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Abstract
Objective.Magnetic particle imaging (MPI) shows potential for contributing to biomedical research
and clinical practice. However,MPI images are effectively affected by noise in the signal as its
reconstruction is an ill-posed inverse problem. Thus, effective reconstructionmethod is required to
reduce the impact of the noisewhilemapping signals toMPI images. Traditionalmethods rely on the
hand-crafted data-consistency (DC) term and regularization termbased on spatial priors to achieve
noise-reducing and reconstruction.While thesemethods alleviate the ill-posedness and reduce noise
effects, theymay be difficult to fully capture spatial features.Approach. In this study, we propose a deep
neural network for end-to-end reconstruction (DERnet) inMPI that emulates theDC term and
regularization termusing the featuremapping subnetwork and post-processing subnetwork,
respectively, but in a data-drivenmanner. By doing so, DERnet can better capture signal and spatial
features without relying on hand-crafted priors and strategies, thereby effectively reducing noise
interference and achieving superior reconstruction quality.Main results. Our data-drivenmethod
outperforms the state-of-the-art algorithmswith an improvement of 0.9–8.8 dB in terms of peak
signal-to-noise ratio under various noise levels. The result demonstrates the advantages of our
approach in suppressing noise interference. Furthermore, DERnet can be employed formeasured
data reconstructionwith improved fidelity and reduced noise. In conclusion, our proposedmethod
offers performance benefits in reducing noise interference and enhancing reconstruction quality by
effectively capturing signal and spatial features. Significance. DERnet is a promising candidatemethod
to improveMPI reconstruction performance and facilitate itsmore in-depth biomedical application.

1. Introduction

Magnetic particle imaging (MPI) (Gleich et al 2005) is a powerful tomography technique, and exhibits notable
advantages in terms of high imaging sensitivity, excellent penetration depth, high contrast, linear quantification,
and great biosafety (Bauer et al 2015, Song et al 2018, Bulte 2019,Wang et al 2020, Li et al 2022). The technique
has already shown promise for cancer detection (Yu et al 2017,Wang et al 2022), intracranial hemorrhage
detection (Szwargulski et al 2020), hyperthermia guidance (Du et al 2019), vasculature imaging (Zhou et al 2018),
and cell tracking (Rivera-Rodriguez et al 2021).MPImeasures themagnetization response ofmagnetic
nanoparticles (MNPs) to image their spatial distribution, and introduces systemmatrix (SM) to describe the
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mapping relationship between the response andMNPdistribution. The pre-acquired SM is commonly
employed to reconstruct the distribution images fromMPI signals, and these SM-basedmethods involve solving
an ill-posed problem (Kluth 2018, Kluth et al 2018). The ill-posedness leads to significant errors in the
reconstructed results evenwithminimal noise, and unfortunately, theMPI signals contain various types of noise
(Storath et al 2017, Paysen et al 2020). Therefore, effective reconstructionmethod is required to reduce the
impact of the noise while transforming the signals intoMPI images of theMNPdistribution.

1.1. Traditional reconstructionmethods
In traditional reconstructionmethods, iterative algorithms have shown superior performance compared to
direct algorithms. These iterative algorithms execute the regularization term and data-consistency (DC) term
iteratively to achieve the reconstruction (Knopp et al 2010, Ilbey et al 2017, Knopp et al 2017, Yin et al 2017). The
DC term exerts projection from signals to images, and frequency selection is commonly employed to remove the
components with high noise level (Knopp et al 2010, 2017). Additionally, weighting and other hand-crafted
strategies are also applied selectively (Knopp et al 2010). For the regularization terms, the hand-crafted spatial
priors such as sparsity are utilized to guide the reconstruction. These priorsmanifest as regularization terms
such as L1 norm, L2 norm, total variation (TV) or their combination (Ilbey et al 2017, Knopp et al 2017, Yin et al
2017, Knopp et al 2010, 2021, Lieb andKnopp 2021). Hence, the regularization terms canmitigate the ill-
posedness based on desired spatial constraints, ultimately optimizing the reconstruction results andminimizing
the impact of noise.

As previouslymentioned, traditional approaches forMPI reconstruction typically employ theDC term and
regularization term,which encompass a variety of widely usedmethodologies. Themost frequent approach is
based on the L2-norm and algebraic reconstruction technique (ART), which showsmoderate reconstruction
efficiency (Knopp et al 2010, 2021). However, it exhibits limited noise suppression capability (Storath et al 2017,
Knopp et al 2021). The non-negative fused lasso (NFL)model applies L1 andTV terms and can suppress noise
better but has lower reconstruction speed (Storath et al 2017). The alternating directionmethod ofmultipliers
(ADMM)with the L1 andTV terms has the comparable reconstruction quality toNFL and predominant
efficiency (Ilbey et al 2017). Nevertheless, hand-crafted priors of the abovemethodsmay be difficult to fully
capture the spatial features of theMNPdistribution, limiting their ability to reduce noise influencewhen data do
not fully satisfy the assumed priors (Knopp et al 2017, Storath et al 2017). In addition, the regularization
parameters can exert a significant influence on the result (Ilbey et al 2017, Storath et al 2017, Kluth et al 2018),
requiring fine-tuning to preserve details and reduce noise interference.

