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Abstract

Objective. Magnetic particle imaging (MPI) shows potential for contributing to biomedical research
and clinical practice. However, MPI images are effectively affected by noise in the signal as its
reconstruction is an ill-posed inverse problem. Thus, effective reconstruction method is required to
reduce the impact of the noise while mapping signals to MPI images. Traditional methods rely on the
hand-crafted data-consistency (DC) term and regularization term based on spatial priors to achieve
noise-reducing and reconstruction. While these methods alleviate the ill-posedness and reduce noise
effects, they may be difficult to fully capture spatial features. Approach. In this study, we propose a deep
neural network for end-to-end reconstruction (DERnet) in MPI that emulates the DC term and
regularization term using the feature mapping subnetwork and post-processing subnetwork,
respectively, but in a data-driven manner. By doing so, DERnet can better capture signal and spatial
features without relying on hand-crafted priors and strategies, thereby effectively reducing noise
interference and achieving superior reconstruction quality. Main results. Our data-driven method
outperforms the state-of-the-art algorithms with an improvement of 0.9-8.8 dB in terms of peak
signal-to-noise ratio under various noise levels. The result demonstrates the advantages of our
approach in suppressing noise interference. Furthermore, DERnet can be employed for measured
data reconstruction with improved fidelity and reduced noise. In conclusion, our proposed method
offers performance benefits in reducing noise interference and enhancing reconstruction quality by
effectively capturing signal and spatial features. Significance. DERnet is a promising candidate method
to improve MPI reconstruction performance and facilitate its more in-depth biomedical application.

1. Introduction

Magnetic particle imaging (MPI) (Gleich et al 2005) is a powerful tomography technique, and exhibits notable
advantages in terms of high imaging sensitivity, excellent penetration depth, high contrast, linear quantification,
and great biosafety (Bauer etal 2015, Song et al 2018, Bulte 2019, Wang et al 2020, Li et al 2022). The technique
has already shown promise for cancer detection (Yu et al 2017, Wang et al 2022), intracranial hemorrhage
detection (Szwargulski et al 2020), hyperthermia guidance (Du et al 2019), vasculature imaging (Zhou et al 2018),
and cell tracking (Rivera-Rodriguez et al 2021). MPI measures the magnetization response of magnetic
nanoparticles (MNPs) to image their spatial distribution, and introduces system matrix (SM) to describe the
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mapping relationship between the response and MNP distribution. The pre-acquired SM is commonly
employed to reconstruct the distribution images from MPI signals, and these SM-based methods involve solving
an ill-posed problem (Kluth 2018, Kluth et al 2018). The ill-posedness leads to significant errors in the
reconstructed results even with minimal noise, and unfortunately, the MPI signals contain various types of noise
(Storath et al 2017, Paysen et al 2020). Therefore, effective reconstruction method is required to reduce the
impact of the noise while transforming the signals into MPI images of the MNP distribution.

1.1. Traditional reconstruction methods

In traditional reconstruction methods, iterative algorithms have shown superior performance compared to
direct algorithms. These iterative algorithms execute the regularization term and data-consistency (DC) term
iteratively to achieve the reconstruction (Knopp et al 2010, Ilbey et al 2017, Knopp et al 2017, Yin etal 2017). The
DC term exerts projection from signals to images, and frequency selection is commonly employed to remove the
components with high noise level (Knopp et al 2010, 2017). Additionally, weighting and other hand-crafted
strategies are also applied selectively (Knopp et al 2010). For the regularization terms, the hand-crafted spatial
priors such as sparsity are utilized to guide the reconstruction. These priors manifest as regularization terms
such as L1 norm, L2 norm, total variation (TV) or their combination (Ilbey etal 2017, Knopp et al 2017, Yin et al
2017, Knopp etal2010,2021, Lieb and Knopp 2021). Hence, the regularization terms can mitigate the ill-
posedness based on desired spatial constraints, ultimately optimizing the reconstruction results and minimizing
the impact of noise.

