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   Dear Editor,

This  letter  addresses  the  synchronization  problem  of  a  class  of
delayed stochastic complex dynamical networks consisting of multi-
ple  drive  and  response  nodes.  The  aim  is  to  achieve  mean  square
exponential synchronization for the drive-response nodes despite the
simultaneous  presence  of  time  delays  and  stochastic  noises  in  node
dynamics.  Toward this  aim, a  hybrid impulsive controller,  featuring
both delayed and non-delayed impulses, is developed. Sufficient con-
ditions of mean square exponential stability of the delayed stochastic
synchronization error system are then derived. It is further shown that
exponential synchronization can still be preserved even if the impul-
sive controller involves only delayed impulses. An illustrative exam-
ple  is  finally  presented  to  demonstrate  the  effectiveness  of  the
obtained theoretical results.

Complex  dynamical  networks  (CDNs)  are  networks  consisting  of
multiple interconnected nodes (or  subsystems) where each node has
its  own  dynamical  behavior.  Examples  of  such  networks  include
power grids [1], multi-agent systems [2], connected vehicles [3], [4],
and distributed games [5].  The concept of synchronization in CDNs
refers to the ability of the nodes within the network to reach a coordi-
nated  objective.  So  far,  several  effective  synchronization  control
methods, such as adaptive synchronization control [6], sampled-data
synchronization control [7], intermittent synchronization control [8],
impulse  synchronization  control  [9]–[11],  have  been  developed  for
various  CDNs.  Among  these  methods,  the  impulse  control  strategy
has attracted a great deal of attention due to its simple structure and
discrete nature of implementation, and finds potential applications in
various  energy  efficiency  scenarios  owing  to  its  low  energy  con-
sumption at impulse instants.

Impulsive  control  for  CDNs  relies  on  the  feedback  information
transmitted  from  the  drive  nodes  to  the  response  nodes  at  discrete
instants.  However,  due to  measurement  failures,  restricted transmis-
sion  rates  over  communication  networks  and  other  uncertainties  at
the sampling instants, the feedback data may suffer from time delays
as  well.  Given  this  fact,  how  to  explore  delayed  impulses  and
develop  effective  impulsive  control  approach  to  synchronization  of
CDNs is  of  great  significance.  However,  it  should be noted that  the
delayed impulses are treated as a kind of interference in many exist-
ing  results,  such  as  [9]–[11].  This  may  introduce  certain  conser-
vatism  into  the  analysis  and  design  criteria.  On  the  other  hand,
although  many  impulsive  synchronization  control  results  have  been

available to CDNs, there has been a few concerning about the simul-
taneous  presence  of  time  delays  and  stochastic  noises  in  system
dynamics.  It  is  well  acknowledged  that  delays  and/or  stochastic
noises  can  cause  oscillation  and  instability  of  the  CDN,  and  further
make the impulsive synchronization control issue quite challenging.

be

Motivated by the above discussion, we revisit the exponential syn-
chronization  problem  of  a  class  of  delayed  stochastic  CDNs.  Our
focus is laid on the inclusion of both time delay and stochastic noise
in the system dynamics and further  the development  of  an effective
hybrid  impulsive  controller.  The  main  contributions  are  twofold.  1)
A  hybrid  impulsive  controller  incorporating  both  delayed  and  non-
delayed impulses is designed to account for the phenomenon that the
transient  behavior  of  impulses  depends on both the  current  and his-
torical  information  of  the  synchronization  error  system  subject  to
time  delay  and  stochastic  noise.  2)  Numerically  tractable  criteria  in
both hybrid and delayed impulsive control  cases are derived to pre-
serve the mean square exponential stability of the delayed stochastic
synchronization  error  system.  The  explicit  relationship  between  the
inherent nonlinearities in the node dynamics and the proposed impul-
sive  controller  parameters  can  be  established.  To  deal  with  delayed
impulses,  different  from [9]–[11],  we  provide  a  better  impulse  esti-
mation in the proof of our main result, based on which we also show
that  the  stability  criterion  in  the  case  of  delayed  impulsive  control
only can  readily derived.