1.2.Deep learning-basedmethods
In recent years, data-drivenmethods have been proposed tomitigate the impact of noise without relying on
hand-craftedDC and regularization terms. The deep image prior (DIP) employs the intrinsic ability of the
network to regularize ill-posed inverse problems and performs iterations based on theDCduring the
reconstruction process (Dittmer et al 2020, Knopp andGrosser 2022). DIP requires no specific regularization
terms or pre-training, but it has poor reconstruction efficiency compared to othermethods. PP-MPI applies a
trained denoising network as the regularization term and integrates it into theADMMalgorithm. LikeDIP, PP-
MPI does not require specifying regularization terms and achievesmuch faster reconstruction speed (Askin et al
2022). However, directly adopting an image denoisingmodel as a reconstruction priormay potentially limit its
performance, and the iteration number remains undetermined. TheDEQ-MPI (Güngör et al 2023)
demonstrates improved reconstruction quality and comparable reconstruction speed toADMML1 by using a
novel deep equilibrium reconstructionwith learned consistency. Additionally, while direct image
reconstruction approaches based on deep learning have demonstrated superiority in reconstructing simulated
data (Chae 2017, vonGladiss et al 2022), they encounter limitations when it comes to real phantomdata. Besides
supervised learning algorithms, contrastive learning has also been used inMPI reconstruction (Schrank and
Schulz 2023). However, the approach has not yielded satisfactory results yet.Moreover, some reconstruction
methods in othermedicalmodalities also have the potential to be applied toMPI reconstruction.MRI
reconstruction based on the compressed sensing is also to solve an ill-posed inverse problem (Quan et al 2018).
Hence, some classical deep learningmethods inMRI reconstruction, such as ADMM-Net (Yang et al 2018),
might be applicable toMPI reconstruction.

1.3.Ourmethod
In this paper, we present a deep neural network calledDERnet for end-to-end reconstruction inMPI.Unlike
existingDIP and PP-MPImethods, DERnet can directly reconstruct images from signals without iterative
processing. The design of DERnet draws inspiration from traditional reconstructionmethods, comprising of a
featuremapping (FM) subnetwork and a post-processing subnetwork. The FMemulates theDC component of
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traditionalmethods, primarily applied tofiltering noise and extracting spatial features from signals. The post-
processing subnetwork optimizes reconstruction results based on learned features, resulting in reduced noise
output, and from this perspective, it has similar effects to the regularization term.Our proposedmethod
emulates both theDC and regularization terms but is data-driven instead of hand-crafted. Consequently,
DERnet can better capture signal andMNPdistribution features, thereby achieving superior fidelity and noise
suppression. Experiment results demonstrate that ourmethod offers competitive reconstruction efficiency and
outperforms the state-of-the-art algorithmswith an improvement of 0.9–8.8 dB in terms of peak signal-to-noise
ratio (PSNR)under various noise levels. Furthermore, DERnet can be employed formeasured data
reconstructionwith improved fidelity and reduced noise.

2.Methods

The proposedDERnet is data-driven, but there is no ground-truth for themeasuredMPI signals (Storath et al
2017, Knopp et al 2010, 2021). Thus, we use simulation data for training and evaluating themethod
quantitatively. In this section, wefirst introduce the simulationmethod that is used to generate theMPI signals.
We then elaborate on the network architecture. Finally, we present the training and prediction strategies for
DERnet.

2.1. Simulation
It is still an unsolved problem tofind a sufficiently accuratemodel to simulate the behavior of large numbers of
MNPs inMPI (Kluth et al 2019, Li et al 2023). There are notable disparities between themeasured and simulated
data using themathematicmodel alone. Thus, to achieve higher fidelity between simulated and actual data, we
simulated theMPI signals with themeasured calibration and simulated phantoms. Themeasured calibration

Î ´Am
M N is commonly considered as themost accurate SM (Knopp et al 2017, 2021) (M is the number of

selected frequency components, and N is of the number of the voxels). It is captured using a smallMNP sample
to traverse on the imaging grids. TheMPI signal Î bs

M is simulated as the following:

( )= +b A c n , 1ss m s

where Î cs
N is the simulated image vector, Î ns

M is the additive noise. Considering that theMPI data
measuredwith differentMPI devices and scanning parameters exit disparities, the Am is not universally
applicable.

2.2.DERnet
DERnet is inspired by traditionalmethods inMPI reconstruction (Knopp et al 2010, Ilbey et al 2017, Knopp et al
2017, Storath et al 2017) and consists of two parts: the featuremapping (FM) subnetwork and the post-
processing subnetwork. The framework is shown infigures 1 and 2. The FMemulates theDCpart of traditional
methods and ismainly applied to signal data denoising andmapping signals to spatial features. The post-
processing subnetwork is used to extract spatial features and performoptimization of reconstruction results
based on learned features.

InDERnet, all convolution layers are equippedwith 3× 3 convolution kernel (unless otherwise specified),
and theweights of neural network layers (e.g. convolution layers, fully connected layers) are initialized using
defaultmethod in PyTorch. Themodel does not use predefined/customfilters, and all weights are obtained
through end-to-end training in this work. In addition, the number of weights can be calculated using the

Figure 1.The framework of theDERnet, which is composed of a FM subnetwork and a post-processing subnetwork. The FM
subnetwork is divided into (a) signal data processingmodule, (b) domain transformationmodule, and (c) feature extraction and
attentionmodule. (d)The post-processing subnetwork. The output size of each sub-module is represented as the number of
channels× the featuremap size of each channel. C ,1 C ,2 C3 and C4 represent the channel number of featuremaps. N ,1 N ,2 N, and M
represent the featuremap size of each channel. The specific values of these parameters are provided in section 3.3DERnet
implementation.
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provided input and output information of the sub-modules. Hyperparameters (e.g. C1−C ,5 r0 and r1) are
optimized on the validation set, and their specific values can be found in section 3.3. In the following sections, we
will provide a detailed description of each submodule in the FM subnetwork and the post-processing
subnetwork.

