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ABSTRACT 
 
High-resolution functional magnetic resonance imaging (hi-res 
fMRI) methodology offers an opportunity for neuroscientists to 
gain insight about brain activities at a finer scale, and is thus 
becoming increasingly common. Traditional voxel-wise general 
linear model (GLM) is not suitable for hi-res functional brain 
mapping because local averaging may lose valuable fine-grained 
information boasted by hi-res fMRI. The searchlight approach may 
be more suited for this situation, but it can be improved to integrate 
multi-voxel information more completely and effectively. We 
propose a locally smoothed regression (LSR) to find the spatial 
organizations of neural activities, especially for hi-res data. LSR is 
a flexible model whereby the traditional voxel-wise regression can 
be seen as a special case of LSR. Further, LSR can be integrated 
into Mahalanobis-distance-based searchlight framework. This new 
approach promises to provide improved and reliable activation 
mapping as illustrated here by applying it to analyze a real set of 
data using hi-res fMRI imaging. 
 

Index Terms — High-resolution functional magnetic 
resonance imaging, Multivariate pattern analysis, Searchlight 
approach, Brain activation localization 
 

1. INTRODUCTION 
 
With the improvement of fMRI technology, brain activity can be 
measured at a higher spatial resolution. Nowadays, the spatial 
resolution of standard fMRI is about 4 × 4 × 4 𝑚𝑚𝑚𝑚3 . Using 
widely-available 3-Tesla MR scanners, hi-res functional 
measurements are robustly achievable with a resolution of 
2 × 2 × 2 𝑚𝑚𝑚𝑚3 . If we use a higher magnetic field (> 3T) or 
parallel scanning technology, a spatial resolution in the sub-
millimeter range can be achieved [1]. Hi-res fMRI offers fine-
grained spatial information of neural activity, and make it possible 
to ask certain research questions that could not be directly 
addressed previous. For instance, previous studies using the 
standard fMRI methods revealed a face-preferential region in the 
ventral tempo-occipital cortex, commonly referred to as the 
fusiform face area (FFA) [2], and triggered a debate about the 
structure and function of this region. A hi-res fMRI study 
suggested the FFA is a heterogeneous module which contains non-
face-selective clusters interdigitated with face-selective clusters [3]. 

Traditional single-voxel-based pipeline for functional brain 
mapping is not suited for hi-res fMRI data, because it depends on 
spatial smoothing with a 4-8 mm FWHM Gaussian kernel. Spatial 

blurring obscures valuable fine-grained information boasted by hi-
res fMRI. However, we cannot omit smoothing directly, due to its 
crucial role in GLM. First, smoothing enhances functional contrast-
to-noise ratio (FCNR). Second, GLM assumes the error terms are 
normally distributed, and Gaussian smoothing can achieve greater 
validity of the statistical assumption [4]. If smoothing is omitted, a 
brain activation map with salt-and-pepper patterns is generated 
instead of a blob-like activation map [5]. After setting a statistical 
threshold, we will obtain some scattered tiny activated regions, and 
can even not tell experimental effects from noises (Fig. 1). 
Additionally, whereas hi-res fMRIs achieve higher spatial 
resolutions, it loses FCNR as a price [1]. That makes omitting of 
smoothing inadvisable. 

In order to solve this problem, some wavelet-based statistical 
analysis methods have been proposed where the Gaussian prefilter 
in GLM is replaced by a spatial wavelet transform (i.e. [6]). 
However, this method lacks a statistical interpretation in the spatial 
domain. The more recent searchlight approach is a spatial-domain 
method and is also applied to unsmoothed data [5]. The essential 
ideas of searchlight are as following: (1) taking into consideration 
all the neighboring voxels fallen within the scope of the searchlight 
(traditional voxel-wise GLM considers only one voxel at a time); 
(2) solving a problem of multivariate multiple linear regression 
(traditional voxel-wise GLM solves a problem of univariate 
multiple linear regression); (3) using the Mahalanobis distance as a 
measurement of difference between effects of two experimental 
conditions (traditional voxel-wise GLM uses Euclidean distance to 
measure such difference). However, the searchlight approach fails 
to integrate multi-voxel information thoroughly. It uses least 
squares methods to solve the problem of multivariate multiple 
linear regression, whereby all the voxels within searchlight are 
used simultaneously. In fact, this un-regularized optimization is 
equivalent to the voxel-wise multiple linear regression (i.e. without 
any constraint, the jointly regression of multiple voxels is 
equivalent to multiple single voxel regressions). 

