
 

Key-Part Attention Retrieval for Robotic Object Recognition

Jierui Liu, Zhiqiang Cao*, and Yingbo Tang

Abstract: The ability to recognize novel objects with a few visual samples is critical in the robotic applications.

Existing methods mainly concern the recognition of inter-category objects, however, the object recognition from

different  sub-classes  within  the  same  category  remains  challenging  due  to  their  similar  appearances.  In  this

paper,  we  propose  a  key-part  attention  retrieval  solution  to  distinguish  novel  objects  of  different  sub-classes

according  to  a  few  samples  without  re-training.  Especially,  an  object  encoder,  including  convolutional  neural

network with attention and key-part aggregation, is designed to generate object attention map and extract the

object-level embedding, where object attention map from the middle stage of the backbone is used to guide the

key-part aggregation. Besides, to overcome the non-differentiability drawback of key-part attention, the object

encoder is trained in a two-step scheme, and a more stable object-level embedding is obtained. On this basis,

the potential  objects  are located from a scene image by mining connected domains of  the attention map.  By

matching  the  embedding  of  each  potential  object  and  embeddings  from  support  data,  the  recognition  of  the

potential objects is achieved. The effectiveness of the proposed method is verified by experiments.
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1　Introduction

Nowadays the robotic system has been widely used in
daily  life,  and  its  ability  to  recognize  objects  is  of
importance in practical applications[1–3]. Different from
the  normal  object  recognition  that  is  affordable  to
collect  a  large  scale  of  training  data[4, 5],  the  robotic
object  recognition  often  faces  scenes  with  novel
objects,  and  in  some  cases  it  is  intractable  to  collect
enough object samples for network training. Moreover,
some robot tasks need to recognize objects of different
appearances  within  the  same  category.  These

challenges increase the difficulty of object  recognition
for robots.

With the rapid development of Convolutional Neural
Network  (CNN)[6, 7],  fruitful  outcomes  emerge  for
robotic  object  recognition.  A  typical  solution  is  to
achieve novel object classification using centroid-based
concept learning[8], and then localization technology[4, 5]

is  combined  to  mine  the  novel  objects  in  complex
scenes[9–11].  These  existing  methods  mainly  concern
learning from several samples of novel objects and the
networks  need  to  be  re-trained  with  annotated  novel
instances.  Still,  it  is  challenging  to  distinguish  objects
of different subclasses within the same category due to
the subtle differences among subclasses (e.g., varieties
of  birds).  To  address  these  issues,  image  retrieval
provides  reference  and  it  devotes  to  evaluate  the
similarity  of  images  by  matching  the  corresponding
image-level  representations  (hand-crafted[12] or  CNN
descriptor[13]).  With  hand-crafted  features,  such  as
Scale-Invariant  Feature  Transform  (SIFT)  and
Speeded-Up  Robust  Features  (SURF),  a  large-scale
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visual  codebook  is  usually  built.  Then  an  embedding
with  fixed  length  is  calculated  and  image  retrieval  is
fulfilled  by  embedding  matching.  A  possible  problem
of this  solution is  its  weak image-level  representation.
CNN-based  solutions  become  mainstream  with  the
advantage of powerful feature extraction. Based on the
extracted CNN feature maps, the advanced aggregators
are  designed  to  form  image-level  representation  or
embedding  by  considering  global  information[13, 14] or
local  information[15–18].  Although  image  retrieval  is
able  to  recognize  the  unseen  image  without  extra
training  process,  it  cannot  provide  localization
information  for  robotic  object  recognition.
Furthermore,  the  differentiation  of  similar  objects  of
different subclasses still needs to be further explored.