(a) Signal data processingmodule. In theDCof the traditionalmethod, frequency selection schemes are used to
remove the data with low signal-noise ratio (SNR). For FM, the input is also the selected signals (frequency
domain), where the two channels represent the real and imaginary components. Furthermore, input data
are processed to exert signal denoising through 1D convolution layers ·( ( )Z ,D1 ,1 ·( )Z D1 ,2 ) that are equipped
with a dropout layer ·( )D .The output Î ´U C M

0
1 of the convolution layers can be described as follows:

( ( ( ))) ( )r=U UZ Z D , , 2D D in0 1 ,2 1 ,1 0

where Î ´Uin
M2 is theMPI frequency-domain signal, and r0 is the dropout rate.

(b) Domain transformation module. The DC term is employed to describe the relationship between the signal
and spatial distribution ofMNPs, and it completes the domain transformation from signal to image. Thus,
we design themodule in FM to achieve this transformation. Based on the linearmodel (1), the image vector

Î c N
rec can be directly obtained through inverse operationswhen the noise is neglected. From this
observation, the transformation from signal to image can be directly achieved as following:

( )†=c A b, 3mrec

where † Î ´Am
N M is the pseudo-inverse of A .m This approach is called pseudo-inversemethod (Coene et al

2013, Baksalary andTrenkler 2021) and it directly transforms the 1D signal data into the 2D spatial data. The
output data are vectorized over the rows, and it can be reshaped into two-dimensional images of sizeN1×N2.

Inspired by (3), we adopt the fully connection (FC) layer to achieve the domain transformation as following:

( ) ( )r=I W UD , 40 FC 0 1

where ÎI C N
0

2 is the image vector, Î ´WFC
C N C M2 1 denotes the learnedweights in the FC, C2 and C1 are the

channel number of the featuremaps, and r1 is the dropout rate. Compared (3) and (4), similar procedures are
performed, and they all obtain the voxel value byweighted sumof frequency-domain signal data. Thus, (5) is
adopted for the domain transformation, and the output is defined as Î ´ ´I ,C N N

1
2 1 2 where =N N N :1 2

( ) ( ( )) ( )r= =I I W UZ Z D , 51 reshpe 0 reshpe FC 0 1

where (·)Zreshpe denotes the reshaping operation.

(c) Feature extraction and attention module. This module is designed to capture abundant semantic
information and effectively weight features to highlight important features while reducing noise
interference. To extractmulti-scale spatial features, we use a parallel convolution blockwith kernels of
1× 1, 3× 3, and 5× 5. Then, the features are concatenated and fused. The output of the block is defined as
Î ´ ´I ,C N N

2
3 1 2 where C3 is the channel number of the featuremaps.

( ( ( ) ( ) ( ))) ( )=I I I I IZ Z Z Z Z, , , , 6D D D D2 2 ,4 cat 1 2 ,1 1 2 ,2 1 2 ,3 1

where ·( )Z ,D2 ,1 ·( )Z ,D2 ,2 ·( )Z D2 ,3 and ·( )Z D2 ,4 denote convolution layers with kernels of 1× 1, 3× 3, 5× 5
and 3× 3; Zcat represents concatenation along the channel dimension.

Figure 2.The post-processing subnetwork, which employs amodifiedUnet. The output of the subnetwork is the reconstruction result
of theDERnet. The output size of each sub-module can be represented as the number of channels× the featuremap size of each
channel. C4 and C5 are the channel number of featuremaps. N ,1 N2 represent the featuremap size of each channel. The specific values
of these parameters are provided in section 3.3DERnet implementation. I3 is output of the FM subnetwork.
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Subsequently, the convolutional block attentionmodule (CBAM) (Woo et al 2018) is added to
adaptively learn theweights for each feature channel and position based on their importance. Then, a
convolution block is adopted for feature fusion, and the output Î ´ ´I C N N

3
4 1 2 can bewritten as:

( ( )) ( )=I IZ Z , 7D3 2 ,5 CBAM 2

where ZCBAM denotes theCBAM, and Z D2 ,5 represents a cascaded convolutionalmodule. ·( )Z ,D2 ,1

·( )Z ,D2 ,2 ·( )Z D2 ,3 and ·( )Z D2 ,5 are equippedwith batch normalization (BN) and rectified linear activation
function (ReLU).

(d) Post-processing subnetwork. In traditional methods, regularization terms are used to add constraints to the
reconstructed images based on the desired spatial attributes (e.g. smoothness, sparsity), thereby optimizing
the results. DERnet also adopts a subnetwork to post-process reconstruction results based on learned spatial
attributes. Incorporating these learned features as constraints contributes tomitigating the ill-posed nature
of the reconstruction problem, and hence, it reduces the noise impact on the reconstruction results. In
DERnet, amodifiedUnet is adopted as the post-processing subnetwork. Unet is a classical image
segmentation and processing network (Ronneberger andBrox 2015), which is slightlymodified in this
study. The residual connection is added, and convolution blocks are equippedwith ReLU andBN. To
output reconstruction images, the channel number of the featuremap is reduced to the single andReLU
performs the non-negativity constraint as the final layer. Thefinal output can be described as:

( ( )) ( )= +I I IZ Z 8D uoutput 2 ,6 3 3

where Î ´I N N
output

1 2 represents the output ofDERnet, Zu denotes theU-shape subnetwork as shown in
figure 2, and Z D2 ,6 comprises the operations of single CBAMblock, two convolutional layers and single ReLU
layer.