Here, we propose a novel, locally smoothed regression (LSR) 
method to generate function brain mappings, especially for hi-res 
data. The LSR also applies to unsmoothed data. A regularized 
optimization is used here instead of the un-regularized optimization 
in the searchlight approach. Specially, the neighboring voxels are 
used as a smoothness regularization to guarantee the accurate 
estimation of the regression for the current voxel. In addition, a 
Gaussian weight coefficient is introduced to simulate different 
effects of neighboring voxels at different distances. LSR is a 
flexible framework which has two hyper-parameters 𝛼𝛼 and 𝛽𝛽. By 
tuning these two parameters, LSR can be adjusted smoothly to 
different level of regularization. Furthermore, by setting specific 
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values for 𝛼𝛼 and 𝛽𝛽, the LSR can be transformed into the voxel-
wise regression or Gaussian-smoothness-based GLM. Additionally, 
we can directly conduct statistical tests on regression coefficients, 
or compute the Mahalanobis distances between regression 
coefficients of two different predictors before a statistical test. We 
compared the results of the LSR with those of GLM and the 
searchlight approach on a set of hi-res real fMRI data, and found 
the LSR is more powerful than GLM and the searchlight approach. 

 
2. METHODS 

 
2.1. Proposed: Locally Smoothed Regression 
 
Supposing 𝑁𝑁  functional images are acquired consecutively, and 
each image contains 𝑀𝑀  voxels. The time sequence of voxel 𝑖𝑖  is 
denoted as 𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁 , 𝑖𝑖 = 1,⋯ ,𝑀𝑀 . We construct a spherical 
searchlight of radius 𝑟𝑟, and move its center from voxel 1 to voxel 
𝑀𝑀  in turn. 𝑋𝑋 ∈ 𝑅𝑅𝑁𝑁×𝑃𝑃  is the design matrix with 𝑃𝑃  predictors. As 
those in GLM, predictors here represent a hemodynamic response 
for each condition, head-motion effects, and session effects. 
𝑏𝑏𝑖𝑖 ∈ 𝑅𝑅𝑃𝑃  denotes the basis weight for voxel 𝑖𝑖, 𝑖𝑖 = 1,⋯ ,𝑀𝑀. 

When the searchlight is centered at voxel 𝑖𝑖 , all the 
neighboring voxels fallen within the searchlight are taken into 
consideration to estimate 𝑏𝑏𝑖𝑖  simultaneously. The objective function 
is as following: 
𝑚𝑚𝑖𝑖𝑚𝑚
𝑏𝑏𝑖𝑖 ,𝜉𝜉𝑗𝑗

‖𝑦𝑦𝑖𝑖 − 𝑋𝑋𝑏𝑏𝑖𝑖‖2 + 𝛽𝛽 � 𝑓𝑓𝑗𝑗 ��𝑦𝑦𝑗𝑗 − 𝑋𝑋�𝑏𝑏𝑖𝑖 + 𝜉𝜉𝑗𝑗 ��
2 + 𝛼𝛼�𝜉𝜉𝑗𝑗 �

2�
𝑗𝑗∈𝑁𝑁𝑁𝑁(𝑖𝑖)
𝑗𝑗≠𝑖𝑖

 

where the first term is the traditional GLM on voxel 𝑖𝑖  and the 
second term is a regularization of smoothness among the 
neighborhood voxels. The 𝑁𝑁𝑁𝑁(𝑖𝑖)  represents the nearest 
neighborhood of voxel 𝑖𝑖. We call this model the locally smoothed 
regression (LSR). In LSR, the local information (neighborhood 
voxels) is used to guarantee an accurate estimation of the 
regression coefficient for voxel 𝑖𝑖. We suppose the neighborhood 
voxel 𝑗𝑗 to have a regression bias as 𝑏𝑏𝑖𝑖 + 𝜉𝜉𝑗𝑗 , where 𝜉𝜉𝑗𝑗 ∈ 𝑅𝑅𝑃𝑃  is a 
slack variable for voxel 𝑗𝑗 and is supposed to be as small as possible. 
That means the regression results of neighborhood voxels can be 
different from that of voxel 𝑖𝑖 , but we want to minimize these 
differences. 𝑓𝑓𝑗𝑗 < 1 is a Gaussian weight coefficient of voxel 𝑗𝑗. This 
term attenuates the effect of a neighboring voxel when it’s getting 
far away from voxel 𝑖𝑖, and the weight of voxel 𝑖𝑖 is set to maximum 
value 1. 