In  this  paper,  a  robotic  object  recognition  method
based  on  key-part  attention  retrieval  is  proposed.  The
main contributions are two-fold. Firstly, a novel object
encoder based on key-part attention is designed to offer
the  refined  object-level  embedding  for  retrieval.  The
proposed  object  encoder  is  composed  of  CNN  with
attention and key-part aggregation. Specifically, object
attention map is generated based on the middle stage of
CNN  backbone,  which  better  guides  the  key-part
aggregation  to  mine  and  aggregate  the  key  local
information  of  the  object.  As  a  result,  high-quality
object-level  embedding  is  obtained.  Considering  that
key-part  aggregation  will  lead  to  the  non-
differentiability  problem  during  network  optimization,
we solve it through a two-step training scheme with the
supervision  of  image-level  annotation.  Attributing  to
the  mining  of  key-part  information,  the  slight
differentiation of different subclass objects is explored.
Secondly,  different  from  object  recognition  with  re-
training[9–11],  a  robotic  object  recognition  framework
based  on  retrieval  with  object  encoder  is  proposed,
which recognizes  novel  objects  of  different  subclasses
according  to  a  few visual  samples  without  re-training.
Particularly,  the  module  of  CNN  with  attention  is
multiplexed to locate the potential objects from a scene
image. Each potential object and visual sample are then
encoded  into  a  potential  embedding  and  a  support
embedding  through  the  object  encoder,  respectively.
By  using  embedding  matching,  similar  objects  of
different  subclasses  within  the  same  category  are
effectively recognized. The proposed method is easy to
extend by simply expanding the visual samples and the
experimental results prove its effectiveness.

The  paper  is  organized  as  follows.  Section  2

describes  the  related  work.  Section  3  introduces  the
proposed  method  in  detail.  The  experiments  are  given
in Section 4, and Section 5 concludes the paper.

2　Related Work

This  section  discusses  the  related  work  from  the
following  two  aspects:  object  recognition  and  image
retrieval.

2.1　Object recognition

×

Krizhevsky  et  al.[19] proposed  a  pioneering  deep
network AlexNet, which can recognize the 1.2 million
high-resolution  images  in  the  ImageNet  LSVRC-2010
contest  into  the  1000  different  classes.  Simonyan  and
Zisserman[20] made  a  significant  improvement  on
AlexNet by increasing depth using an architecture with
3 3  convolution  filters.  The  aforementioned  methods
aim  to  recognize  object  with  a  large-scale  annotated
training  data,  which  is  not  suitable  to  recognize  novel
objects  with  a  few  visual  samples.  Denninger  and
Triebel[1] proposed an object recognition method based
on  the  random  forest  classifier,  which  learns  a
sustainable  representation  for  new  samples  from  a
previously  unseen  class.  Ayub  and  Wagner[8]

developed  a  centroid-based  concept  learning  network
for  robotic  recognition,  where  a  set  of  centroids  are
generated using clustering algorithm with CNN feature
extractor  for  every  new  object  class.  To  obtain  the
recognition results of novel objects in complex scenes,
Dehghan  et  al.[10] combined  a  localization  network
faster  R-CNN[4] with a  matching module that  uses  the
features  from  ResNet50[21] pre-trained  on  ImageNet.
Valipour  et  al.[11] used  Densecap[5] as  the  localization
unit  and  novel  objects  are  introduced  to  the  robot  for
network  re-training  in  a  form  of  active  human-robot
interaction.  Turkoglu  et  al.[9] introduced  localization
based  on  point  cloud  segmentation  into  robotic  object
recognition,  which  takes  RGB  and  depth  images  as
inputs  and  returns  object  bounding  boxes  with  class
labels.  These  methods  run  well  on  the  recognition  of
novel  classes,  however,  the  differentiation  of  objects
within the same category is rarely concerned.

2.2　Image retrieval

Image  retrieval  endeavors  to  find  out  similar  images
from a large database corresponding to a query image,
which  is  beneficial  to  support  robotic  object
classification  with  fine-grained  representation.  Hand-
crafted  features  are  used  as  the  image  representation,
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where the feature descriptors are usually expected to be
scale-invariant  and  robust  to  the  viewpoints  or
illuminations,  e.g.,  SIFT[22] and  SURF[23].  After  a
large-scale  visual  codebook  is  built  by  using
hierarchical  or  approximate  cluster,  an  image  is
represented as a vector termed as embedding with fixed
length,  and  image  retrieval  is  achieved  by  embedding
matching.  Khan  et  al.[24] proposed  a  novel  texture
descriptor  termed  as  directional  magnitude  local
hexadecimal patterns for  image retrieval.  In Refs.  [25,
26],  texture,  color,  and  shape  features  are  combined
together on the basis of modified local binary patterns.
Such  combination  of  features  increases  the  feature
discriminability,  which  is  beneficial  to  improve
retrieval performance.