2.3. Training and prediction strategies
The normalization ·( )N can improvemodel convergence speed and robustness, and it is written as:

( ) ( )/=b bN b , 9max

where Î b M is the frequency-domain signal, and bmax represents themaximumamplitude value of b.The
prediction result Î ´Ipd

N N1 2 is followed:

( ( )) ( )=I bb Net N 10pd DERmax

where NetDER denotes DERnet. The bmax is used toweight the reconstruction result, and it is applicable to the
case of a linearmodel as (1) in the absence of excessively strong noise.

The loss function (Loss) is themean square error (MSE) of the prediction results and ground truth as follows:

( ) [ ( ) ( )] ( )åå= -
= =

I I I I
N N

i j i jMSE ,
1

, , , 11pd gt
i

N

j

N

pd gt
1 2 1 1

2
1 2

where Î ´Igt
N N1 2 denotes the ground truth.

3. Experiment

3.1.Dataset
In this work, the dataset can be divided into simulated andmeasured data. The simulated data are obtained by
assuming theMNPdistribution and simulating according to themethod in the section 2.1.Hence, the ground
truth of the simulated data is the assumedMNPdistributionmaps. Themeasured data are got from theMPI
device. The ground truth ofmeasured data cannot be obtained. Phantom images or slices in the 3Dprinter
models are provided as reference images to facilitate qualitative comparison.

(a) Simulation dataset. In this paper, 60 000 images from Mixed National Institute of Standards and
Technology database (MNIST) (LeCun et al 1998)were selected, and processed. The images were cropped,
retaining only the central ´15 15 patch, and then randomly rotated and placedwithin a random region
of the image. Subsequently, theywere resized to the specified dimensions, consistent with the grid size of the
systemmatrix. Using these images as simulated phantom, the simulationwas performed based on (1) and
theGaussian noise (Storath et al 2017, Paysen et al 2020)was added. The training dataset consisted of 48 000
data samples at SNRs ranging from20 to 40 dB. The validation dataset comprised 6000 data samples at
SNRs ranging from20 to 40 dB, and it is adopted to select the usedmodel and the optimal hyperparameters.
During the training process, themodel that performed best on the validation set is chosen as the final saved
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model. The test dataset contained 6000 data samples at afixed SNRof 30 dB. The procedure outlined in (a)
was applied to the data from (b) aswell as from (c) and that for both aDERnet was trained.

(b) OpenMPI dataset (Knopp et al 2020). OpenMPI is an open-source MPI dataset. For this study, we used the
2D SMcalibration data fromOpenMPI (experiment number: 2) alongwith 2Dphantommeasurement
data. The used calibration and phantomdatawere obtained on a preclinical FFP scanner (Bruker, Ettlingen)
with PerimagMNPs (MicromodGmbH,Germany). The 2D SMwasmeasuredwith the drive-field
amplitude of 12mT× 12mT× 0mT, butwith 19× 19× 19 grid positions. This calibrationmethod can
suppress signal interference fromout-of-planeMNPs,making the 3Dobjectmore accurate after splicing
2D images along the z-axis (Mason et al 2022). However,manyworks for 2DMPI reconstruction only need
systemmatrix with 2D shape (Storath et al 2017, Knopp et al 2010, 2021). Ourwork only reconstructed 2D
results, and hence, we only extracted the tenth slice of the 2D SMdata and only kept the SM rowswith
SNR> 1.5 dB. Themeasurements included three 2Dphantomdata named Shape, Resolution and
Concentration.More details can be found inKnopp et al (2020).

(c) In-house dataset (Shi et al 2023). We evaluated our method on an in-house FFP scanner. The selection
gradient was set to [1.7, 1.7] along theX andY axes, and the driving frequency was 25 kHz. Afield of view
was set to 22 mm× 22 mm, and a delta sample (2 mm× 2 mm), filledwith PerimagMNPs (8.5 mgml−1),
was utilized to acquire the SMwith grid 11´11. The paralleled cylindrical tube andC-shape phantoms
were used for demonstration, and theywere filledwith PerimagMNPs (8.5 mg ml−1).We preserved the
first to thirteenth harmonic for reconstruction.

3.2. Competingmethods

(a) ART. ART is a classical reconstruction method for MPI, and Kaczmarz/Tikhonov algorithm was
implemented in this paper (Knopp et al 2010, 2021). The number of iterationswas 10, ensuring
convergence, and optimal parameters can be seen in table 1.

(b) ADMM. We implemented ADMM algorithm with three regularization terms: L1, TV and L1+TV (Ilbey
et al 2017, Askin et al 2022). The parameter mwas optimized through experimentation and the number of
iterationswas 200. For the ADMML1+TV, a a+ = 1TV L1 and the optimal aTV was also chosen through
experimentation. ewas adjustedwith SNRs, and it adopted the Euclidean distance of the noise (Ilbey et al
2017, Askin et al 2022). The optimal parameters were displayed in the table 1.