The LSR is a convex quadratic optimization problem which 
has a closed-form solution as following: 

𝑏𝑏𝑖𝑖 = ��𝑓𝑓�̅�𝛽 +  1�𝑋𝑋𝑇𝑇𝑋𝑋 – 𝑓𝑓�̅�𝛽𝑋𝑋𝑇𝑇𝑋𝑋𝑋𝑋𝑋𝑋�
−1
𝑋𝑋𝑇𝑇(𝑦𝑦𝑖𝑖  +  𝛽𝛽𝑦𝑦� −  𝛽𝛽𝑋𝑋𝑋𝑋𝑦𝑦�) 

where 
𝑋𝑋 = (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝛼𝛼 𝐼𝐼)−1𝑋𝑋𝑇𝑇 
𝑦𝑦� = � 𝑓𝑓𝑗𝑗𝑦𝑦𝑗𝑗

𝑗𝑗∈𝑁𝑁𝑁𝑁(𝑖𝑖)
𝑗𝑗≠𝑖𝑖

         𝑓𝑓̅ = � 𝑓𝑓𝑗𝑗
𝑗𝑗∈𝑁𝑁𝑁𝑁(𝑖𝑖)
𝑗𝑗≠𝑖𝑖

 

We use two hyper-parameters 𝛼𝛼  and 𝛽𝛽  to make LSR a general 
framework covering GLM with or without Gaussian smoothing as 
special cases. The 𝛼𝛼 is used to constrain the difference between the 
regression coefficient of neighborhood voxel 𝑗𝑗  and that of the 
current voxel 𝑖𝑖. The larger 𝛼𝛼 is, the closer the regression results of 
the neighborhood voxels will be. The 𝛽𝛽 changes the amount of the 
influence from the whole neighborhood. When setting 𝛽𝛽 = 0, we 
can see the result becomes 

𝑏𝑏𝑖𝑖 = (𝑋𝑋𝑇𝑇𝑋𝑋 )−1𝑋𝑋𝑇𝑇𝑦𝑦𝑖𝑖  

In this case, LSR is degenerated into the single-voxel regression. 
Also, we can tune 𝛽𝛽  to achieve different degrees of smoothing 
effect. When setting 𝛼𝛼 = +∞ and 𝛽𝛽 = 1, the result becomes 

𝑏𝑏𝑖𝑖 = ��𝑓𝑓̅ +  1�𝑋𝑋𝑇𝑇𝑋𝑋 �
−1
𝑋𝑋𝑇𝑇(𝑦𝑦𝑖𝑖 + 𝑦𝑦�) 

This is equivalent to GLM with Gaussian smoothing (i.e. using 
𝑦𝑦𝑖𝑖+𝑦𝑦�
𝑓𝑓̅+ 1

 for regression). 
From the analysis above, we can find that LSR is a general 

model, and we can tune the values of 𝛼𝛼 and 𝛽𝛽 to achieve different 
levels of smoothness (from single-voxel regression to GLM with 
Gaussian smoothing).  
 
2.2. Model Evaluation 
 
Supposing 𝑐𝑐 ∈ 𝑅𝑅𝑃𝑃  is the contrast vector, which represents the 
comparison between different predictors. Then 𝑐𝑐𝑇𝑇𝑏𝑏𝑖𝑖  is the result of 
comparison and can be used to measure the contribution of voxel 𝑖𝑖 
in the condition-specific effect. Supposing 𝐵𝐵 ∈ 𝑅𝑅𝑃𝑃×𝑀𝑀  denotes the 
coefficient matrix for the whole brain, 𝑐𝑐𝑇𝑇𝐵𝐵  is the condition-
specific brain mapping. To compare maps of different participants, 
we transform 𝑐𝑐𝑇𝑇𝐵𝐵  into a Z-map, namely a normal distribution. 
Numerical methods (i.e. the randomization test used in [5]) can 
also be used here, although they are much more time consuming. 

Alternatively, we can integrate the LSR into the Mahalanobis-
distance-based framework. Supposing 𝑌𝑌𝑠𝑠 ∈ 𝑅𝑅𝑁𝑁×𝐿𝐿  is the time 
sequences of voxels within the searchlight, where 𝐿𝐿 is the number 
of voxels within the searchlight. 𝐵𝐵𝑠𝑠 ∈ 𝑅𝑅𝑃𝑃×𝐿𝐿 is the basis weights of 
voxels within the searchlight. Then the Mahalanobis distance is 
defined as 

∆2= 𝑎𝑎𝛴𝛴−1𝑎𝑎𝑇𝑇  
𝑎𝑎 = 𝑐𝑐𝑇𝑇𝐵𝐵𝑠𝑠 

𝛴𝛴 = 𝐸𝐸𝑇𝑇𝐸𝐸       𝐸𝐸 = 𝑌𝑌𝑠𝑠 − 𝑋𝑋𝐵𝐵𝑠𝑠 
A statistical test is followed, and a Z-map can be obtained. 