In  recent  years,  CNN-based  image  retrieval  trained
on  a  large-scale  dataset  achieves  significant  progress,
where  embeddings  that  are  aggregated  by  CNN
features  play  an  important  role.  Azizpour  et  al.[13]

applied  max-pooling  layer  to  obtain  embeddings  from
the feature maps of last convolution layer. Yandex and
Lempitsky[15] proposed an aggregation strategy termed
as  Sum-Pooling  of  Convolutional  (SPoC)  features  to
build compact global image descriptor. Tolias et al.[27]

introduced  Regional  Maximum  Activations  of
Convolutions  (RMAC)  to  compute  embeddings  at
different scales. Husain and Bober[28] further improved
RMAC to control the aggregation process by explicitly

employing  regions  discrimination,  which  is  measured
by  their  respective  kullback-leibler  divergence  values.
Radenovic  et  al.[14] designed  Generalized-Mean
pooling  and  image  descriptor  (GeM).  Wei  et  al.[16]

proposed  a  strategy  of  Selective  Convolutional
Descriptor  Aggregation  (SCDA),  which  discards  the
noisy  background  and  keeps  useful  features  for  fine-
grained  retrieval.  In  the  aforementioned  methods,
metric  learning[29, 30] is  employed  to  train  the  CNNs.
Thus  the  resulting  embeddings  have  the  following
attribute:  distances  between  images  within  the  same
class are expected to be much smaller than those from
different  classes,  which  is  favorable  for  embedding
matching.  However,  affected  by  similar  object
appearance,  viewpoints,  and  scales,  existing  image
retrieval still remains challenges, especially for robotic
object  recognition  with  limited  samples.  In  this  paper,
key-part  information of objects is  effectively mined to
deal with challenges.

3　Methodology

This paper endeavors to recognize novel objects with a
few  examples  and  the  proposed  robotic  recognition
method is presented in Fig. 1, where the object encoder
is  the  core  and  it  includes  two  modules:  CNN  with
attention  and  key-part  aggregation.  The  former
generates  object  attention map and CNN features,  and
the  latter  acquires  the  key-part  regions  from  this
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Fig. 1    Proposed robotic object recognition method with the detailed object encoder architecture.  and  are feature maps
outputted by the middle and last stages of the CNN backbone, respectively. , , and  refer to object attention maps.
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attention  map,  and  then  obtains  the  expected
embeddings  by  feature  aggregation.  The  whole  object
encoder  is  trained  on  a  few  images  per  class  with
image-level annotations.

For  each novel  object,  a  few examples are  collected
from different viewpoints and distances, which are sent
to  the  object  encoder  in  turn  for  support  embeddings.
To  mine  the  novel  object  from  a  scene  image,  we
firstly  borrow  the  module  of  CNN  with  attention  to
obtain a corresponding attention map. On this map, the
potential  objects  are  located  by  extracting  the
connected  domains.  Then  potential  embeddings  are
obtained by feeding the potential objects cropped from
the  scene  image  into  the  object  encoder.  By  matching
each  potential  embedding  with  the  support
embeddings,  the  sub-class  of  each  potential  object
consistent  with  the  support  data  is  judged  and
determined.

3.1　Object encoder

Attention  mechanism  plays  an  important  role  in  the
field  of  pattern  recognition.  Shu  et  al.[31] fully
aggregated  discriminative  information  through  modal-
wise  expansion-squeeze-excitation  attention  and
channel-wise  expansion-squeeze-excitation  attention.
In  this  way,  the  recognition  performance  of  elderly
activities  is  significantly  improved.  In  Ref.  [32],  a
novel  Skeleton-joint  Co-attention  Recurrent  Neural
Networks  (SC-RNN)  is  proposed  to  predict  human
motion with the spatial coherence among joints and the
temporal  evolution  among  skeletons.  Attention  is  also
proved  to  be  effective  for  person  re-identification[33].
The  successful  applications  of  attention  inspire  us  to
enhance  the  feature  discriminability  of  our  object
encoder with the help of attention.