(c) PP-MPI. The PP-MPI is deep-learning-based method, and it used a trained denoiser as the regularization
terms (Askin et al 2022). For the training of the denoiser, LRwas 0.01, and the standard deviation of the
noise was 0.001. and 4000 iterationswithADAMoptimizer were employed. For the reconstruction, the
optimal parameter could be seen in the in the table 1.

(d) DIP. The DIP used an untrained network whose weights are not determined based on the training dataset,
but during the reconstruction (Dittmer et al 2020, Knopp andGrosser 2022). InDIP, 0.001 learning rate
(LR) and 4000 iterationswith ADAMoptimizer were employed.

(e) ADMM-Net. The ADMM-Net is deep learning approach, and is a classical unrollingmethod. The Generic-
ADMM-Net (Yang et al 2018)was adopted in this work and the optimal parameters were shown in the table
1. LRwas 0.01, and 4 iterationswithADAMoptimizer were employed.

3.3.DERnet implementation
For theOpenMPI and in-house data, we trained theDERnet separately because of the different SMs. By
comparing the performancemodels trainedwith different hyperparameter values on the validation set, the
optimal hyperparameters are selected. Common set of parameters included =C 8,1 =C 4,2 =C 16,3 =C 8,4

=C 128,5 r r= = 0.05,0 1 =LR 0.001.According to calibration data, =M 839, = =N N 191 2 forOpenMPI
data, and =M 139, = =N N 111 2 for in-house data. Due to the limitations of the featuremap size, only three
pooling operations were implemented in post-processing subnetwork during in-house data reconstruction. The
DERnet trainingwas implemented in PyTorch on aNVIDIAGeForce RTX 3090GPU.

3.4.Quantitative assessments
The ground truth ofmeasured data includingOpenMPI and in-house data was not available, and their
reconstruction results were only assessed visually. Thus, the quantitative assessments were implemented using
simulated data obtained viaOpenMPI SM. The normalized rootMSE (NRSME)was adopted to reflect the data
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Table 1.Parameter settings in the competingmethods. The simulated data refer to the datawith the procedure according to 3.1(a), and the data are obtained using the systemmatrix fromOpenMPI.OpenMPI and inhouse data are got from
phantom experiments, andmore details can be found in 3.1(b) and 3.1(c).

Dataset ART (α, iterations) ADMML1 (m, iterations) ADMMTV (m, iterations) ADMML1+TV (m,αTV, iterations) PP-MPI (iterations) ADMM-Net (LR, iterations) DIP (LR, iterations)

Simulated data (20 dB) 0.1, 10 1, 200 10, 200 1, 0.7, 200 10 0.001, 4 0.001, 4000

Simulated data (25 dB) 0.01, 10 1, 200 10, 200 1, 0.8, 200 10 0.001, 4 0.001, 4000

Simulated data (30 dB) 0.01, 10 10, 200 10, 200 10, 0.8, 200 20 0.001, 4 0.001, 4000

Simulated data (35 dB) 0.01, 10 10, 200 100, 200 10, 0.8, 200 30 0.001, 4 0.001, 4000

OpenMPI data 0.01, 10 10000, 200 10000, 200 100, 0.5, 200 50 0.001, 4 0.001, 4000

In-house data 0.001, 10 10, 200 100, 200 10, 0.6, 200 70 0.001, 4 0.001, 4000
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fidelity:

( )
|| ||

|| ||
( )=

-
I I

I I

I
NRMSE , , 12gt

gt

gt
pd

pd F

F

where ||·||F donated the Frobenius norm. The peak SNR (PSNR) calculated the ratio between themaximum
possible signal power and the power of the error in the images, which caused by the signal noise in this
reconstruction task. Thus, it was employed to indicate the impact of signal noise on the quality of
reconstruction:

( )
( )

( )=I I
I

I I
PSNR , 10 log

MSE ,
, 13gt

gt
pd 10

gt,max
2

pd

where Igt,max donated themaximumvalue in I .gt Structural similarity indexmeasure (SSIM) is ametric based on
the perceive visual quality, and can better reflect human evaluation of reconstruction quality:

( )
( )( )

( )( )
( )

m m s

m m s s
=

+ +

+ + + +

c c

c c
I ISSIM ,

2 2
, 14gt

pd gt pd gt

pd gt pd gt
pd

1 , 2

2 2
1

2 2
2

where m ,pd mgt are themeans of the reconstruction result and ground truth; c ,1 c2 are constants that prevent

division by zero; s ,pd
2 s gt

2 represent the variances and spd gt, is the covariance between the reconstruction result
and ground truth. All themetrics were directly adopted the functions from skimage (Van derWalt et al 2014).

4. Results

4.1. Analyzes on simulated dataset
Wefirst evaluated performance of theDERnet on the simulation dataset against some traditional reconstruction
method (ART, ADMML1, ADMMTV, andADMML1+TV), as well as state-of-art deep learningmethods (DIP,
ADMM-Net and PP-MPI).We performed quantitative assessments with 6000 simulation data obtained via
OpenMPI SM, and presented the results in table 2. Among traditional reconstructionmethods, ADMML1+TV

achieves the best quantitative performance. In comparison to it, DERnet can lead to the reduction of 0.067 in
NRMSE (31.5%), an enhancement of the 0.032 in SSIM (3.36%) and a 3.2 dB increase in PSNR (12.5%). Among
all competingmethods except forDERnet, PP-MPI achieves the best performance and significantly
outperformed the other competingmethods. Compared to PP-MPI, the proposedDERnet can reduce the 0.031
in termofNRMSE (17.5%), improve 0.013 regarding SSIM (1.34%), and increase 1.6 dB in terms of
PSNR (5.86%).