As previously mentioned, traditional approaches for MPI reconstruction typically employ the DC term and
regularization term, which encompass a variety of widely used methodologies. The most frequent approach is
based on the L2-norm and algebraic reconstruction technique (ART), which shows moderate reconstruction
efficiency (Knopp etal 2010, 2021). However, it exhibits limited noise suppression capability (Storath et al 2017,
Knopp etal2021). The non-negative fused lasso (NFL) model applies L1 and TV terms and can suppress noise
better but has lower reconstruction speed (Storath et al 2017). The alternating direction method of multipliers
(ADMM) with the L1 and TV terms has the comparable reconstruction quality to NFL and predominant
efficiency (Ilbey et al 2017). Nevertheless, hand-crafted priors of the above methods may be difficult to fully
capture the spatial features of the MNP distribution, limiting their ability to reduce noise influence when data do
not fully satisfy the assumed priors (Knopp et al 2017, Storath et al 2017). In addition, the regularization
parameters can exert a significant influence on the result (Ilbey et al 2017, Storath et al 2017, Kluth et al 2018),
requiring fine-tuning to preserve details and reduce noise interference.

1.2. Deep learning-based methods

In recent years, data-driven methods have been proposed to mitigate the impact of noise without relying on
hand-crafted DC and regularization terms. The deep image prior (DIP) employs the intrinsic ability of the
network to regularize ill-posed inverse problems and performs iterations based on the DC during the
reconstruction process (Dittmer et al 2020, Knopp and Grosser 2022). DIP requires no specific regularization
terms or pre-training, but it has poor reconstruction efficiency compared to other methods. PP-MPI applies a
trained denoising network as the regularization term and integrates it into the ADMM algorithm. Like DIP, PP-
MPI does not require specifying regularization terms and achieves much faster reconstruction speed (Askin et al
2022). However, directly adopting an image denoising model as a reconstruction prior may potentially limit its
performance, and the iteration number remains undetermined. TheDEQ-MPI (Giingor et al 2023)
demonstrates improved reconstruction quality and comparable reconstruction speed to ADMMj ; by using a
novel deep equilibrium reconstruction with learned consistency. Additionally, while direct image
reconstruction approaches based on deep learning have demonstrated superiority in reconstructing simulated
data (Chae 2017, von Gladiss et al 2022), they encounter limitations when it comes to real phantom data. Besides
supervised learning algorithms, contrastive learning has also been used in MPI reconstruction (Schrank and
Schulz 2023). However, the approach has not yielded satisfactory results yet. Moreover, some reconstruction
methods in other medical modalities also have the potential to be applied to MPI reconstruction. MRI
reconstruction based on the compressed sensing is also to solve an ill-posed inverse problem (Quan et al 2018).
Hence, some classical deep learning methods in MRI reconstruction, such as ADMM-Net (Yang et al 2018),
might be applicable to MPI reconstruction.

1.3. Our method

In this paper, we present a deep neural network called DERnet for end-to-end reconstruction in MPI. Unlike
existing DIP and PP-MPI methods, DERnet can directly reconstruct images from signals without iterative
processing. The design of DERnet draws inspiration from traditional reconstruction methods, comprising of a
feature mapping (FM) subnetwork and a post-processing subnetwork. The FM emulates the DC component of
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Figure 1. The framework of the DERnet, which is composed of a FM subnetwork and a post-processing subnetwork. The FM
subnetwork is divided into (a) signal data processing module, (b) domain transformation module, and (c) feature extraction and
attention module. (d) The post-processing subnetwork. The output size of each sub-module is represented as the number of
channels X the feature map size of each channel. C;, C,, C; and C, represent the channel number of feature maps. Nj, N,, N, and M
represent the feature map size of each channel. The specific values of these parameters are provided in section 3.3 DERnet
implementation.

traditional methods, primarily applied to filtering noise and extracting spatial features from signals. The post-
processing subnetwork optimizes reconstruction results based on learned features, resulting in reduced noise
output, and from this perspective, it has similar effects to the regularization term. Our proposed method
emulates both the DC and regularization terms but is data-driven instead of hand-crafted. Consequently,
DERnet can better capture signal and MNP distribution features, thereby achieving superior fidelity and noise
suppression. Experiment results demonstrate that our method offers competitive reconstruction efficiency and
outperforms the state-of-the-art algorithms with an improvement of 0.9-8.8 dB in terms of peak signal-to-noise
ratio (PSNR) under various noise levels. Furthermore, DERnet can be employed for measured data
reconstruction with improved fidelity and reduced noise.