A  general  object  encoder  extracts  features  using  a
CNN and aggregates the features for embeddings. The
architecture of CNN backbone can be flexibly selected,
such as ResNet101, ResNet50[21], and DenseNet169[34].
The  CNN  backbone  is  built  with  five  cascaded  CNN
stages.  For  ResNet101  or  ResNet50  backbone,  these

Fa

A
A
A

Ac

A

CNN stages are consistent with those in Ref. [21], and
the  details  of  DenseNet169  backbone  are  given  in
Table 1,  where the input and output sizes,  structure of
each  CNN  stage  are  provided.  The  terms
“Convolution”, “Pooling”, “Dense  block”,  and
“Transition  layer” are  directly  from  Ref.  [34].  To
further  improve  embeddings,  an  attention  mechanism
and  key-part  aggregation  are  introduced  in  this  paper.
As shown in Fig. 1, the feature map outputted from the
middle  stage  of  CNN  is  concerned  due  to  that  the
feature maps from the lower stages of CNN are usually
specific  while  those  from  higher  stages  are  abstract.
The chosen feature map  is then convolved by a 1×1
convolution  to  get  an  initial  object  attention  map .
Taking the spatial relevance of each element in  into
account, a spatial softmax operation is applied on  for
object attention map , which enables all the elements
in  to be trained jointly,
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where  and  denote  the -th  row  and -th
column of  and , respectively,  and  are height
and width of . The scalar  is a learnable scale factor,
which  avoids  vanishing  gradient  caused  by  a  small

.  For  object  attention  map ,  it  inevitably
contains noise. Hence, a 3 3 mean blur denoising filter
is applied followed by a thresholding operation, where
the  elements  in  smaller  than  0.75  times  of  the
maximum value are  set  to  be 0.  After  that,  we get  the
final object attention map .

At

At

It  is  worth  mentioning  that  object  attention  map 
can  be  regarded  as  a  possibility  map,  where  its  each
element records a value proportional to the probability
that  the  element  belongs  to  a  key  part.  On  this  basis,
key-part  aggregation  is  designed.  There  are  several
means, such as graph-cut and k-means, to mine the key
parts.  In  this  paper,  the  graph-cut  is  chosen  to  better
maintain  the  completeness  of  the  key  parts.  The
locations  of  non-zero  elements  in  constitute  a  set

 

Table 1    Details of DenseNet169 backbone[34].
Stage Input size (pixel × pixel × channel) Output size (pixel × pixel × channel) Structure

1 × ×512 512 3 × ×256 256 64 Convolution
2 × ×256 256 64 × ×128 128 256 Pooling + Dense block 1
3 × ×128 128 256 × ×64 64 512 Transition layer 1 + Dense block 2
4 × ×64 64 512 × ×32 32 1280 Transition layer 2 + Dense block 3
5 × ×32 32 1280 × ×16 16 1664 Transition layer 3 + Dense block 4
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, where  denotes the number of non-zero
elements  and  refers  to  the  coordinate  of -th
element.  Each element  in  set  is  regarded as  a  node,
and a graph  is built, where the edges are established
by  connecting  each  node  to  its  nearest  nodes.  The
weight  of  the  edge  that  connects  and

 is  given  by ,  where
 is  their  Euclidean  distance.

Afterwards,  an  adjacent  matrix  is  obtained
according to , where  denotes  and

 are  connected  directly.  On  this  basis,  the
problem of mining the key parts in  is formulated as
minimizing  graph-cut  problem.  For  convenient
description, a dichotomy scheme is given as follows:
 

cut (L1, L2) = argmin
L1, L2

∑
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Wi, j,

s.t., L1 , ∅, L2 , ∅, L1∩L2 = ∅,
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where  the  subsets  and  stand  for  two  possible
key-part regions. Unlike graph cuts stereo matching[35]

that  considers  mini-cut  as  max-flow  with  an  iterative
solution,  we solve Eq.  (2)  with more efficient  spectral
clustering[36].  If  number  of  elements  in  a  subset  is  too
small,  it  means  that  this  subset  is  meaningless,  and  a
preferable processing is  to replace it  with all  pixels  of

. We regard each subset as a key-part region, which
is represented by a bounding box , where
, , ,  and  are the top, left,  bottom, and right of the

bounding box, respectively.

Ft

Ft

g (Ft) g (r1) g (r2)
g(·) r1 r2

For  each  key-part  region,  it  is  aggregated  on  the
feature  map  outputted  by  CNN  backbone  to
generate  a  region  descriptor.  Besides  each  key-part
region, the global information is also aggregated on 
to generate a global descriptor. We label the global and
region  descriptors  as , ,  and ,  where

 denotes the GeM aggregator[14],  and  describe

Ftthe  cropped  feature  maps  in  corresponding  to  key-
part  regions.  Then,  an  object-level  embedding  is
formed  by  fusing  these  three  descriptors,  which  is
given as follows:
 

v = α0 g (Ft)+α1 g (r1)+α2 g (r2) (3)

α0 α1 α2where , ,  and  are  learnable  parameters  to
balance different descriptors.

