken  by
agent .

u∗i = A2 x̂∗i +A1π3+

A3π5−R−1(Bγ+ r) (i ∈ N)
ϵ = O

( 1√
N

)
x̂∗i ,A j ( j = 1,2,3),π3,π5

Theorem  3: Under  Assumptions  1–3, 
  is  an ϵ-Nash  equilibrium of  Prob-

lem  I  with ,  where   are
given by (31), (32), (25) and (28), respectively.

The proof of Theorem 3 will be addressed later.
Under the ϵ-Nash equilibrium, the system of Problem I is

 

dX∗i =
{
AX∗i +B

[
A2 x̂∗i +A1π3+A3π5−R−1(Bγ

+ r)
]
+GX∗(N)

+ Ḡ
}
dt+σdWi+ σ̄dW

−dY∗i =
{
C1Y∗i +C2Z∗i +C3X∗i +D

[
A2 x̂∗i +A1π3

+A3π5−R−1(Bγ+ r)
]
+FX∗(N)

+ F̄
}
dt

−
N∑

j=1

Z∗i jdW j−Z∗i dW

X∗i (0) = ai0, Y∗i (T ) = HX∗i (T ), i ∈ N

(36)

and the corresponding system of Problem II is 



dx∗i =
{
Ax∗i +B

[
A2 x̂∗i +A1π3+A3π5−R−1(Bγ+ r)

]
+Gx0+ Ḡ

}
dt+σdWi+ σ̄dW

−dy∗i =
{
C1y∗i +C2z∗i +C3x∗i +D

[
A2 x̂∗i +A1π3

+A3π5−R−1(Bγ+ r)
]
+Fx0+ F̄

}
dt

− z∗iidWi− z∗i dW

x∗i (0) = ai0, y∗i (T ) = Hx∗i (T )

(37)

where
 

dx̂∗i =
(
Ax̂∗i +Bu∗i +Gx0+ Ḡ

)
dt+ (σ+ f P)

×
[
dȲi−

(
f x̂∗i +gx0+h

)
dt

]
+ σ̄dW

=

{
(A+BA2)x̂∗i +B

[
A1π3+A3π5−R−1(Bγ

+ r)
]
+Gx0+ Ḡ+ (σ+ f P) f

(
x∗i − x̂∗i

)}
dt

+ (σ+ f P)dWi+ σ̄dW (38)
x̂∗i (0) = a0with .

supt∈[0,T ]E |ϱ(t)|2 E
r T

0 |ϱ̃(t)|
2 dt

ϱ = x0, x∗i , x̂
∗
i ,y
∗
i ϱ̃ = u∗i ,z

∗
ii,z
∗
i i ∈ N

Lemma  5:  and  are  bound-
ed, where  and , .

Proof: See Appendix E. ■
Lemma 6:

 

sup
t∈[0,T ]

E
∣∣∣X∗(N)(t)− x0(t)

∣∣∣2 = O
(

1
N

)
(39)

 

sup
t∈[0,T ]

E
∣∣∣x∗(N)(t)− x0(t)

∣∣∣2 = O
(

1
N

)
(40)

 

sup
t∈[0,T ]

E
∣∣∣x̂∗(N)(t)− x0(t)

∣∣∣2 = O
(

1
N

)
(41)

ϕ(N) = 1
N

∑N
i=1ϕi ϕ = X∗, x∗, x̂∗where  with .

Proof: See Appendix F. ■
Lemma 7:

 

sup
i∈N

sup
t∈[0,T ]

E
∣∣∣X∗i (t)− x∗i (t)

∣∣∣2 = O
(

1
N

)
(42)

 

sup
i∈N

sup
t∈[0,T ]

E
∣∣∣Y∗i (t)− y∗i (t)

∣∣∣2 = O
(

1
N

)
. (43)

Proof: See Appendix G. ■
Lemma 8:

 

|Ji(u∗i ,u
∗
−i)− Ji(u∗i )| = O

(
1
√

N

)
, i ∈ N . (44)

Proof: See Appendix H. ■

(u∗1, . . . ,u
∗
N) Ai

ui ∈ Ūi

In what follows, we proceed to give the asymptotic analysis
of . For any fixed i,  suppose that agent  takes a
perturbation strategy  and the corresponding state is
 

dli =
(
Ali+Bui+Gl(N)+ Ḡ

)
dt+σdWi+ σ̄dW

−dmi =
(
C1mi+C2ni+C3li+Dui+Fl(N)+ F̄

)
dt

−niidWi−nidW

li(0) = ai0, mi(T ) = Hli(T ), i ∈ N

(45)
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Ak (k , i) u∗kwhereas  agent   keeps  optimal  strategy  with  the
state
 

dlk =
{
Alk +B

[
A2 x̂∗k +A1π3+A3π5−R−1(Bγ

+ r)
]
+Gl(N)+ Ḡ

}
dt+σdWk + σ̄dW

−dmk =

{
C1mk +C2nk +C3lk +D

[
A2 x̂∗k +A1π3

+A3π5−R−1(Bγ+ r)
]
+Fl(N)+ F̄

}
dt

−nkkdWk −nkdW

lk(0) = ak0, mk(T ) = Hlk(T ), k ∈ N .