Problem formulation: Consider  a  class  of  drive-response system
whose dynamics can be described by a stochastic CDN of the follow-
ing stochastic delayed differential equations:
 

dxi(t) =
(

f (xi(t), xi(t−τ))+ c
N∑

j=1

bi jΓx j(t)

+ c̃
N∑

j=1

di jΓx j(t−τ)
)
dt+g(xi(t), xi(t−τ))dω(t) (1)

 

dyi(t) =
(

f (yi(t),yi(t−τ))+ui(t)+ c
N∑

j=1

bi jΓy j(t)

+ c̃
N∑

j=1

di jΓy j(t−τ)
)
dt+g(yi(t),yi(t−τ))dω(t) (2)

i ∈ {1,2, . . . ,N} xi(t) ∈ Rn

xi(s) = ϕi(s) s ∈ [−τ,0]
yi(t) ∈ Rn

yi(s) = φi(s) s ∈ [−τ,0]
f (·, ·),g(·, ·) : Rn ×Rn→ Rn

ui(t) ∈ Rn

τ > 0 ω(t) ∈ Rn

Γ = (γi j) ∈ Rn×n

c̃
bi j ≥ 0

di j ≥ 0 i , j

for any , where  is the state vector of the i-th
drive node of the CDN with  for any  being the
initial  condition;  is  the  state  vector  of  the i-th  response
node of the CDN with  for any  being the ini-
tial  condition;  are  nonlinear  vector-val-
ued functions;  denotes the desired control input to the i-th
response node;  denotes the constant delay;  denotes an
n-dimensional  Brownian motion;  is  a  positive  inner
coupling matrix; c and  denote the prescribed coupling strengths of
the  non-delayed  and  delayed  state  terms,  respectively;  and

, ,  denote  the  connection  weights  among  the  interacting
nodes.

ui(t) i ∈ {1,2, . . . ,N}

λ1 > 0 λ2 > 1 E∥e(t)∥2 ≤ λ2e−λ1t

E∥ξ∥2τ t ≥ 0 ξ ∈ PCb
F0

([−τ,0];Rn) e(t)
ei(t) e(t) = [e1(t),e2(t), . . . ,eN (t)]T

ei(t) = yi(t)− xi(t)

Our  primary  objective  for  the  drive-response  system  above  is  to
design an admissible control law ,  such that under
the  co-existence  of  the  time  delay  and  stochastic  noise,  all  the
response nodes in (2) can exponentially synchronize with the corre-
sponding  drive  nodes  in  (1)  in  a  mean  square  sense;  namely,  there
exist  constants  and  such  that  [12]: 

 holds  for  any  and ,  where 
denotes  the  stacked  form  of ,  i.e., 
with  representing the  synchronization error  of  the
i-th node.
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i ∈ {1,2, . . . ,N}
In this study, we propose a hybrid impulsive controller of the fol-

lowing form for each response node i, :
 

ui(t) =
∞∑

k=1

(
Lei(t)+Kei(t−τ)

)
δ(t− t−k ) (3)

L,K ∈ Rn×n {tk | k ∈ N}
tk < tk+1

limk→∞ tk = +∞ δ(·) ei(tk) = ei(t+k ) =
limk→t+k

ei(t) ei(t−k ) = limk→t−k
ei(t)

β0 ≤ tk − tk−1 ≤ β1 k ∈ N β0,β1

where  denote  the  control  gain  matrices; 
denotes  the  impulse  time  sequence  satisfying  and

;  and  is  the  Dirac  function.  Let 
 and .  To  facilitate  the  subsequent

analysis, we let  for any , where  denote
the bounds of the impulsive intervals.