2. Methods

The proposed DERnet is data-driven, but there is no ground-truth for the measured MPI signals (Storath et al
2017, Knopp etal 2010,2021). Thus, we use simulation data for training and evaluating the method
quantitatively. In this section, we first introduce the simulation method that is used to generate the MPI signals.
We then elaborate on the network architecture. Finally, we present the training and prediction strategies for
DERnet.

2.1. Simulation

Itis still an unsolved problem to find a sufficiently accurate model to simulate the behavior of large numbers of
MNPs in MPI (Kluth et al 2019, Li et al 2023). There are notable disparities between the measured and simulated
data using the mathematic model alone. Thus, to achieve higher fidelity between simulated and actual data, we
simulated the MPI signals with the measured calibration and simulated phantoms. The measured calibration
A,, € CM*N is commonly considered as the most accurate SM (Knopp etal 2017, 2021) (M is the number of
selected frequency components, and N is of the number of the voxels). It is captured using a small MNP sample
to traverse on the imaging grids. The MPI signal b, € C¥ is simulated as the following:

b, = A,c; + n,, (1)

where ¢; € RN is the simulated image vector, n, € CM is the additive noise. Considering that the MPI data
measured with different MPI devices and scanning parameters exit disparities, the A, is not universally
applicable.

2.2. DERnet

DERnet is inspired by traditional methods in MPI reconstruction (Knopp et al 2010, Ilbey et al 2017, Knopp et al
2017, Storath et al 2017) and consists of two parts: the feature mapping (FM) subnetwork and the post-
processing subnetwork. The framework is shown in figures 1 and 2. The FM emulates the DC part of traditional
methods and is mainly applied to signal data denoising and mapping signals to spatial features. The post-
processing subnetwork is used to extract spatial features and perform optimization of reconstruction results
based on learned features.

In DERnet, all convolution layers are equipped with 3 x 3 convolution kernel (unless otherwise specified),
and the weights of neural network layers (e.g. convolution layers, fully connected layers) are initialized using
default method in PyTorch. The model does not use predefined/custom filters, and all weights are obtained
through end-to-end training in this work. In addition, the number of weights can be calculated using the
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Figure 2. The post-processing subnetwork, which employs a modified Unet. The output of the subnetwork is the reconstruction result
of the DERnet. The output size of each sub-module can be represented as the number of channels x the feature map size of each
channel. C; and Cs are the channel number of feature maps. Nj, N, represent the feature map size of each channel. The specific values
of these parameters are provided in section 3.3 DERnet implementation. L is output of the FM subnetwork.

provided input and output information of the sub-modules. Hyperparameters (e.g. C;—Cs, p, and p,) are
optimized on the validation set, and their specific values can be found in section 3.3. In the following sections, we
will provide a detailed description of each submodule in the FM subnetwork and the post-processing
subnetwork.

(a) Signal data processing module. In the DC of the traditional method, frequency selection schemes are used to
remove the data with low signal-noise ratio (SNR). For FM, the input is also the selected signals (frequency
domain), where the two channels represent the real and imaginary components. Furthermore, input data
are processed to exert signal denoising through 1D convolution layers (Z,p,1(-), Zip,»(-)) thatare equipped
with a dropout layer D(-). The output Uy € R4*M of the convolution layers can be described as follows:

Uy = Zip,2(Zip,1(D(Uy, p()))): )
where U, € R**M is the MPI frequency-domain signal, and p, is the dropout rate.