(46)

(u∗1, . . . ,u
∗
N)

ui ∈ Ūi

If  is  an ϵ-Nash  equilibrium  of  Problem  I,  con-
sider the perturbation  satisfying
 

Ji(ui,u∗−i) ≤ Ji(u∗i ,u
∗
−i). (47)

Recall
 

Ji(ui,u∗−i) =
1
2
E

{w T

0

[
Q1

(
Xi−X(N)+

Q̄1

Q1

)2

−
Q̄2

1

Q1
+R

(
ui+

r
R

)2
− r2

R

]
dt+K1

(
Xi(T )+

K̄1

K1

)2

−
K̄2

1

K1
+K2

(
Yi(0)+

K̄2

K2

)2

−
K̄2

2

K2

}
. (48)

Applying (47) and (48) with Lemma 8, it holds
 

E
w T

0
R
(
ui+

r
R

)2
dt ≤ 2Ji(ui,u∗−i)+

K̄2
1

K1
+

K̄2
2

K2

+E
w T

0

 Q̄2
1

Q1
+

r2

R

dt = 2Ji(u∗i )+
K̄2

1

K1
+

K̄2
2

K2

+E
w T

0

 Q̄2
1

Q1
+

r2

R

dt+O
(

1
√

N

)
where
 

Ji(u∗i ) =
1
2
E

{w T

0

[
Q1(x∗i − x0)2+2Q̄1

(
x∗i − x0

)
+R(u∗i )2+2ru∗i

]
dt+K1(x∗i (T ))2+2K̄1x∗i (T )

+K2(y∗i (0))2+2K̄2y∗i (0)
}
≤ c.

Hence,
 

E
w T

0
u2

i (t)dt ≤ c.

Ai
ui ∈ Ūi

Correspondingly, in Problem II, assume that agent  takes
 and the corresponding state is

 

dl0i =
(
Al0i +Bui+Gx0+ Ḡ

)
dt+σdWi+ σ̄dW

−dm0
i =

(
C1m0

i +C2n0
i +C3l0i +Dui+Fx0+ F̄

)
dt

−n0
iidWi−n0

i dW

l0i (0) = ai0, m0
i (T ) = Hl0i (T ), i ∈ N

(49)

Ak (k , i) u∗kwhereas  agent   keeps  optimal  strategy  with  the
state
 

dl0k =
{
Al0k +B

[
A2 x̂∗k +A1π3+A3π5−R−1(Bγ

+ r)
]
+Gx0+ Ḡ

}
dt+σdWk + σ̄dW

−dm0
k =

{
C1m0

k +C2n0
k +C3l0k +D

[
A2 x̂∗k +A1π3

+A3π5−R−1(Bγ+ r)
]
+Fx0+ F̄

}
dt

−n0
kkdWk −n0

kdW

l0k(0) = ak0, m0
k(T ) = Hl0k(T ), k ∈ N .

(50)

supt∈[0,T ]E|l0i (t)|2 supt∈[0,T ]E|m0
i (t)|2 E

r T
0 |n0

ii(t)|2dt
E

r T
0 |n0

i (t)|2dt i ∈ N
Lemma 9: , , 

and  are bounded, .
Proof: See Appendix I. ■
Similar  to  Lemmas  6–8,  we  draw  two  lemmas  as  follows.

Adopting the similar arguments addressed in Lemmas 6–8, we
can prove Lemmas 10 and 11 below, where the detailed pro-
cedures are omitted to save space.

Lemma 10:
 

sup
t∈[0,T ]

E
∣∣∣l(N)(t)− x0(t)

∣∣∣2 = O
(

1
N

)
(51)

 

sup
i∈N

sup
t∈[0,T ]

E
∣∣∣li(t)− l0i (t)

∣∣∣2 = O
(

1
N

)
(52)

 

sup
i∈N

sup
t∈[0,T ]

E
∣∣∣mi(t)−m0

i (t)
∣∣∣2 = O

(
1
N

)
(53)

l(N) = 1
N

∑N
j=1 l jwhere .

Lemma 11:
 

|Ji(ui,u∗−i)− Ji(ui)| = O
(

1
√

N

)
, i ∈ N . (54)

Proof of Theorem 2: According to (44) and (54), it holds
 

Ji(u∗i ,u
∗
−i) ≤ Ji(ui,u∗−i)+O

(
1
√

N

)
.

ϵ = O( 1√
N

)Taking , we complete the proof. ■
Now we summarize the process of seeking an ϵ-Nash equi-

librium of Problem I, which also shows the process of search-
ing for the optimal (decentralized) control strategy (see Fig. 1
below  for  convenience):  i)  Firstly,  employing  mean-field
method,  we  obtain  an  auxiliary  Problem  II.  ii)  Secondly,  by
virtue  of  optimal  filter  technique,  decomposition  technique
and  dimensional-expansion  technique,  we  obtain  an  optimal
(decentralized)  control  strategy.  iii)  Finally,  applying  the
FBSDE  theory,  we  verify  the  decentralized  control  strategy
obtained is an ϵ-Nash equilibrium of Problem I. Moreover, the
process  of  verifying  asymptotic  optimality  can  be  illustrated
by Fig. 2 below.  

V.  A Financial Example

In this section, we discuss a financial problem, which facili-
tates the study of mean-field game Problem I.