Some representative reconstruction results are shown infigure 3. ART yields artifacts and noise in the region
withoutMNPs, but it has a better visual impression thanADMM-basedmethods. Comparedwith ART,
ADMML1+TV achieves a better quantitative performance (table 2), but poorer qualitative results. The difference
in regularization termsmay lead to this contradiction. ADMML1+TV uses the L1 norm andTV term,whichmake
the reconstructed images sparser (pixel values tend to be 0) than that of the ARTwith L2 norm.Hence,
ADMML1+TV offers less noise and has better quantitative performance. However, the TV term also results in
staircasing effects (Wang et al 2018, Knopp et al 2017, Storath et al 2017), and the reconstruction results are
separated into flat regions by artifact boundaries. Hence, the results of the ADMML1+TV have aworse visual
impression thanART.Moreover, ADMML1 yields obvious noise, andADMMTVoffers less noise but exhibits
staircasing effects. The results of the traditionalmethods demonstrate that traditional reconstructionmethods
can partially suppress noise, but suffer from inadequate noise reduction or staircasing effects due to the
limitation of hand-craftedDCand prior terms. DIP suffersmost severely fromnoise, and the randomness in
DIP algorithmmay lead to some poor results. TheADMM-Net demonstrates satisfactory noise-suppression
capabilities in the regionwithoutMNPs, but tends to blurry the images. PP-MPI and proposedDERnet
outperform the others. Furthermore, DERnet is significantly better than PP-MPI from the errormaps.Overall,
the proposedDERnet demonstrates significant superiority over other approaches based on quantitative and
qualitative analysis.

4.2.Denoising experimental results
Weperformed denoising experiment with 50 simulated phantoms. The ideal simulation datawere exposedwith
the noise at the different SNRs, including 20 dB, 25 dB, 30 dB and 35 dB. All data are processed according to 3.1.
(a)with the systemmatrix fromOpenMPI. The quantitative assessments are displayed in table 3. As expected,
the performance of variousmethods exhibits an overall declining trendwith the increase of noise intensity. The
robustness of the ADMML1 is relatively poor. The reconstruction results of ADMM-Net are almost unchanged
under different noise interference, which is consistent with the conclusion in (Yang et al 2018). Except for
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Table 2.Comparison based on simulated data at afixed SNRof 30 dB (mean std), the simulated data are obtained according to 3.1(a)using the systemmatrix fromOpenMPI.

Metrics ART ADMML1 ADMMTV ADMML1+TV PP-MPI DIP ADMM-Net DERnet

NRMSE 0.221 0.0699 0.297  0.108 0.269 0.105 0.213  0.0836 0.177  0.0711 0.444 0.252 0.466 0.109 0.146  0.0548

SSIM 0.834 0.0916 0.911 0.0588 0.906 0.0621 0.952  0.0395 0.971  0.0211 0.803 0.180 0.776 0.087 0.984  0.0114

PSNR 25.2  3.22 22.8  3.28 23.8 2.90 25.7  3.04 27.3 3.15 20.0 4.94 18.6  2.53 28.9 3.31
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ADMM-Net, DIP exhibitsminimal reduction in terms of PSNR, but the overall performance of ADMM-Net
andDIP is unsatisfactory. The proposedDERnet outperforms othermethods, and the PSNRdeclines 5.6 dB as
the SNRof the signals decreases from35 dB to 20 dB. Although the PSNRs of ART,DIP andADMM-Net results
decrease less, their PSNRs are lower by 2.8–11.2 dB comparedwith ourmethod. Under various noise levels, the
proposedDERnet outperforms those state-of-the-art algorithmswith an average improvement of 0.9–8.8 dB in
terms of PSNR. Some representative reconstruction results are displayed infigure 4. Similar to the quantitative
analysis, the proposedDERnet achieves superior fidelity and demonstrates better denoising ability. It is worth
noting the parameters ofmost othermethods are optimized at different SNRs, whileDERnet remains
unchanged. Overall, the denoising experimental results demonstrate the advantages of our approach in
suppressing noise interference.

4.3.OpenMPI data reconstruction results
In this study, we evaluated the reconstruction performance of the proposedmethod using the 2Dphantom
measurement fromOpenMPI. TheDERnet was trainedwith the simulation data, and used to reconstruct the
measured data. The data consisted of some slices of the three phantommeasurement datamentioned above, and
the normalized reconstruction images using theirmaximumvalues are shown infigure 5. It wasworth
mentioning that the ground truthwas not available, and the reference images were from the computer-aided
designmodel of the phantoms. Thus, we could only performqualitative analysis based on visual observations.

For the resolution phantom, the reconstruction results of the ART andDIP shownoticeable noise in the
surroundings. ADMML1 exhibits information loss in its results, andADMMTV andADMML1+TV suffer from
blurred artifacts. TheADMM-Net yields poorest reconstruction results, which is consistent with the analysis
results on the simulation dataset.Moremodifications based onMPI principles and characteristicsmay improve
the performance of ADMM-Net. The PP-MPI andDERnet have the similar reconstruction quality and
outperform the others. For theConcentration phantom, all themethod can reconstruct the regionwith the
minimumconcentrationMNPs, but it is visually inconspicuous in the results of theADMMTV and
ADMML1+TV.Moreover, there is some noise in the results of ART,DIP, ADMML1 and PP-MPI, and the
ADMM-Net fails to reconstruct the distribution ofmagnetic particles well. Comparedwith the othermethods,
theDERnet shows better noise suppression and information preservation capabilities.