We use 𝑧𝑧𝑖𝑖  to denote the value of voxel 𝑖𝑖 in the Z-map. Then 𝑧𝑧𝑖𝑖  
is the activated intensity of voxel 𝑖𝑖. When a threshold 𝑧𝑧𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑠𝑠ℎ  is set 
and 𝑧𝑧𝑖𝑖 > 𝑧𝑧𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑠𝑠ℎ  is satisfied, voxel 𝑖𝑖 is a supra-threshold voxel. All 
the adjacent supra-threshold voxels constitute a supra-threshold 
cluster. Supposing in total there are 𝑉𝑉 supra-threshold voxels and 𝐶𝐶 
supra-threshold clusters, then the averaged volume of supra-
threshold cluster is 𝑉𝑉� = 𝑉𝑉

𝐶𝐶
, and we use 𝑉𝑉�  to describe the degree of 

clustering. 
Two standards are used here to evaluate the effect of mapping, 

one is the degree of clustering 𝑉𝑉� , and the other is the activated 
intensity or reliability 𝑧𝑧𝑖𝑖 . Hyper-parameters 𝛼𝛼  and 𝛽𝛽  can be 
determined by nested cross validation to maximum 𝑉𝑉�  and 𝑧𝑧𝑖𝑖 . 

 
3. RESULTS 

 
3.1. Experimental Design and Preprocessing 

 
We obtained a set of hi-res fMRI data from ten adults (four males, 
six females, averaged age 22) recorded in a localizer experiment 
designed to map face-preferential regions. During the experiment, 
8 20-s blocks of face images and 8 20-s blocks of common object 
images were presented alternately. Participants were asked to 
simply view two kinds of images and complete a one-back task just 
like previous studies [7]. For each participant, we acquired 288 21-
slice echo-planar-imaging (EPI) scans lasting 2 s each. Each EPI 
scan had an in-plane resolution of 2 × 2 𝑚𝑚𝑚𝑚2 and a slice thickness 
of 2 𝑚𝑚𝑚𝑚  with 0.2 𝑚𝑚𝑚𝑚  gap. We also acquired a coplanar 
anatomical image before EPI scanning to overlap the functional 
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mapping onto it. The coplanar anatomical image had an in-plane 
resolution of 1 × 1 𝑚𝑚𝑚𝑚2  and a slice thickness of 2 𝑚𝑚𝑚𝑚  with 
0.2 𝑚𝑚𝑚𝑚 gap. The whole tempo-occipital cortex was covered using 
a scanning plane paralleled to the proximal surface between 
cerebrum and cerebellum. 

The first three volumes of each session were discarded due to 
T1 effects. The remaining volumes were slice-time corrected, 
realigned to the first volume of the first session, session-effect 
removed, and high-pass filtered to remove the scanner drift and 
low-frequency artifacts. The data were smoothed for GLM using a 
6 × 6 × 6 𝑚𝑚𝑚𝑚3 FWHM Gaussian kernel, but unsmoothed for the 
searchlight approach and LSR. We used a 6-mm-radius searchlight 
in both the searchlight approach and LSR, and a 6 × 6 × 6 𝑚𝑚𝑚𝑚3 
FWHM Gaussian kernel to compute the Gaussian weight 
coefficients in LSR. 

 
3.2. Results of LSR 

 
We compared the function brain mapping generated by the LSR 
with those created by other methods, and found that the LSR-based 
map highlighted some regions not covered by the GLM-based map 
or searchlight-based map (see slice 3 in Fig. 1). As mentioned 
above, the GLM without smoothing only generated scattered salt-
and-pepper activation maps (Fig. 1(A)). The GLM with smoothing 
revealed several expected activation regions, as well as several less 
task-related activations which were difficult to explain (Fig. 1(B)). 
The searchlight-based map was more concentrated (Fig. 1(C)). It 
highlighted regions whose activity pattern was specifically 
important to distinguish two categories (face/object), and extended 
to surrounding areas. However, it missed the activation in the right 
superior temporal sulcus (STS). The LSR-based map showed 
activations in the face-preferential regions, the right FFA and right 
STS [8], as well as activations in the primary visual cortex (Fig. 
1(D)). Looking inside these face-preferential regions, we found 
that the difference between the neural activities of face-viewing 
and those of object-viewing was greater when LSR was used 
compared to that when the GLM or the searchlight approach was 
used. Further, neural activities induced by face-viewing within the 
face-preferential areas detected by LSR were stronger than those 
within face-preferential regions revealed by GLM or the 
searchlight approach (Fig. 1). 