PSuppose that there are N counties in province , in general
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Ai (i ∈ N) ai0
Xi(·) (i ∈ N)

Ai ui(·) Ai
X(N)(·) =

1
N

∑N
i=1Xi(·)

P HXi(T )
(i ∈ N)
H ∈ (0,1) T > 0 Yi(·)
(i ∈ N)
Ai P

Ai
Ji i ∈ N
Xi(·) Yi(·)

they are closely related with each other. Suppose that the ini-
tial wealth level of county   is denoted by , which
is positive. Let   denote the wealth level of county

, let  denote the control strategy of county , such as
attracting  investment  and  talent  policy,  and  let 

 stand  for  the  influence  of  the  average  wealth  of
province .  Moreover,  each  county  plans  to  spend 

 on  educational  infrastructure  at  time T,  where
 is a positive constant and . We denote by 

 the expense of the educational infrastructure of county
,  which  is  affected  by  the  wealth  level  of  province  and

the  control  strategy  of  county .  Meanwhile,  each  county
hopes  to  minimize  its  own  cost  functional , .  Under
the  notations  and  interpretations  above,  and  are
modeled by
 

dXi(t) =
[
AXi(t)+Bui(t)+GX(N)(t)

]
dt+σdWi(t)

+ σ̄dW(t)

−dYi(t) =
[
C1Yi(t)+C3Xi(t)+Dui(t)+FX(N)(t)

]
dt

−
N∑

j=1

Zi j(t)dW j(t)−Zi(t)dW(t)

Xi(0) = ai0, Yi(T ) = HXi(T ), i ∈ N

(55)

X(N) = 1
N

∑N
i=1Xi Zi j Zi

Wi

where ,  and  are some adjustment fac-
tors, which guarantees the well-posedness of the second equa-
tion of (55);  stands for some local uncertainties, like popu-
lation  mobility,  household  consumption  and  resource  con-
sumption; W denotes  some global  uncertainties  such as  natu-
ral disaster; the coefficients in (55) are constants.

P
P

Assume that each county can only observe a part of the total
wealth level of province , such as produced capital. In fact,
the total wealth level of province  is difficult  to access. On

Ai (i ∈ N)
Y̌i(·) P

f0,g0 ∈ (0,1)
Ai

the  one hand,  accurate  calculation of  wealth  costs  significant
time  and  energy;  on  the  other  hand,  some  wealth  can  not  be
measured,  like  intangible  capital.  For  county  ,  let

 represent the observable part of the wealth of province ,
where  represent  the  proportions  of  the  observ-
able parts of the wealth of county  and the average wealth
of other counties, respectively. Then
 

Y̌i(t) = f0Xi(t)+g0X(N−1)(t)+Ni(t), i ∈ N (56)
Y̌i Niwhere  is  also affected by the white noise process .  Inte-

grating on (56), we get
 

Yi(t) =
w t

0

[
f0Xi(s)+g0X(N−1)(s)

]
ds+

w t

0
dNi(s). (57)

Wi(t) =
r t

0 dNi(s) WiLet .  Then,  is  a  Brownian  motion.
Employing Itô’s formula to (57), it yields
 dYi(t) =

[
f0Xi(t)+g0X(N−1)(t)

]
dt+dWi(t)

Yi(0) = 0, i ∈ N .
(58)

Let
 

f = f0−g0
1

N −1

g =
g0N
N −1

.

Then, (58) is written as
 dYi(t) =

[
fXi(t)+gX(N)(t)

]
dt+dWi(t)

Yi(0) = 0, i ∈ N .

ũi ∈ Ūi

Problem III: Each county hopes to select a suitable control
strategy  to minimize
 

Ji(ui(·), ũ−i(·)) =
1
2
E
{w T

0

[
Q1

(
Xi(t)−X(N)(t)

)2

+Ru2
i (t)

]
dt+K1

(
Xi(T )−M

)2
+K2Y2

i (0)
}

(59)

ũ−i = (ũ1, . . . , ũi−1, ũi+1, . . . , ũN) i ∈ N Q1,R K1,M,K2
Ūi

where , , , 
are positive constants;  is given in Definition 1 above.

Xi

(Xi(T )−M)2

Ai

In (59),  the running cost  implies  that  each county wants  to
minimize the departure of the wealth level  from the “aver-
age”, in order to achieve coordinated development; the termi-
nal cost  measures the deviation between the ter-
minal wealth level of county  at time T and the terminal tar-
get M; the initial cost measures that each county wants to min-
imize its initial expense of educational infrastructure.

100
T = 1, A = 1, B = −1, G = 0.3, σ = 0.5 σ̄ = 0.8,

C1 = 0.2, C3 = 0.5, D = 0.5 F = 0.8, H = 0.3, f = 0.5, g =
0.5 Q1 = 0.5, R = 1, K1 = 0.1, M = 0.1, K2 = 0.5 ai0 ∼ U(1,5)
(1 ≤ i ≤ 100)

To  be  more  intuitive,  we  consider  Problem  III  with 
counties. Take , 

, 
,  , 

.