Figure 3.Representative reconstruction results and errormaps based on the simulated test dataset with the SNRof 30 dB. The test
data are obtained according to 3.1(a) using the systemmatrix fromOpenMPI.

Table 3.Comparison based on simulated data at SNRs ranging from20 to 35 dB. The PSNR is reported asmean  std, and the simulated
data are obtained according to 3.1(a) using the systemmatrix fromOpenMPI.

Dataset ART ADMML1 ADMMTV ADMML1+TV PP-MPI DIP ADMM-Net DERnet

20 dB 21.2  2.23 17.6  1.93 20.2  2.35 21.3  2.39 23.02.34 17.4  3.35 18.3 1.87 24.0 2.82

25 dB 23.2  2.20 21.6  2.51 24.1  2.71 25.6  2.19 25.7 2.60 18.9  4.21 18.4 1.84 26.6 2.73

30 dB 24.9  2.57 22.9  2.57 24.0  2.61 25.8  2.48 27.3 2.48 19.2  5.47 18.4  1.86 28.4 2.82

35 dB 25.7  2.93 26.0  2.96 26.9  3.10 28.5  2.94 29.0 2.91 20.7  4.01 18.4  1.88 29.6 3.27
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For the shape phantom, ADMML1 andADMM-Net exhibit information loss, and the results of the
ADMMTV andADMML1+TV are blurred. TheART,DIP and PP-MPI did not effectively suppress noise. As
expected, the proposedmethod shows the best performance among all competingmethods.

The parameters of the competingmethods are selected based on visual optimization, and the proposed
network is notfine-tuned after training. Thus, it can be seen that ourmethod can robustly reconstruct the
measured datawith the unknownnoise and achieve the best reconstruction performance compared to other
reconstructionmethods.

4.4. In-house data reconstruction results
In this study, we demonstrated the reconstruction performance of ourmethod on an in-house dataset. Due to
the different SMused in the reconstruction tasks, we retrained the network. The normalized reconstruction
results are shown infigure 6 alongwith the corresponding reference images.

Figure 4.Representative results in the denoising experiment and errormaps using the indicatedmethods, and the test data are
obtained according to 3.1(a) using the systemmatrix fromOpenMPI. The SNRs of the data are 20–35 dB.

Figure 5.Reconstruction results of OpenMPI phantomdata using the indicatedmethods. Reconstructions are shown for the (a) 11th
slice of the Resolution phantomdata in theOpenMPI database, (b) 7th slice of theConcentration phantomdata and (c) 10th slice of
the Shape phantomdata.
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For the cylindrical phantom,DIP andADMM-Net fail to reconstruct the distribution ofmagnetic particles
well. TheART, ADMML1, ADMMTV and PP-MPI produce residual noise outside of the two cylinders, and
ADMML1+TV shows the information loss. OurDERnet presents less noise outside of the two cylinders and some
low-intensity artifacts. Overall, ourmethod stillmaintained superior or comparable reconstruction quality
compared to othermethods.

For theC-shape phantom,ADMM-Net, ART andDIP yields residual noise and fails to reconstruct a
complete phantom shape. Distorted information is presented in the upper half of ADMML1 reconstruction
result, and the concentration in certain regions of ADMMTV andADMML1+TV results exhibits significantly
higher intensity, which deviates noticeably from reality. In comparison, the trainedDERnet reconstructs the
C-shaped phantomwith less noise and higher fidelity.

The parameters for the alternative algorithms are selected based on their visually optimal performance. In
comparison, the trainedDERnet does not requirefine-tuning and exhibits significant superiority over other
approaches in terms of reconstruction quality.

4.5. Reconstruction time
Table 4 lists themean reconstruction time of 50 simulated datawith a SNRof 30. Allmethodswere implemented
in Python and deployed on aNVIDIAGeForce RTX 1080GPUwithout any explicit parallelization. TheDIP
uses an untrained network, which requires a particularly large number of iterations to updatemodel parameters
until satisfactory results are obtained. TheART is also relatively inefficient, and the ADMM-based and PP-MPI
can complete the inference in less time. TheADMM-Net requiresmatrix inversion, which limits the
reconstruction speed.Moreover, Though PP-MPImodel ismore lightweight, it requiresmultiple iterations,
which reduces its reconstruction efficiency. DERnet can complete the end-to-end reconstruction of theMPI
imageswithout iterations, and hence, it offers the highest reconstruction efficiency among all themethods.

5.Discussion

MPI images is effectively affected by signal noise as its reconstruction is an ill-posed inverse problem. To
improve theMPI reconstruction quality and reduce the noise interference, we proposed an end-to-end
reconstruction network calledDERnet. Different from the traditionalmethods, theDERnet seeks tomap the
MPI signals to theMNPdistribution in a data-drivenmanner, and it emulates the regularization term andDC
using an FM subnetwork and a post-processing subnetwork, respectively, but is learning-based. The FM is
applied to preliminary filtering of signal noise and extracting spatial features from signals. The post-processing
subnetwork optimizes reconstruction results based on learned spatial features, resulting in reduced noise
output. By doing so, DERnet can better capture signal and spatial features without relying on hand-crafted priors
and strategies, thereby effectively reducing noise interference and achieving improved fidelity.