×
A

Fa
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The  aforementioned  graph-cut  operation  maintains
the completeness of key parts, but it also brings in non-
differentiability  problem  of  key-part  aggregation.
Therefore,  the  gradient  backpropagated  from  the  loss
function cannot  be  used to  optimize  the  parameters  of
conv  1 1  during  the  generation  of  the  initial  object
attention  map .  Moreover,  the  effectiveness  of  the
key-part  aggregation  also  relies  on  whether  object
attention  map  can  well  capture  the  key-part
information. This means that key-part aggregation and
attention cannot be jointly trained. Herein, we design a
two-step  training  scheme,  where  the  weights  of  the
CNN  stages  before  the  feature  map  are  always
frozen for accelerating the training, as shown in Fig. 2.
The first  training step endeavors to obtain the weights
of  conv  1 1,  whereas  the  second  one  trains  the
remaining weights of object encoder. In Fig. 2, the data
streams shared in both two training steps are labeled in
black,  and  the  data  streams  only  for  the  first  training
step  and  second  training  step  are  labeled  in  blue  and
red, respectively. For the first training step, the feature
map  is  multiplied  with  object  attention  map  to
get the resulting feature map ,  which is fed into the
remaining  CNN  stages  for  the  feature  map .  is
further aggregated by Gem pooling and an embedding
for  an  input  image  is  acquired.  With  such  a  network,
conv  1 1  is  well  trained  and  it  keeps  frozen  after  the
first  training  step.  This  provides  a  stable  object
attention  map  for  training  of  the  second  step.  During
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the  training  process,  both  triplet  loss  and  CEloss  are
applied[30].

3.2　Robotic object recognition

Iq

Iq

{Ea}n−1
a=0

{Qb}m−1
b=0 n m

S

The object recognition pipeline is built  on the basis of
the trained object encoder. Take a novel sub-class into
account,  we  get  the  support  data  with  its  several
examples.  For  a  scene  image ,  potential  objects  are
captured  by  employing  the  module  of  CNN  with
attention  on .  Then  support  data  and  cropped
potential object images are sent into the object encoder
to  obtain  support  embeddings  and  potential
embeddings ,  respectively,  where  and  are
the  numbers  of  the  support  examples  and  potential
objects,  respectively.  A  similarity  matrix  is
calculated and its element is given as follows:
 

S b, a = f (Qb, Ea) ,
a = 0, 1, . . . , n−1, b = 0, 1, . . . , m−1 (4)

S b, a b a
S f (·)

Qb Ea

where  is the element of -th row and -th column
of  the  matrix ;  is  a  similarity  function
representing the relevance between  and ,
 

f (Qb, Ea) =

√√
C−1∑
r=0

(Qb, rEa, r) (5)

Qb, r Ea, r r Qb

Ea C
S

pb b

where  and  mean the -th elements of  and
,  respectively,  and  is  the  dimension  of  an

embedding.  With  the  similarity  matrix ,  the
probability  of  the -th  potential  object  matching  a
specific novel object is assigned by
 

pb = max
a=0, 1, ..., n−1

S b, a (6)

{pb}m−1
b=0

CNNAttention (·)
Mining (·)

Crop (·)
ObjectEncoder (·)

Then,  according  to  the  matching  probabilities
 of all potential objects, the object recognition is

achieved. A potential object with the highest matching
probability  is  classified  into  this  novel  sub-class  (see
Algorithm 1). The function  is used to
generate  an  attention  map.  refers  to  the
process  of  mining  the  attention  map  using  the  region
connectivity analysis for potential objects.  and

 represent  the  image  cropping  of  a
potential  object  and  image-to-embedding  encoding
function, respectively.

4　Experiment

In  this  section,  the  key-part  aggregated  retrieval
performance  of  the  proposed  object  encoder  is
evaluated  on  three  datasets:  CUB200-2011[37],
Stanford-Cars[38],  and  INRIA  Holidays[39].

Furthermore,  the  proposed  method  is  also  testified  on
an active three-camera platform.