(P,β,α,π2,π1,π4) Ex0,γ,π3,π5

(Ex0,γ,π3,π5)

(u∗1, . . . ,u
∗
100)

Employing  the  Euler  method,  we  plot  the  curves  of
 shown  in Fig. 3(a).  Note  that 

given by (22), (25), (28) and (35) are coupled. Employing the
decoupling method used in Appendix B, we obtain the curves
of  shown  in Fig. 3(b).  Based  on Fig. 3 and
applying Monte Carlo method, we obtain the curve of ϵ-Nash
equilibrium strategy  shown in Fig. 4, which also

 

Problem I Mean-field method Auxiliary Problem II

Optimal filter

Decomposition technique

Dimensional-expansion
technique

Optimal (decentralized)
control strategyAsymptotic optimality

 
Fig. 1.     The research route.
 

 

√￣

i (ui
*, u*

−i) i (ui
 , u*

−i)

Ji (ui
*)

O (——)

Ji (ui
 )

≤

1
N √￣

O(——)1
N

√￣
O (——) = 1

N

 
Fig. 2.     The process of verifying asymptotic optimality.
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u∗i x̂∗i x̂∗i
u∗i

u∗i 0

u∗i < 0 Ai

X∗i
Y∗i

(u∗1, . . . ,u
∗
100)

0

illustrates the efficiency of Theorem 3 obtained. According to
Theorem 3,  is represented by , where  is the solution of
SDE (31). Therefore, the trajectory of  is related to the trend
of  SDE.  Besides,  from Fig. 4,  it  can  be  seen  that  the  control
strategy  gradually  tends  to ,  which  means  that  govern-
ment intervention is decreasing. It is worth pointing out that if

, it implies that county  takes some negative actions,
like  reducing  staff.  Besides,  the  wealth  level  and  the
expense of the educational infrastructure  corresponding to

 are  shown  in Fig. 5.  As  shown  in Fig. 5(a),
wealth levels are on the rise overall,  which is consistent with
reality. Inversely, Fig. 5(b) shows that the expenses of educa-
tional  infrastructure  are  on  the  decline,  which  means  that
counties  spend  more  money  on  educational  infrastructure  at
the  initial  time ,  and  less  expense  is  needed  as  the  educa-
tional facilities become better.

X∗(N) x0

(Ex0,γ,π3,π5) x0

x0 X∗(100) = 1
100

∑100
i=1 X∗i

Furthermore, it  follows from (39) in Lemma 6 that the dif-
ference between  and  is small enough in the sense of
expectation  when N is  big  enough.  Based  on  the  curves  of

 shown  in Fig. 3(b),  the  curve  of  can  be
obtained.  As  a  result,  one  sample  trajectory  of  each  of  the
stochastic  processes  and  is  shown in
Fig. 6. As we see in Fig. 6, it is possible that the two trajecto-
ries coincide well  at  some times and have some slight devia-
tions at the other times.

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Time

2.5

3.0

3.5

4.0

4.5
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0 0.005 0.010
Time

2.8
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3.2

x0
 *(100)

 
x0 X∗(100)Fig. 6.     Numerical solutions of  and .

   

VI.  Conclusion and Outlook

This  paper  discusses  a  mean-field  game  of  FBSDE  in  the
framework  of  partial  observation.  Employing  the  filter  tech-
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X∗i Y∗i (1 ≤ i ≤ 100)Fig. 5.     Numerical solutions of  and  .
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nique to solve a limiting control problem, a decentralized con-
trol  strategy is  obtained,  which is  further  verified to  be an ϵ-
Nash equilibrium of mean-field game. We also show a finan-
cial example with some numerical results.

Ūi

Ūi

We  point  out  that  the  results  established  in  this  work  are
based  on  Definition  1,  where  the  admissible  control  set 
depends  on  the  common  noise W.  In  reality, W may  not  be
observed  by  all  agents.  That  is  to  say, W is  absent  from ,
which  results  in  the  unavailability  of  Lemma 1.  In  this  case,
how to solve Problem II will face many technical challenges.
We will come back to this topic in our future work.  

Appendix A
Proof of Lemma 1

Proof: Set
 

X̃ = (X1, . . . ,XN)τ, u = (u1, . . . ,uN)τ, G̃ = (Ḡ, . . . ,Ḡ)τ

Ŵ = (W1, . . . ,WN)τ, X̃0 = (a10, . . . ,aN0)τ

Ã = AIN , B̃ = BIN , Ĝ =
G
N

1N×N , Ξ̄ = (σ̄, . . . , σ̄)τ

IN 1N×N N ×N N ×Nwhere  and  represent  identity matrix and 
matrix with all  entries equal to 1,  respectively.  Then the first
equation of (1) is
 dX̃ =

[
(Ã+ Ĝ)X̃+ B̃u+ G̃

]
dt+σdŴ +Ξ̄dW

X̃(0) = X̃0

(60)

X̃ ∈ L2
F

(
0,T ;RN

)
(Yi,Zi1, . . . ,ZiN ,Zi) ∈ L2

F (0,T ;
RN+2) Yi ∈ L2

F (0,T ;R)

which is  uniquely solvable with .  Similarly,
by virtue of [37] and (60), the second equation of (1) and (2)
produce  unique  solutions 

 and , respectively. ■  

Appendix B
Proof of Lemma 2

Ji(ui) (i ∈ N)

v′,v ∈ Ū λ1,λ2 ∈ (0,1)
λ1+λ2 = 1

Proof: We  first  prove  that   is  strictly  convex.
For simplicity, we drop the subscript i here. For any two dif-
ferent  controls  and  any  with