K = 0

L = 0

{xi(t)} τ

ei(t−τ)

Remark  1:  In  particular,  if ,  the  controller  (3)  reduces  to  a
non-delayed impulse controller which has been intensively employed
in the literature; see, e.g., [13], [14]. On the other hand, if , then
the  controller  becomes  a  completely  delayed  impulse  controller,
which seems more practical. This is because the drive nodes are often
remotely  located  from  the  response  nodes,  meaning  that  the  drive
nodes’ states  may experience transmission delays (say ) when
arriving at the corresponding response nodes. As a result, the delayed
error  should  not  be  neglected  during  the  construction  of  an
impulsive synchronization controller.

Substituting (3) into (2) and combining (1) yield the following syn-
chronization error system:
 

dei(t) =
(
F(t)+ c

N∑
j=1

bi jΓe j(t)+ c̃
N∑

j=1

di jΓe j(t−τ)
)
dt

+G(t)dω(t)
ei(tk) = (L+ In)ei(t−k )+Kei(t−k −τ), k ∈ N (4)
i ∈ {1,2, ...,N} ei(s) = ξ(s) = ϕi(s)−φi(s) s ∈ [−τ,0]

F(t)= f (yi(t),yi(t−τ))− f (xi(t), xi(t−τ)) G(t)=g(yi(t),yi(t−τ))−
g(xi(t), xi(t−τ))

for  any ,  where , ,
, and 

.
Main results: The following theorem states a sufficient condition

for  the  mean  square  exponential  stability  of  the  delayed  stochastic
synchronization error system (4).

β1 > β0 > 0 α1 ∈ R α2 ≥ 0 q > 1
ν ∈ (0,1) ε1 > 0 λ1, λ2, γ1, γ2

L, K

Theorem  1:  Given  scalars , , , ,
, ,  positive  Lipschitz  constants ,  and

matrices , if there exist positive definite matrices P and Q such
that the following inequalities hold:
  Φ In ⊗P c̃D⊗PΓ

∗ −In ⊗Q 0
∗ ∗ Ω

 ≤ 0 (5)

 

[(L+ In)+K]T P[(L+ In)+K]− νP ≤ 0 (6)
Φ = cB⊗PΓ+ c(B⊗PΓ)T + IN ⊗Y1QY1 + IN ⊗L1QL1 −α1IN

⊗P B = (bi j) Ω = IN ⊗L2QL2 + IN ⊗Y2QY2 −α2IN ⊗P D = (di j)
L1 = λ1IN L2 = λ2IN Y1 = γ1IN Y2 = γ2IN

where 
, , , ,

, , , ,  and further the follow-
ing condition is satisfied:
 

eαβ1 <min{q, [(1+ε)ν+6∥K∥2e2λτ(1+1/ε)

(c2/c1)(K1τ+K2 + l2h)]−1} (7)
c1 = λmin(P),c2 = λmax(P) α = α1 +α2q < 0, K1 = ∥λ1In+

cB⊗Γ∥2 + ∥λ2In + cD⊗Γ∥2 K2 = γ
2
1 +γ

2
2 h̄ =max{∥L∥2 ∥K∥2}

lβ0 ≤ τ < (l+1)β0

where ,  
, , , , l is a

positive constant satisfying ,  then the synchroniza-
tion error system (4) is mean square exponentially stable.

ζ(t) = [eT (t),eT (t−τ)]T

V(t) = eT (t)Pe(t) ∀t ∈ [tk−1, tk) k ∈ N
ô LV(t) = 2

∑N
i=1 eT

i (t)P(F(t)+ c
∑N

j=1 bi jΓe j(t)+

c̃
∑N

j=1 di jΓe j(t−τ))+Tr(GT (t)PG(t)) ≤∑N
i=1[eT

i (t)PQ−1Pei(t)+ eT
i (t)

L1QL1ei(t) + eT
i (t−τ)L2QL2ei(t−τ)+2cei(t)T ∑N

j=1 bi jPΓe j(t) + c̃×
eT

i (t)
∑N

j=1 di jPΓe j(t−τ)+ eT
i (t)Y1QY1ei(t)+ eT

i (t−τ)Y2QY2ei(t−τ)]
Tr(·)