4.1　Evaluation on public datasets

The object  encoder  is  used  to  generate  embedding  for
retrieval, which is verified on three public datasets:
• CUB200-2011[37] with  5934  train  images,  600

validation  images,  and  5794  test  images  in  200  sub-
classes of the category bird.
• Stanford-Cars[38] with 16 185 images  in  196  sub-

classes of the category car.
• INRIA Holidays[39] with  1491 images  of  different

landmarks.
Note  that  INRIA  Holidays  dataset  consists  of  500

queries  and  991  gallery  images  without  training
images.  We  have  to  resort  to  a  subset  of  Google
Landmarks  Dataset  v2[40] to  train  our  network.  Also,
CUB200-2011 and Stanford-Cars are datasets for fine-
grained  classification  about  bird  and  car,  respectively,
and  we  regard  each  test  image  as  query  and  all
remaining  images  as  gallery.  In  our  method,  the
backbone  is  firstly  initialized  with  weights  pre-trained
on  ImageNet,  and  then  it  is  further  trained  on  the

 

Algorithm 1　Robotic object recognition

{da}n−1
a=0

Iq

Input: support data  of a novel sub-class and a scene
image 

{boxb}m−1
b=0 {pb}m−1

b=0Output: boxes  and matching probabilities 

At = CNNAttention (Iq)1: ;

{boxb}m−1
b=0 =Mining (At)2: ;

b ∈ [0, m−1]3: for  do
pob = Crop (Iq, boxb)4:　 ;
Qb = ObjectEncoder (pob)5:　 ;

6: end for
a ∈ [0, n−1]7: for  do

Ea = ObjectEncoder (da)8:　 ;
9: end for

S b, a = 0, b = 0, 1, . . . , m−1, a = 0, 1, . . . , n−110: Intilize ;
b ∈ [0, m−1]11: for  do

a ∈ [0, n−1]12:　for  do
S b,a13:　　Calculate  using Eq. (4);

14:　end for
pb15:　Calculate  using Eq. (6);

pb ⩾ 0.516:　if  then
b17:　　The -th potential object belongs to the novel sub-class;

18:　end if
19: end for
20: return
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dataset.  For  different  datasets,  the  CNN  backbone  is
trained  to  achieve  better  performance.  Notice  that  we
reproduce  other  advanced  methods  and  compare  them
with the proposed method on the same training setting.
All  methods  run  on  a  server  with  i9-10400  CPU  and
NVIDIA  RTX  3090  GPU.  We  evaluate  the
performance  of  methods  with  two  metrics:  mean
Average  Precision  (mAP)  and  top-1  mean  Precision
(top-1 mP), where Average Precision (AP) refers to the
average  of  precision  values  at  the  ranks  of  all  true
positives  among  the  retrieved  items,  and  then  mAP is
obtained by computing the mean of AP over a large set
of queries[41].

(1) Ablation studies

Fa

As  mentioned  above,  the  proposed  object  encoder
termed  as  KANet  is  built  on  a  CNN  backbone.  We
consider  DenseNet169[34],  ResNet50,  and
ResNet101[21] separately as the backbone of KANet in
ablation experiments. We firstly determine which CNN
stage  to  output  the  feature  map  required  by  the
attention block. Table  2 provides  comparison of  using
feature map from different CNN stages for attention on
the  basis  of  DenseNet169  backbone.  It  is  seen  that
CNN  stage4  performs  better,  which  indicates  the
reasonability of our method.

Besides,  KANet  and  its  two  variants  are  concerned
according  to  whether  attention  block,  key-part
aggregation  (k-means),  and  key-part  aggregation

(graph-cut) are adopted, where the scheme of key-part
aggregation  (k-means)  refers  to  that  the  key-part
regions  are  obtained  by  k-means  instead  of  graph-cut.
The ablation results are shown in Table 3. Meanwhile,
three  types  of  backbones  are  considered.  One  can  see
that  the  combination  of  attention  block  and  key-part
aggregation  stably  improves  retrieval  performance  for
different  backbones.  Moreover,  our  adopted  key-part
region based on graph-cut is slightly better than the k-
means solution.

(2) Comparison with existing methods
The  comparison  of  different  aggregators  with  the

DenseNet169  backbone  on  three  public  datasets  in
terms of mAP and top-1 mP is shown in Table 4. The
methods include:
• SPoC[15]: sum-pooling of convolutional features;
• Mac[13]: max-pooling of convolutional features;
• RMAC[27]: regional  maximum  activations  of

convolutional features;
• GeM[14]: generalized-mean  pooling  of

convolutional features;
• SCDA[16]: selective  convolutional  descriptor

aggregation of convolutional features;
• Non-Local[42] + GeM: GeM  with  non-local

attention module;
• RGA[33] + GeM: GeM  with  RGA  attention

module.