, we have
 

ϑλ1v′+λ2v = λ1ϑ
v′ +λ2ϑ

v

ϑ = x,ywhere . Then
 

J(λ1v′+λ2v)−λ1J(v′)−λ2J(v)

= −1
2
λ1λ2E

{w T

0

[
Q1

(
xv′ − xv

)2
+R

(
v′− v

)2
]
dt

+K1
(
xv′ (T )− xv(T )

)2
+K2

(
yv′ (0)− yv(0)

)2
}
< 0

J(v)which implies that  is strictly convex. Moreover,
 

J(v) ≥ 1
2

{
E

w T

0

[
R
(
v+

r
R

)2
−

Q̄2
1

Q1
− r2

R

]
dt−

K̄2
1

K1
−

K̄2
2

K2

}
J(v)which  shows  the  coercive  property  of .  Thus,  by  convex

analysis theory, Problem II is uniquely solvable. ■  

Appendix C
Proof of Theorem 1

Proof: i) Noting the fourth equality of (18), we assume that
 

q∗i = αp∗i +βx
∗
i +γ, i ∈ N (61)

α(T ) = −H β(T ) = K1 γ(T ) = K̄1where , , .  Using Itô’s  formula
to (61), we arrive at
 

dq∗i =
[
(α̇+C1α)p∗i + (β̇+Aβ)x∗i +R−1Bβ(D−Bα) p̂∗i

−R−1B2β2 x̂∗i + γ̇−R−1B2βγ−R−1Bβr+βGx0

+βḠ
]
dt+βσdWi+

(
αC2 p∗i +βσ̄

)
dW.

Comparing  the  above  equality  with  the  second equation  of
(18), it yields that
 

k∗ii = βσ, k∗i = αC2 p∗i +βσ̄

(α̇+C1α+Aα−C3)p∗i +R−1Bβ(D−Bα)p̂∗i + γ̇

+ (β̇+2Aβ+Q1)x∗i −R−1B2β2 x̂∗i + (A−R−1B2β)γ

+ (βG−Q1)x0+βḠ−R−1Bβr+ Q̄1 = 0.
(62)

E[·]Taking  on both sides of (62), we get
 

(α̇+C1α+Aα−C3+R−1BDβ−R−1B2αβ)Ep∗i + γ̇

+ (β̇+2Aβ−R−1B2β2+Q1)Ex∗i + (A−R−1B2β)γ

+ (βG−Q1)Ex0+βḠ+ Q̄1−R−1Bβr = 0 (63)

which implies (20)–(22).
ii) We conjecture that

 

y∗i = π1 p∗i +π2x∗i +π3, i ∈ N (64)
π1(T ) = 0, π2(T ) = H, π3(T ) = 0where . Then we obtain

 

dy∗i =
[
(π̇1+π1C1)p∗i + (π2BR−1D−π2R−1B2α) p̂∗i

+ (π̇2+π2A)x∗i −π2R−1B2βx̂∗i + π̇3

−π2R−1B2γ−π2BR−1r+π2Gx0+π2Ḡ
]
dt

+π2σdWi+ (π1C2 p∗i +π2σ̄)dW.

Comparing  the  above  equality  with  the  second equation  of
(17), we have
 

z∗ii = π2σ, z∗i = π1C2 p∗i +π2σ̄ (65)
 

(π̇1+2C1π1)p∗i +R−1(Bπ2+D)(D−Bα)p̂∗i + π̇3

+ [π̇2+ (A+C1)π2+C3]x∗i −R−1Bβ(π2B+D)x̂∗i

−R−1B(π2B+D)γ−R−1(π2B+D)r+ (Gπ2+F)x0

+π2Ḡ+C1π3+ F̄ +C2z∗i = 0. (66)

z∗i E[·]Putting  given  by  (65)  into  (66)  and  taking  on  both
sides of (66), we obtain (23)–(25).

iii) Set
 

p∗i = −π4y∗i +π5, i ∈ N (67)
π4(0) = K2,π5(0) = −K̄2 E[·]where .  Taking  on  both  sides  of

(67),
 

Ep∗i = −π4Ey∗i +π5. (68)
Differentiating on (68), we get
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dEp∗i =
{[− π̇4−

(
C2

2π1+R−1D(D−Bα)
)
π2

4

+C1π4
]
Ey∗i + π̇5+π4

[
π2C2σ̄−R−1D(r+Bγ)+ F̄

]
+

(
π1C2

2 +R−1D2−R−1DBα
)
π4π5

+π4(C3−R−1DBβ)Ex∗i +π4FEx0
}
dt. (69)

Utilizing Theorem 4.2 in [38], it holds
 

x0 = lim
N→+∞

1
N

N∑
i=1

x∗i = E
(
x∗i

∣∣∣FW
t

)
.

Ex∗i Ex0Replacing  by  in (69), we have
 

dEp∗i =
{[− π̇4−

(
C2

2π1+R−1D(D−Bα)
)
π2

4

+C1π4
]
Ey∗i + π̇5+π4

[
π2C2σ̄−R−1D(r+Bγ)

+ F̄
]
+

(
π1C2

2 +R−1D2−R−1DBα
)
π4π5

+π4(C3−R−1DBβ+F)Ex0
}
dt

= (−C1π4Ey∗i +C1π5)dt,

which suggests (27) and (28).
y∗i

x∗i

iv)  Finally,  we proceed to  give the  relationship between 
and . By virtue of ii) and iii), we have
 

y∗i = π1(−π4y∗i +π5)+π2x∗i +π3

which implies
 

y∗i = (1+π1π4)−1
(
π2x∗i +π3+π1π5

)
.