ELV(e(t),e(t−τ)) ≤ ζT (t)Λζ(t)+α1EeT (t)Pe(t)+α2EeT (t−τ)Pe(t−τ) ≤
α1EV(e(t))+α2EV(e(t−τ)) ≤ αEV(e(t)) EV(e(t+ θ)) ≤
qEV(e(t)), θ ∈ [−τ,0] Λ = (Λss)

Proof: Set  and choose the Lyapunov func-
tion candidate as . For , , by using
It  formula,  we  have 

 
 

,
where  denote  the  matrix  trace.  Then  by  (5),  we  have

 whenever 
,  where  is  a  symmetric  2-by-2  block

Λ11 = PQ−1P⊗ In + cB⊗PΓ+ c(B⊗
PΓ)T + In ⊗ L1QL1 + In ⊗ Y1QY1 − α1In ⊗ P Λ12 = c̃D ⊗ PΓ
Λ22 = In ⊗L2QL2 + In ⊗Y2QY2 −α2In ⊗P

matrix  with  its  entries  given  by 
,  and

.
λ, σ > 0If the condition (7) holds, then there exist  such that

 

e(λ+α)β1 < σ <min{qe−λτ,η} (8)
η = [(1+ε2)ν+6∥Dk∥2e2λτ(1+1/ε2)( c2

c1
)(K1τ+K2τ+ l2h̄)]−1where .

W(t) = eλtV(t) t ≥ −τ
∆t > 0 ∀t ∈ [tk−1, tk) t+∆t ∈ (tk−1, tk)

EW(t+∆t)−EW(t) =
r t+∆t

t ELW(s)ds
LW(s) = eλs[λV(s)+LV(s)] D+EW(t) =

ELW(t,e(t),e(t−τ)) D+EW(t)= limsuph→0+
EW(t+h)−EW(t)

h

ξ ∈ PCb
F0

([−τ,0];Rn)
EW(t) ≤ c2E∥ξ∥2τ < σc2E∥ξ∥2τ t ∈ [−τ,0] c2 = λmax(P)

Define a function as , . Choose a small enough
 such that for , we have . Then by

Dynkin’s  formula,  one  has ,
where ,  which  implies  that 

,  where .
For  given ,  the  following  inequality  holds:

 for any , where .
EW(t) ≤ σc2E∥ξ∥2τ t ≥ 0

EW(t) ≤ σc2E∥ξ∥2τ t ∈ [0, t1)
t ∈ (0, t1)

EW(t) ≥ σc2E∥ξ∥2τ t∗ = inf{t ∈ [0, t1) : EW(t) ≥ σc2E∥ξ∥2τ}
EW(t) t ∈ [0, t1) t∗ ∈

(0, t1) EW(t∗) = σc2E∥ξ∥2τ EW(t) < σc2E∥ξ∥2τ t ∈ [−τ, t∗)
t∗∗=sup{t ∈ [0, t∗) : EW(t)≥c2E∥ξ∥2τ} EW(t∗∗)=
c2E∥ξ∥2τ EW(t) > c2E∥ξ∥2τ t ∈ (t∗∗, t∗]

t ∈ [t∗∗, t∗] θ ∈ [−τ,0] EW(t+ θ) ≤ σc2E∥ξ∥2τ ≤ σEW(t)
EV(t+ θ) ≤ σeλτEV(e(t)) ≤ qEV(e(t))

t ∈ [t∗∗, t∗] D+EW(t) = ELW(t) ≤ (λ+α)EW(e(t))
EW(t∗) ≤ EW(t∗∗)e(λ+α)(t∗−t∗∗) ≤ e(λ+α)β1 c2E∥ξ∥2τ <