A At

All data are from our reproduction and it is observed
that our proposed KANet achieves 5 best results over 6
trials. Figure 3 presents visualization of object attention
maps  and  key-part  regions  for  six  images  from  three
datasets, where the first to fourth columns of each sub-
figure  represent  the  rescaled  image,  the  initial  object
attention map , the final object attention map , and
key-part regions, respectively. The results indicate that
KANet can effectively extract the key-part regions with
better completeness.

 

Table 2    Comparison  of  using  feature  map  from  different
CNN stages for attention.

CNN stage for
attention

CUB200-2011
Top-1 mP mAP

None 0.800 93 0.713 95
CNN Stage 3 0.785 00 0.704 09
CNN Stage 4 0.825 00 0.732 91
CNN Stage 5 0.812 50 0.729 44

 

Table 3    Comparison of the proposed object encoder KANet with different variants on CUB200-2011 in terms of mAP.
Object encoder Attention block Key-part aggregation (k-means) Key-part aggregation (graph-cut) mAP

KANet-I with DenseNet169 √ × × 0.716 54
KANet-II with DenseNet169 √ √ × 0.724 13
KANet with DenseNet169 √ × √ 0.732 91
KANet-I with ResNet101 √ × × 0.699 38
KANet-II with ResNet101 √ √ × 0.733 16
KANet with ResNet101 √ × √ 0.732 76
KANet-I with ResNet50 √ × × 0.683 54
KANet-II with ResNet50 √ √ × 0.707 87
KANet with ResNet50 √ × √ 0.716 44
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4.2　Experiments on active three-camera platform

In this section, experiments are executed on our active
three-camera  platform  with  an  RGBD  camera  (Cam1)
and two RGB cameras (Cam2 and Cam3), as illustrated
in Fig.  4.  Cam1 can  pitch  and  deflect  with  the  whole
platform driven by motors.  Cam2 and Cam3 can rotate
around their respective rotation axis driven by motors.
ResNet50[21] is  used  as  the  backbone  in  KANet.  To
better train the object encoder, we collect training data
about  3000  classes  from  the  internet  with  average  15
images per class.

Distinguishing  different  sub-class  objects.  In  this
experiment, we consider three different cups and three
different  bottles,  where  each  object  corresponds  to  a
sub-class.  Each sub-class is  captured in three different
viewpoints, as shown in Fig. 5. Therefore, we have 18
images altogether.

Figure 6 presents the matching probabilities between

each sub-class in Fig. 5 and the support data from other
viewpoints,  where  the  horizon  axis  corresponds  to  the
sub-class  and  the  vertical  axis  refers  to  the  support
data. Figure  6(a)  gives  the  1-shot  results  where  the

 

Table 4    Comparison of different aggregators with DenseNet169 backbone on three datasets in terms of top-1 mP and mAP.

Aggregator
CUB200-2011 Stanford-Cars INRIA Holidays

top-1 mP mAP top-1 mP mAP top-1 mP mAP
SPoC[15] 0.778 91 0.682 59 0.916 18 0.835 95 0.898 00 0.866 89
Mac[13] 0.798 41 0.706 27 0.916 43 0.849 21 0.908 00 0.883 53

RMAC[27] 0.798 58 0.719 89 0.917 80 0.864 14 0.922 00 0.905 49
GeM[14] 0.800 93 0.713 95 0.918 12 0.863 19 0.928 00 0.907 06

SCDA[16] 0.822 93 0.729 99 0.914 14 0.863 26 0.922 00 0.901 88
Non-Local[42] + GeM 0.811 71 0.719 58 0.909 79 0.850 04 0.918 00 0.906 20

RGA[33] + GeM 0.814 64 0.722 99 0.915 88 0.852 67 0.936 00 0.920 81
Ours 0.825 00 0.732 91 0.923 47 0.873 79 0.938 00 0.915 97

 

(a) (b)

(c) (d)

(e) (f) 
Fig. 3    Visualizations  of  object  attention  maps  and  key-part  regions  for  six  images  on  three  datasets.  (a)  and  (b)  CUB200-
2011[37], (c) and (d) Standford-Cars[38], and (e) and (f) INRIA Holidays[39]. The first to fourth columns of each sub-figure refer
to the rescaled image, the initial object attention map, the final object attention map, and key-part regions, respectively.