■  

Appendix D
Proof of Lemma 4

To prove Lemma 4, we first present a lemma (Lemma B1).
Let
 

Θ1 = A−R−1B2β, Θ2 = βG−Q1

Θ3 = βḠ+ Q̄1−R−1Bβr

Θ4 = (−R−1Br+ Ḡ+C2σ̄)π2+ F̄ −R−1Dr

Θ5 =Gπ2+F, Θ6 = −R−1B(Bπ2+D)
 

Θ7 = −(A+G+BA2)

Θ8 =C2
2π1π4+R−1Dπ4(D−Bα)−C1

Θ9 =
(
C2σ̄π2−R−1Dr+ F̄

)
π4

Θ10 = −R−1DBπ4, Θ11 = (F +C3−R−1DBβ)π4

Θ14 = (Θ3,Θ4)τ, Θ15 = (K̄1,0)τ

Θ18 = (Θ9,R−1Br− Ḡ)τ, Θ19 = (−K̄2,a0)τ

Φ = (γ,π3)τ, ϕ = (π5,Ex0)τ

 

Θ12 =

 Θ1 0
Θ6 C1

 , Θ13 =

 0 Θ2

0 Θ5


 

Θ16 =

 Θ8 Θ11

−BA3 Θ7

 , Θ17 =

 Θ10 0

R−1B2 −BA1


 

I =

 1 0
0 1

 , H̃ =

 −Θ12 −Θ13

−Θ17 −Θ16


0and let  be a zero matrix (or vector). Introduce

 

˙̃P+Θ16P̃− P̃Θ12− P̃Θ13P̃+Θ17 = 0, P̃(0) = 0 (70)
 

˙̃Q+ (Θ16− P̃Θ13)Q̃− P̃Θ14+Θ18 = 0, Q̃(0) = Θ19. (71)
Inspired by Theorem 5.12 in [39], we introduce

  U̇(t)
V̇(t)

 = H̃(t)

 U(t)
V(t)

 ,  U(0)
V(0)

 =  I

0


whose unique solution is
  U

V

 = e
r t

0 H̃(r)dr

 I

0

 .
Lemma  B1: Under  Assumptions  1–3,  (70)  and  (71)  admit

unique solutions.
P̃ = VU−1Proof of Lemma B1: Let , which satisfies

 

˙̃P = −Θ17−Θ16P̃+ P̃Θ12+ P̃Θ13P̃.
P̃1, P̃2

ˆ̃P = P̃1− P̃2
ˆ̃P

Then (70) is solvable. Assume that  are two solutions
of (70). Set . Then  satisfies
 

˙̃̂
P+ (Θ16− P̃2Θ13) ˆ̃P− ˆ̃P(Θ12+Θ13P̃1) = 0
ˆ̃P(0) = 0.

ˆ̃P ≡ 0Gronwall’s  inequality  implies .  This  proves  the
uniqueness  for  (70).  Hence,  (70)  is  uniquely  solvable.  Based
on this, (71) is uniquely solvable. ■

Proof  of  Lemma  4: With  the  above  notations,  (22),  (25),
(28) and (35) are written as
 Φ̇+Θ12Φ+Θ13ϕ+Θ14 = 0, Φ(T ) = Θ15

ϕ̇+Θ16ϕ+Θ17Φ+Θ18 = 0, ϕ(0) = Θ19.
(72)

Consider
  ˙̄Φ+Θ12Φ̄+Θ13(P̃Φ̄+ Q̃)+Θ14 = 0

Φ̄(T ) = Θ15

(73)

P̃ Q̃
Φ̄ ϕ̄ = P̃Φ̄+ Q̃ ϕ̄

where  and  are given by (70) and (71). Then (73) admits a
unique solution . Define . Then  satisfies
  ˙̄ϕ+Θ16ϕ̄+Θ17Φ̄+Θ18 = 0

ϕ̄(0) = Θ19.

Thus, our claims follow. ■  

Appendix E
Proof of Lemma 5

Proof: It follows from (34) that:
 

E|x0(t)|2 ≤ cE
{
|a0|2+

w T

0

(
|B(A1π3+A3π5)|2

+
∣∣∣R−1B(Bγ+ r)

∣∣∣2+ ∣∣∣Ḡ∣∣∣2+ |σ̄|2 )
dt

}
≤ c. (74)

Here c represents a constant independent of N. Similarly, we
get 
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E
∣∣∣x∗i (t)

∣∣∣2 ≤ cE
{
|ai0|2+

w T

0

( ∣∣∣x̂∗i ∣∣∣2+ |x0|2
)
dt

}
(75)

and
 

E
∣∣∣x̂∗i (t)

∣∣∣2 ≤ cE
{
|a0|2+

w T

0

(∣∣∣x∗i ∣∣∣2+ |x0|2
)
dt

}
. (76)

Based on (74)–(76), we derive
 

E
[ ∣∣∣x∗i (t)