σc2E∥ξ∥2τ EW(t) ≤ σc2E∥ξ∥2τ
t ∈ [0, t1) ∀m ≥ 1, m ∈ N

Next,  we shall  show that , .  We first  prove
that  holds  for  any .  The  proof  is  con-
ducted  by  contradiction.  Suppose  that  there  exists  a  such
that .  Set .
Due to the continuity of  on , it can be deduced that 

 and , , .  Set
,  it  can  be  obtained 

,  and , .  From  above  mentioned,
for , ,  we  have ,
which  means  that .  Then  for

,  we  get ,  which
implies  that 

.  This  is  a  contradiction,  thus  holds  for
any . Assume for ,
 

EW(t) ≤ σc2E∥ξ∥2τ , t ∈ [−τ, tm). (9)
EW(t) < σc2E∥ξ∥2τ t ∈ [tm, tm+1)

{tk − tk−1} ≥ β0 l ∈ N τ ∈ [lβ0, (l+ 1)β0)
tmi i = 1,2, . . . , i0, i0 ≤ l

[tm −τ, tm) E|ei(t−m)− ei((tm −τ))−)|2 = E|
r tm

tm−τ
[F(ei(s),ei(s−τ))+c

∑N
j=1 bi jΓe j(s)+ c̃

∑N
j=1 di jΓe j(s−τ)]ds+

r tm
tm−τ[Gi

(ei(s),ei(s−τ))] dw(s)− ∑i0
i=1∆e(tmi )|2 ≤ 6e2λτ(K1τ+K2 + l2h̄)(σc2

c1
)

E∥ξ∥2τe−λtm

We  next  prove  that , .  Due  to
, there exists  such that  . Assume

there  exists  impulsive  instant  sequence ,  on
.  By (9),  we can obtain 

 
 

.
ςm(x,y) = Lx+Ky x,y ∈ Rn ∆ςm = ςm(e(t−m),

e((tm−τ)−))−ςm (e(t−m),e(t−m)) E | ∆ςm |2=E | Ke((tm−
τ)−)−Ke(t−m) |2≤∥K∥2E|e(t−m)− e((tm −τ)−)|2≤6∥K∥2e2λτ(K1τ+K2 + l2h̄)
(σc2/c1)E∥ξ∥2τe−λtm EV(ςm(e(t−m),e(t−m))) =
EeT (t−m)(L + In + K)T P(L + In + K)e(t−m) ≤ νEeT (t−m)Pe(t−m) = νE ×
V(e(t−m))

Denote  for any  and let 
 .  Then  one  has 

.  By  (6),  we  obtain  that 

.
EW(tm) =

eλtmEV(e(tm)) = eλtmEV(ςm(e(t−m) e(t−m))+∆ςm) ≤ eλtm (1+ε)EV(ςm
(e(t−m) e(t−m)))+ eλtm (1+1/ε)EV(∆ςm) ≤ c2E∥ξ∥2τ < σc2E∥ξ∥2τ

EW(t) ≤ σc2E∥ξ∥2τ t ∈ [tm, tm+1)
EW(t) ≤ σc2E∥ξ∥2τ , t ≥ 0 E∥e(t)∥2 ≤ σc2

c1

E∥ξ∥2τe−λt t ≥ 0

Recalling  (8)  and  summarizing  the  above  yield  that 
, 

, .  Then,
we  obtain  that , .  By  induction,  we
have ,  which  means  that 

 for any . ■

λ1, λ2, γ1, γ2
L,K β0,β1

Remark 2: Two notable features of our main result Theorem 1 are
stated below.  First,  it  discloses  the explicit  relationship between the
nonlinear  dynamics  (Lipschitz  constants )  and  impul-
sive  controllers  (gains  and  impulsive  interval  bounds ).
Second, different from [9]–[11] where delayed impulses are handled
as “interference”,  a  better  impulse  estimation  is  provided  in  the
proof,  through  which  the  stability  criterion  in  the  case  of  delayed
impulsive control only can be easily established.

ui(t) =
∑∞

k=1(Kei(t−τ))δ(t− t−k )
As a byproduct, we next consider a completely delayed impulsive

synchronization  controller .  The  fol-
lowing  conclusion  can  be  made  where  the  proof  follows  a  similar
procedure as that in Theorem 1 and is thus omitted.