When different hyper-parameters 𝛼𝛼  and 𝛽𝛽  are set, different 
levels of smoothness can be achieved. We plotted the degree of 
clustering 𝑉𝑉�  as a function of 𝛼𝛼  and 𝛽𝛽 , and found that different 
participants had different optimized combinations of 𝛼𝛼 and 𝛽𝛽 (Fig. 
2). The reason why LSR outperformed the Gaussian-smoothness-
based GLM might be that LSR took into consideration all the 
possible combinations of 𝛼𝛼 and 𝛽𝛽 in addition to the special case of 
𝛼𝛼 = +∞  and 𝛽𝛽 = 1  which was equivalent to the Gaussian-
smoothness-based GLM. 

Compared to the searchlight-based map, the LSR-based map 
had more overlap with the map of Gaussian-smoothness-based 
GLM (Fig. 3). A probable explanation is that the Mahalanobis 
distance is an undirected measure which can measure how great the 
difference between effects of two conditions is, but cannot indicate 
which condition dominates in this difference. Thus, the searchlight-
based map involves a part of activations induced by object-viewing 
compared to face-viewing. In addition, brain regions whose 
responses are greater to object images than that to face images are 
adjacent to the face-preferential regions [9], and may connect with 
face-preferential regions to form a large cluster. 

We integrated the LSR into the Mahalanobis-distance-based 
framework, and found that the new method was more sensitive 
than the searchlight approach. Although these two methods both 
used an undirected measure, the Mahalanobis distance, to compute 
the difference between effects of two experimental conditions, the 
new approach outperformed the searchlight approach by finding 
the bilateral FFAs of all ten participants (Fig. 4 (a)). Additionally, 
the new approach detected the bilateral occipital face areas (OFAs) 
whose areas were much larger than those detected by the 
searchlight approach (Fig. 4(b)). 

 
Fig. 1. Functional brain mapping of one participant using (A) 
general linear model (GLM) with unsmoothed data, (B) GLM with 
smoothed data, (C) searchlight approach, and (D) locally smoothed 
regression (LSR). Activation maps are overlapped onto the 
coplanar anatomical image of this participant. Blue squares 
indicate the face-preferential regions, the right fusiform face area 
(FFA) on the left two slices and the right superior temporal sulcus 
(STS) on the right two slices. Activation maps are generated by a 
uniform threshold of p < 0.0001. Line plots which floating on the 
top show the mean time courses of percent fMRI signal change 
within (a) the right FFA detected by GLM with smoothing, (b) 
right STS detected by GLM with smoothing, (c) right FFA 
detected by searchlight approach, (d) right FFA detected by LSR, 
and (e) right STS detected by LSR. Red line is the time course of 
face block, and black line is the time course of object block. 
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Fig. 2. The contour plots demonstrate the degree of clustering 𝑉𝑉�  as a function of hyper-parameters 𝛼𝛼 and 𝛽𝛽. The contour labels show the 
value of 𝑉𝑉� . Three contour plots belong to three representative participants. 
 

 
Fig. 3. Proportion of voxel sets and their intersection averaged 
across all 10 participants. The results are calculated within the 
whole brain map, the right fusiform face area (FFA), the left FFA, 
the right occipital face area (OFA), the left OFA, and the right 
superior temporal sulcus (STS) respectively. Notice that GLM here 
represents the Gaussian-smoothness-based GLM.  
 

 
Fig. 4. Comparison of performances of the searchlight approach 
(abbr. as searchlight) and the LSR integrated into Mahalanobis-
distance-based searchlight framework (abbr. as LSR + M-Dist). (a) 
Detected rates of different regions of interest (ROIs) on ten 
participants. (b) Mean volume of each ROI detected by two 
methods respectively with their SEMs. RFFA = right fusiform face 
area; LFFA = left fusiform face area; ROFA = right occipital face 
area; LOFA = left fusiform face area; RSTS = right superior 
temporal sulcus. 
 

4. DISCUSSIONS AND CONCLUSIONS 
 
We propose a locally smoothed regression which uses multi-voxel 
information to implement a functional brain mapping. The 
proposed method is a flexible model which includes the single-
voxel regression and Gaussian-smoothness-based GLM as special 
cases. Additionally, the LSR can be integrated into the searchlight 
framework by calculating the Mahalanobis distance between 
coefficients after regression. By tuning the hyper-parameters 𝛼𝛼 and 
𝛽𝛽, different levels of smoothness can be achieved (e.g. smoothed 

and non-smoothed GLM), and therefore, a much more flexible and 
accurate human brain mapping result can be found with the LSR. 
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