∣∣∣2+ ∣∣∣x̂∗i (t)
∣∣∣2 ]

≤ cE
[
|ai0|2+ |a0|2+

w T

0

( ∣∣∣x∗i ∣∣∣2+ ∣∣∣x̂∗i ∣∣∣2 )
dt

]
.

supt∈[0,T ]E|x∗i (t)|2
supt∈[0,T ]E|x̂∗i (t)|2 E

r T
0 |u∗i (t)|2dt

Gronwall’s  inequality  indicates  that ,
 and  are  bounded.  Further,

applying the basic estimates of BSDE to the second equation
of (37), we obtain
 

E
[ ∣∣∣y∗i (t)

∣∣∣2+w T

0

(∣∣∣z∗ii∣∣∣2+ ∣∣∣z∗i ∣∣∣2)dt
]
≤ cE

{
|x∗i (T )|2

+
w T

0

(∣∣∣x∗i ∣∣∣2+ |u∗i |2+ |x0|2+
∣∣∣F̄∣∣∣2)dt

}
.

L2 x∗i ,u
∗
i , x0On account of the -boundedness of ,

 

E
[ ∣∣∣y∗i (t)

∣∣∣2+w T

0

(∣∣∣z∗ii∣∣∣2+ ∣∣∣z∗i ∣∣∣2)dt
]
≤ c.

Then, we draw the desired conclusion. ■  

Appendix F
Proof of Lemma 6

Proof: By (36)–(38), we get
 

dX∗(N)
=

{
(A+G)X∗(N)

+B
[
A2 x̂∗

(N)
+A1π3

+A3π5−R−1(Bγ+ r)
]
+ Ḡ

}
dt+σ

1
N

N∑
i=1

dWi

+ σ̄dW, X∗(N)(0) = a(N)
0 =

1
N

N∑
i=1

ai0

 

dx∗(N)
=

{
Ax∗(N)

+B
[
A2 x̂∗(N)+A1π3+A3π5

−R−1(Bγ+ r)
]
+Gx0+ Ḡ

}
dt+σ

1
N

N∑
i=1

dWi

+ σ̄dW, x∗(N)(0) = a(N)
0

and
 

dx̂∗(N) =

{
(A+BA2)x̂∗(N)+B

[
A1π3+A3π5

−R−1(Bγ+ r)
]
+Gx0+ Ḡ

+ (σ+ f P) f
(
x∗(N)− x̂∗(N)

)}
dt

+ (σ+ f P)
1
N

N∑
i=1

dWi+ σ̄dW, x̂∗(N)(0) = a0.

Recalling (34), it yields that 



d
(
X∗(N)− x0

)
=

[
(A+G)

(
X∗(N)− x0

)
+BA2

(
x̂∗(N)− x0

) ]
dt+σ

1
N

N∑
i=1

dWi

X∗(N)(0)− x0(0) = a(N)
0 −a0

(77)

 

d
(
x∗(N)− x0

)
=

[
A
(
x∗(N)− x0

)
+BA2

(
x̂∗(N)− x0

) ]
dt+σ

1
N

N∑
i=1

dWi

x∗(N)(0)− x0(0) = a(N)
0 −a0

(78)

and
 

d
(
x̂∗(N)− x0

)
=

[
(A+BA2)

(
x̂∗(N)− x0

)
+ (σ

+ f P) f
(
x∗(N)− x̂∗(N)

) ]
dt+ (σ+ f P)

1
N

N∑
i=1

dWi

x̂∗(N)(0)− x0(0) = 0.

(79)

Taking squares and mathematical expectations on both sides
of (77)–(79) in integral forms, we arrive at
 

E
∣∣∣X∗(N)(t)− x0(t)

∣∣∣2 ≤ c
[
E

w t

0

( ∣∣∣X∗(N)− x0
∣∣∣2

+
∣∣∣x̂∗(N)− x0

∣∣∣2 )
ds+E

∣∣∣∣a(N)
0 −a0

∣∣∣∣2+Γt

]
(80)

 

E
∣∣∣x∗(N)(t)− x0(t)

∣∣∣2 ≤ c
[
E

w t

0

( ∣∣∣x̂∗(N)− x0
∣∣∣2

+
∣∣∣x∗(N)− x0

∣∣∣2 )
ds+E

∣∣∣∣a(N)
0 −a0

∣∣∣∣2+Γt

]
(81)

 

E
∣∣∣x̂∗(N)(t)− x0(t)

∣∣∣2 ≤ c
[
E

w t

0

( ∣∣∣x̂∗(N)− x0
∣∣∣2

+E
∣∣∣x∗(N)− x0

∣∣∣2 )
ds+Γt

]
(82)

where
 

ΓtE

∣∣∣∣∣∣∣
w t

0

1
N

N∑
i=1

dWi

∣∣∣∣∣∣∣
2

= O
(

1
N

)

E
∣∣∣∣a(N)

0 −a0

∣∣∣∣2 = O
(

1
N

)
. (83)

It  follows  from  Gronwall’s  inequality  and  (80)–(83)  that
(39)–(41) hold. ■  

Appendix G
Proof of Lemma 7

Proof: In accordance with (36) and (37), we get 

HUANG et al.: A MEAN-FIELD GAME FOR A FORWARD-BACKWARD STOCHASTIC SYSTEM 757 



d
(
X∗i − x∗i

)
=

[
A
(
X∗i − x∗i

)
+G

(
X∗(N)− x0

)]
dt

X∗i (0)− x∗i (0) = 0
(84)

 

−d
(
Y∗i − y∗i

)
=

[
C1

(
Y∗i − y∗i

)
+C2

(
Z∗i − z∗i

)
+C3

(
X∗i − x∗i

)
+F

(
X∗(N)− x0

)]
dt

−
N∑
j,i

Z∗i jdW j−
(
Z∗ii− z∗ii

)
dWi−

(
Z∗i − z∗i

)
dW

Y∗i (T )− y∗i (T ) = H
[
X∗i (T )− x∗i (T )

]
.