(b) Domain transformation module. The DC term is employed to describe the relationship between the signal
and spatial distribution of MNPs, and it completes the domain transformation from signal to image. Thus,
we design the module in FM to achieve this transformation. Based on the linear model (1), the image vector
crec € RY  canbedirectly obtained through inverse operations when the noise is neglected. From this
observation, the transformation from signal to image can be directly achieved as following:

Crec = A;l b, 3)

where A, €CN*M s the pseudo-inverse of A,,. This approach is called pseudo-inverse method (Coene et al

2013, Baksalary and Trenkler 2021) and it directly transforms the 1D signal data into the 2D spatial data. The

output data are vectorized over the rows, and it can be reshaped into two-dimensional images of size N1 x N2.
Inspired by (3), we adopt the fully connection (FC) layer to achieve the domain transformation as following:

Iy = WgcD (U, py) 4

where Iy €R®N is the image vector, Wic €RN*GM denotes the learned weights in the FC, C, and C, are the
channel number of the feature maps, and p, is the dropout rate. Compared (3) and (4), similar procedures are
performed, and they all obtain the voxel value by weighted sum of frequency-domain signal data. Thus, (5) is
adopted for the domain transformation, and the output is defined as I; €R“*N*M. ywhere N = N Nj:

L= Zreshpe(IO) = Zreshpe("v;CD(Um P1)) ©)]

where Z eqhpe () denotes the reshaping operation.

(c) Feature extraction and attention module. This module is designed to capture abundant semantic
information and effectively weight features to highlight important features while reducing noise
interference. To extract multi-scale spatial features, we use a parallel convolution block with kernels of
1 X 1,3 x 3,and 5 x 5. Then, the features are concatenated and fused. The output of the block is defined as
L, cR&*NixN2 wwhere Cj is the channel number of the feature maps.

L = Zypa(Zea(l, Zopa(h), Zop a2 (h), Zop3(1)))s (6)

where Z5p 1(-), Z3p.2(*), Zap,3(-) and Zpp 4(-) denote convolution layers with kernelsof 1 x 1,3 x 3,5 x 5
and 3 x 3; Z, represents concatenation along the channel dimension.
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Subsequently, the convolutional block attention module (CBAM) (Woo et al 2018) is added to
adaptively learn the weights for each feature channel and position based on their importance. Then, a
convolution block is adopted for feature fusion, and the output I; €R*N*N. can be written as:

L = Z,p5(Zcgamh)), 7

where Zcpam denotes the CBAM, and Z,p 5 represents a cascaded convolutional module. Z,p 1 (+),
Z10.2(?), Zyp,3(-) and Z,p 5(+) are equipped with batch normalization (BN) and rectified linear activation
function (ReLU).

(d) Post-processing subnetwork. In traditional methods, regularization terms are used to add constraints to the
reconstructed images based on the desired spatial attributes (e.g. smoothness, sparsity), thereby optimizing
the results. DERnet also adopts a subnetwork to post-process reconstruction results based on learned spatial
attributes. Incorporating these learned features as constraints contributes to mitigating the ill-posed nature
of the reconstruction problem, and hence, it reduces the noise impact on the reconstruction results. In
DERnet, a modified Unet is adopted as the post-processing subnetwork. Unet is a classical image
segmentation and processing network (Ronneberger and Brox 2015), which is slightly modified in this
study. The residual connection is added, and convolution blocks are equipped with ReLU and BN. To
output reconstruction images, the channel number of the feature map is reduced to the single and ReLU
performs the non-negativity constraint as the final layer. The final output can be described as:

Ioutput = ZZD,6(IS + Zu(L)) (®

where Ioygput €RN*N represents the output of DERnet, Z,, denotes the U-shape subnetwork as shown in
figure 2, and Z,p ¢ comprises the operations of single CBAM block, two convolutional layers and single ReLU
layer.