β1 > β0 > 0 α1 ∈ R α2 ≥ 0 q > 1Theorem  2:  Given  scalars , , , ,
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ν ∈ (0,1) ε1 > 0 λ1, λ2, γ1, γ2
L, K,
(In +K)T P(In +K)− νP ≤ 0

h̄ h̄ =max{∥In∥2,∥K∥2}

, ,  positive  Lipschitz  constants ,  and
matrices  if  there exist  positive definite matrices P and Q such
that  (5), ,  and  further  (7)  are  satisfied,
where  therein  is  modified  as ,  then  the  syn-
chronization error system (4) is mean square exponentially stable.

N = 2
f (x,y) = A1tanh(x)+A2tanh(y)

g(x,y) = B1tanh(x)+B2tanh(y) A1 = [0.1,0;0.1,1] A2 = [0.2,
−0.3;0.1,0.7] B1 = [0.2,0.5;−0.5,−0.3] B2 = [0.1,−0.3;0.4,1.8]

λ1 = 0.7 λ2 = 0.8 γ1 = 0.61
γ2 = 0.5 c = 0.5 c̃ = 1 τ = 0.01 B = (bi j) = [−1,
1;1,−1] D = (di j) = [−2,2;1,−1] Γ = I2 L = 0.05I2 K = −0.2I2
α1 = 7.5,α2 = 1.5 ν = 0.75

P = [0.2245,0.0622;0.0622,0.2146] Q = [0.8784,
0.0577;0.0577;0.8752] q = 2 ε = 0.1 β0 =
0.01 β1 < 0.0791

ξ = [8.2,3.6]T

tk+1 − tk = 0.02

P = [0.1936, 0.0580; 0.0580; 0.1936]
Q = [0.8605,0.0547;0.0547,0.8605]

An illustrative example: We next present a numerical example to
demonstrate  the  effectiveness  of  the  proposed  theoretical  results.
Assume that there are two nodes, i.e., , and the nonlinear func-
tions  take  the  following  forms: ,

 with , 
, , .

The  Lipschitz  constants  are  set  as , , ,
.  Set  the  parameters , , , 
, , , , ,

,  and .  Solving  (5)  and  (6)  in  Theorem  1,
we  get  that  and 

.  Furthermore,  choosing , , 
, , it is easily verified that (7) in Theorem 1 holds. We

next  arbitrarily  select  an  initial  state ,  set  the  impulse
time  interval  s,  the  synchronization  errors  of  the
drive-response network without control and with the proposed hybrid
impulsive  controller  (3)  are  shown  in Figs. 1(a)  and 1(b),  respec-
tively. For a comparison purpose, Theorem 2 is also explored under
the  same K above  and  yields 
and . The generated synchroniza-
tion error of the drive-response network with the only delayed impul-
sive  controller  is  depicted  in Fig. 1(c).  From Fig. 1, it  can  be  seen
that the proposed hybrid and delayed only impulsive controllers can
both effectively regulate the response nodes to synchronize with the
drive nodes in the network.
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Fig. 1. The resulting synchronization errors: (a) Without impulsive control;
(b) With hybrid impulsive control; (c) With only delayed impulsive control.
 

Conclusion: In this letter, we have presented a hybrid delayed and
non-delayed  impulsive  control  method  to  solve  the  synchronization

problem of a class of delayed stochastic complex networks. We have
established explicit  sufficient  conditions on the exponential  stability
in mean square for the resulting synchronization error system even in
the presence of time delays and stochastic noises. We have also stud-
ied  the  special  case  of  completely  delayed  impulsive  control  and
derived  the  corresponding  stability  criterion.  We  have  finally  pro-
vided a numerical example to validate the proposed main results.
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