Figure 6.Reconstruction results of in-house data using the competingmethods andDERnet. (a)The reference image and
reconstructions of cylindrical phantomdata (two parallel cylindrical tubes with 5 mmdistance). (b)The reference image and
reconstructions of C-shape phantomdata.

Table 4.The number of iterations andmean reconstruction time, and data are simulated according to 3.1(a) using the systemmatrix from
OpenMPI.

ART ADMML1 ADMMTV ADMML1+TV PP-MPI DIP ADMM-Net DERnet

Iteration numbers 10 200 200 200 20 4000 4

Time (s) 4.84 0.113 0.882 0.904 0.120 95.5 0.0439 0.0380

12

Phys.Med. Biol. 69 (2024) 015002 ZPeng et al



Quantitative assessments show that our proposedmethod yielded less noise in reconstruction results and
offered robust performance for various data types and noise levels. Comparedwith the competing algorithms,
theDERnet outperforms the state-of-the-art algorithms 0.9–8.8 dB in PSNR across the simulated datawith
various SNRs ranging from20 to 35 dB. Furthermore, themodel trained on the simulated data can be employed
tomeasuredMPI data, whose noise distribution is unknown. The reconstruction results of the openMPI and in-
house data show that ourmethod achieve the superior quality with improved fidelity and reduced noise.
Moreover, Due to its enhanced feature extraction capability, ourmethod successfully suppresses the noise
effects on the reconstruction results without requiring parameter adjustments based on the noise levels.
Additionally, our end-to-endmethod does not require the iterations, which is beneficial to the reconstruction
efficiency.

It is observed thatDIP shows relatively limited performance in this paper, and one possible reason is that its
update only relies on theDC term (Dittmer et al 2020, Askin et al 2022). Itmight lead to a high sensitivity to noise
and a less accurate reconstruction result, especially when dealingwith complex imaging tasks or datasets with
high noise levels. Additionally, DIP’s weight optimizationmay be computationally expensive and time-
consuming,making it difficult to apply in real-time applications. Overall, while DIP shows promise for theMPI
reconstruction, further research is needed to optimize its performance and address its limitations.

ADMM-Net is an unrolling-based network, whichwas first used for compressive sensingMRI (Yang et al
2018). In this work, the ADMM-Net framework is directly used as a competing algorithm, and some
implementation details have beenmodified.Overall, the ADMM-Net demonstrates extremely strong noise
robustness as shown in table 3.Nonetheless, the reconstructed results were of relatively poor quality. The results
might be limited by themodel’s design, which comprises just a few convolutional and nonlinear layers.
However, increasing the number ofmodel layers or iterations could easily lead to themodel converging to the
extremum, and outputting all-zero images.Moremodifications based onMPI principles and characteristics
may improve the performance of ADMM-Net. Additionally,matrix inversion is time-consuming, which limits
the reconstruction speed of ADMM-Net.

In this paper, sincemeasuredMPI signals have no ground truth, simulation data are adopted for supervised
training. Actually, the self-supervised/unsupervised learningmethods do not require ground truth and
therefore have the potential to applymeasured data to the training of themodel. Unfortunately, themethods
have not yet achieved satisfactory results onMPI reconstruction. Contrastive learning is an unsupervised
method, and has been applied toMPI reconstruction (Schrank and Schulz 2023). However, the trainedmodel is
only used for simple phantoms, and the reconstruction quality is inferior to traditionalmethods (Schrank and
Schulz 2023). Hence, theywere not used as the competingmethods. In addition, weakly supervised learning
(Zhou 2018) can be used formodel trainingwith imprecise labels, and semi-supervised learning (VanEngelen
andHoos 2020) can use unlabeled data to improvemodel performance. Hence, weakly supervised learning/
semi-supervised learningmethods also have the potential to usemeasuredMPI signals formodel training, but
there is currently no relevant research inMPI reconstruction.

Several developments can be incorporated in our future work to improve the performance of our proposed
method. A potential approach is to incorporate themeasuredMPI signals and their weak labels into themodel
training process by leveraging deep learning techniques such asweakly supervised learning. Furthermore, we
could also use a combination ofMPI reconstruction and super-resolution techniques, such as using the low-
resolution phantom images and SM to produce simulation signals, and then applying signals and high-
resolution images to train the network. This would enable us to leverage the strengths of both approaches and
potentially improve the performance of ourmethod.

6. Conclusion

We introduced a deep neural network calledDERnet for end-to-end reconstruction inMPI. Its design draws
inspiration from traditional reconstructionmethods, and the data-driven approach used inDERnet enables it to
effectively capture both signal and spatial information, thereby reducing the influence of noise. The
experimental results demonstrate that ourmethod can achieve competitive reconstruction efficiency and
significant improvements in reconstruction quality comparedwith the state-of-the-artmethods. This suggests
thatDERnet is a promising candidatemethod for improving reconstruction performance andmay facilitate the
biomedical application ofMPI. Overall, the use of deep learning techniques inMPI reconstruction holds great
potential for improving the accuracy and efficiency of this importantmedical imaging technique. By leveraging
the power of artificial intelligence, wemay be able to unlock new insights intomedical imaging data and improve
patient outcomes.
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