2.3. Training and prediction strategies
The normalization N () can improve model convergence speed and robustness, and it is written as:

N(b) = b/bmaxr (9)

where b € CM is the frequency-domain signal, and by, represents the maximum amplitude value of b. The
prediction result I,; €RM*M: js followed:

Ipg = bmax Netper (N (b)) (10)

where Netpgr denotes DERnet. The by, is used to weight the reconstruction result, and it is applicable to the
case of alinear model as (1) in the absence of excessively strong noise.
Theloss function (Loss) is the mean square error (MSE) of the prediction results and ground truth as follows:
1 Nl N2
MSE(Lpas Iyt) = ——=> > [Lpa(i, j) — Lu iy )T, an
NiN2 i =1

where I, €RNM*™: denotes the ground truth.

3. Experiment

3.1. Dataset

In this work, the dataset can be divided into simulated and measured data. The simulated data are obtained by
assuming the MNP distribution and simulating according to the method in the section 2.1. Hence, the ground
truth of the simulated data is the assumed MNP distribution maps. The measured data are got from the MPI
device. The ground truth of measured data cannot be obtained. Phantom images or slices in the 3D printer
models are provided as reference images to facilitate qualitative comparison.

(a) Simulation dataset. In this paper, 60000 images from Mixed National Institute of Standards and
Technology database (MNIST) (LeCun et al 1998) were selected, and processed. The images were cropped,
retaining only the central 15 x 15 patch, and then randomly rotated and placed within a random region
of the image. Subsequently, they were resized to the specified dimensions, consistent with the grid size of the
system matrix. Using these images as simulated phantom, the simulation was performed based on (1) and
the Gaussian noise (Storath et al 2017, Paysen et al 2020) was added. The training dataset consisted of 48 000
data samples at SNRs ranging from 20 to 40 dB. The validation dataset comprised 6000 data samples at
SNRs ranging from 20 to 40 dB, and it is adopted to select the used model and the optimal hyperparameters.
During the training process, the model that performed best on the validation set is chosen as the final saved
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model. The test dataset contained 6000 data samples at a fixed SNR of 30 dB. The procedure outlined in (a)
was applied to the data from (b) as well as from (c) and that for both a DERnet was trained.

(b) OpenMPI dataset (Knopp et al 2020). OpenMPI is an open-source MPI dataset. For this study, we used the
2D SM calibration data from OpenMPI (experiment number: 2) along with 2D phantom measurement
data. The used calibration and phantom data were obtained on a preclinical FFP scanner (Bruker, Ettlingen)
with Perimag MNPs (Micromod GmbH, Germany). The 2D SM was measured with the drive-field
amplitude of 12mT X 12mT x 0 mT, but with 19 x 19 x 19 grid positions. This calibration method can
suppress signal interference from out-of-plane MNPs, making the 3D object more accurate after splicing
2D images along the z-axis (Mason et al 2022). However, many works for 2D MPI reconstruction only need
system matrix with 2D shape (Storath et al 2017, Knopp et al 2010, 2021). Our work only reconstructed 2D
results, and hence, we only extracted the tenth slice of the 2D SM data and only kept the SM rows with
SNR > 1.5 dB. The measurements included three 2D phantom data named Shape, Resolution and
Concentration. More details can be found in Knopp et al (2020).

(¢) In-house dataset (Shi et al 2023). We evaluated our method on an in-house FFP scanner. The selection
gradient was set to [1.7, 1.7] along the X and Y axes, and the driving frequency was 25 kHz. A field of view
was set to 22 mm X 22 mm, and a delta sample (2 mm x 2 mm), filled with Perimag MNPs (8.5 mg ml™h),
was utilized to acquire the SM with grid 11 x 11. The paralleled cylindrical tube and C-shape phantoms
were used for demonstration, and they were filled with Perimag MNPs (8.5 mg ml™'). We preserved the
first to thirteenth harmonic for reconstruction.

3.2. Competing methods

(2) ART. ART is a classical reconstruction method for MPI, and Kaczmarz/Tikhonov algorithm was
implemented in this paper (Knopp et al 2010, 2021). The number of iterations was 10, ensuring
convergence, and optimal parameters can be seen in table 1.