 

Cam2

Cam3

Cam1

 
Fig. 4    Active three-camera platform.
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support  data are composed of one image per sub-class
and  only  minimum matching  probability  per  sub-class
is  provided. Figure  6b  demonstrates  the  3-shot  results
and  each  of  which  is  calculated  by  maximizing  the
minimum matching probability per sub-class among 3-
shot support data. Compared to Fig. 6a with 1-shot, the
results of Fig. 6b with 3-shot indicate that the matching
probabilities  within  the  same  object  (see  diagonal
elements)  increase  rapidly,  which  means  that  the
performance  of  distinguishing  the  unique  objects  can
be significantly improved.

Take  the  images  in Fig.  5 as  the  support  data,  the

processed results for a given image are shown in Fig. 7,
where  circle  box  instead  of  rectangle  bounding  box  is
used.  It  is  seen  that  all  objects  related  to  the  support
data  are  recognized  correctly  (see  green  circular
boxes),  even the object bottle3 is placed upside down.
This verifies the effectiveness of our method. Besides,
the efficiency is discussed, where the processing speed
varies with different objects number in a scene image.
With  input  resolution  of  1280  pixel  ×  720  pixel  and
nine  potential  objects,  the  inference  speed  is  about  11
Frames  Per  Second  (FPS),  which  indicates  that  the
proposed method can run in real time.

 

(a)

(b)

(c)

(d)

(e)

(f) 
Fig. 5    Six sub-classes with three cups and three bottles. (a)
cup1,  (b)  cup2,  (c)  cup3,  (d)  bottle1,  (e)  bottle2,  and  (f)
bottle3.
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Fig. 6    Matching probabilities between sub-classes in Fig. 5
and  the  support  data  from  other  viewpoints,  where  the
horizon  axis  corresponds  to  the  sub-class  and  the  vertical
axis  refers  to  the  support  data.  (a)  1-shot  results  and (b)  3-
shot results.
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Object  recognition  and  gazing  experiments. We
consider recognition of novel object  plier.  Meanwhile,
each  camera  in  the  active  three-camera  platform  is
required  to  gaze  at  the  latest  novel  object  by  keeping
the object in the center of its visual field.

Initially,  the  plier  is  only  regarded  as  a  potential
object,  as  shown  in Fig.  8a.  After  7  images  of  the
object  plier  are  provided  as  support  data  (see  the  first
row  of Fig.  8b),  the  proposed  method  recognizes  this
plier  correctly  and  all  cameras  adjust  their  respective
postures  to  gaze  at  this  plier,  which  are  illustrated  in

the second row of Fig. 8b.

5　Conclusion

This  paper  proposes  a  robotic  object  recognition
method  based  on  key-part  attention  retrieval  to  know
novel  objects  through  a  few  samples.  An  object
encoder  is  designed  to  generate  object  attention  map
and  extract  the  object-level  embedding,  where  object
attention  map  from  the  middle  stage  of  the  CNN
backbone  is  used  to  better  guide  the  key-part
aggregation.  Besides,  a  two-step  training  scheme  is
developed  for  the  object  encoder  to  output  a  more
stable embedding. After each potential object is mined
with  the  attention  map  of  scene  image,  its
corresponding  embedding  is  matched  with  support
embeddings,  and  then  object  recognition  is  achieved.
The  experiment  results  indicate  that  the  proposed
method  can  effectively  recognize  different  subclass
objects in the same category with good adaptability to
viewpoints and poses. For distant object, it shall lead to
tiny pixel area in scene image, which makes it difficult
to  be  recognized.  In  the  future,  we  shall  incorporate
multi-scale  attention  into  the  proposed  method  for

 

Cup2

Cup1

Bottle 3

 
Fig. 7    Object  recognition  results,  where  the  potential
objects are marked in red circular boxes.

 

Cam2Cam1 Cam3

Cam3Cam2Cam1

(b)

(a)

 
Fig. 8    Recognition and gazing of plier with 7-shot support data. (a) Potential objects (labeled in red circular boxes) in Cam1
as  well  as  the  initial  viewpoints  of  Cam2 and Cam3,  (b)  7  images  of  the  novel  object  plier  (the  first  row)  and its  recognition
result marked in a green circular box (the second row), and the red circular boxes still refer to potential objects, where each
camera keeps this object in the center of its visual field.
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better recognition of tiny object.
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