(85)
It  follows  from  (84)  and  Gronwall’s  inequality  that  (42)

holds.  Applying  some  estimate  techniques  of  BSDE  to  (85),
we obtain
 

E
∣∣∣Y∗i (t)− y∗i (t)

∣∣∣2 ≤ cE
[ ∣∣∣X∗i (T )− x∗i (T )

∣∣∣2
+

w T

0

( ∣∣∣X∗i − x∗i
∣∣∣2+ ∣∣∣X∗(N)− x0

∣∣∣2 )
dt

]
.

Since
 

sup
t∈[0,T ]

E
∣∣∣X∗(N)(t)− x0(t)

∣∣∣2 = O
(

1
N

)

sup
i∈N

sup
t∈[0,T ]

E
∣∣∣X∗i (t)− x∗i (t)

∣∣∣2 = O
(

1
N

)
.

Gronwall’s inequality suggests that
 

sup
i∈N

sup
t∈[0,T ]

E
∣∣∣Y∗i (t)− y∗i (t)

∣∣∣2 = O
(

1
N

)
.

■  

Appendix H
Proof of Lemma 8

Proof:
 

Ji(u∗i ,u
∗
−i)− Ji(u∗i ) =

1
2
E

{w T

0

[
Q1

((
X∗i −X∗

(N)
)2

− (x∗i − x0)2
)
+2Q̄1

((
X∗i −X∗

(N)
)
(x∗i − x0)

)]
dt

+K1

[(
X∗i (T )

)2− (x∗i (T ))2
]
+2K̄1

[
X∗i (T )− x∗i (T )

]
+K2

[(
Y∗i (0)

)2− (y∗i (0))2
]
+2K̄2

[
Y∗i (0)− y∗i (0)

]}
i ∈ Nwhere . Utilizing (39) and (42) with Hölder’s inequality,

we have
 

sup
t∈[0,T ]

E

∣∣∣∣∣(X∗i −X∗(N)
)2
− (x∗i − x0)2

∣∣∣∣∣ = O
(

1
√

N

)
. (86)

Evidently,
 

sup
t∈[0,T ]

E
∣∣∣∣(X∗i −X∗(N)

)
(x∗i − x0)

∣∣∣∣ = O
(

1
√

N

)
. (87)

Similarly, (42) and (43) imply 



E

∣∣∣∣∣(X∗i (T )
)2− (x∗i (T ))2

∣∣∣∣∣ = O
(

1
√

N

)
E
∣∣∣X∗i (T )− x∗i (T )

∣∣∣ = O
(

1
√

N

)
E

∣∣∣∣∣(Y∗i (0)
)2− (y∗i (0))2

∣∣∣∣∣ = O
(

1
√

N

)
E
∣∣∣Y∗i (0)− y∗i (0)

∣∣∣ = O
(

1
√

N

)
.

(88)

Based on (86)–(88), our result holds. ■  

Appendix I
Proof of Lemma 9

Proof: It  follows  from  the  first  equations  of  (49)  and  (50)
that:
 

E
∣∣∣l0i (t)

∣∣∣2 ≤ cE
[
|ai0|2+

w T

0

( ∣∣∣l0i ∣∣∣2+ |ui|2+ |x0|2
)
dt

]
and
 

E
∣∣∣∣l0j (t)∣∣∣∣2 ≤ cE

[
|a j0|2+

w T

0

( ∣∣∣∣l0j ∣∣∣∣2+ ∣∣∣∣u∗j ∣∣∣∣2+ |x0|2
)
dt

]
i, j ∈ N , j , iwhere . Then we obtain

 

E
N∑

k=1

∣∣∣l0k(t)
∣∣∣2 ≤ cE

{
N max

1≤k≤N
|ak0|2+

w T

0

( N∑
k=1

∣∣∣l0k ∣∣∣2
+

N∑
k,i

∣∣∣u∗k ∣∣∣2+ |ui|2+N |x0|2
)
dt

}
.

L2 x0 ui u∗j ( j , i)By the -boundedness of , ,   and Gronwall’s
inequality, we arrive at
 

E
N∑

j=1

∣∣∣∣l0j (t)∣∣∣∣2 = O (N)

sup1≤i≤N supt∈[0,T ]E|l0i (t)|2 ≤ c
i ∈ N

supt∈[0,T ]E
∣∣∣m0

i (t)
∣∣∣2 E

r T
0 |n0

ii(t)|2dt E
r T

0 |n0
i (t)|2dt

and .  Analogously,  by  the  esti-
mates  of  BSDE,  we  derive  that  for  any ,

,  and  are
bounded. ■
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