(b) ADMM. We implemented ADMM algorithm with three regularization terms: L1, TV and L1+TV (Ilbey
etal2017, Askin et al 2022). The parameter 1 was optimized through experimentation and the number of
iterations was 200. For the ADMM} |, 1v, arv + a1 = 1and the optimal oy was also chosen through
experimentation. € was adjusted with SNRs, and it adopted the Euclidean distance of the noise (Ilbey et al
2017, Askin et al 2022). The optimal parameters were displayed in the table 1.

(c) PP-MPI. The PP-MPI is deep-learning-based method, and it used a trained denoiser as the regularization
terms (Askin et al 2022). For the training of the denoiser, LR was 0.01, and the standard deviation of the
noise was 0.001. and 4000 iterations with ADAM optimizer were employed. For the reconstruction, the
optimal parameter could be seen in the in the table 1.

(d) DIP. The DIP used an untrained network whose weights are not determined based on the training dataset,
but during the reconstruction (Dittmer et al 2020, Knopp and Grosser 2022). In DIP, 0.001 learning rate
(LR) and 4000 iterations with ADAM optimizer were employed.

(e) ADMM-Net. The ADMM-Net is deep learning approach, and is a classical unrolling method. The Generic-
ADMM-Net (Yang et al 2018) was adopted in this work and the optimal parameters were shown in the table
1. LR was 0.01, and 4 iterations with ADAM optimizer were employed.

3.3. DERnet implementation

For the OpenMPI and in-house data, we trained the DERnet separately because of the different SMs. By
comparing the performance models trained with different hyperparameter values on the validation set, the
optimal hyperparameters are selected. Common set of parameters included C, = 8, C, = 4, C; = 16, C, = 8,
Cs = 128, p, = p, = 0.05, LR = 0.001. According to calibration data, M = 839, N; = N, = 19 for OpenMPI
data,and M = 139, N} = N, = 11 for in-house data. Due to the limitations of the feature map size, only three
pooling operations were implemented in post-processing subnetwork during in-house data reconstruction. The
DERnet training was implemented in PyTorch on a NVIDIA GeForce RTX 3090 GPU.

3.4. Quantitative assessments

The ground truth of measured data including OpenMPI and in-house data was not available, and their
reconstruction results were only assessed visually. Thus, the quantitative assessments were implemented using
simulated data obtained via OpenMPI SM. The normalized root MSE (NRSME) was adopted to reflect the data
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Table 1. Parameter settings in the competing methods. The simulated data refer to the data with the procedure according to 3.1(a), and the data are obtained using the system matrix from OpenMPI. OpenMPI and inhouse data are got from

phantom experiments, and more details can be found in 3.1(b) and 3.1(c).

Dataset ART (o, iterations) ADMMy; (, iterations) ADMMry (i, iterations) ADMMy ;v (4, arry, iterations) PP-MPI (iterations) ADMM-Net (LR, iterations) DIP (LR, iterations)
Simulated data (20 dB) 0.1,10 1,200 10,200 1,0.7,200 10 0.001,4 0.001,4000
Simulated data (25 dB) 0.01,10 1,200 10,200 1,0.8,200 10 0.001,4 0.001,4000
Simulated data (30 dB) 0.01,10 10,200 10,200 10, 0.8, 200 20 0.001, 4 0.001, 4000
Simulated data (35 dB) 0.01,10 10,200 100, 200 10,0.8,200 30 0.001,4 0.001,4000
OpenMPI data 0.01,10 10000, 200 10000, 200 100, 0.5, 200 50 0.001,4 0.001,4000
In-house data 0.001, 10 10,200 100, 200 10, 0.6, 200 70 0.001, 4 0.001, 4000
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fidelity:

1Tpg — Iy |
NRMSE(I g, L)) = —o & F (12)
g 11

where II-llg donated the Frobenius norm. The peak SNR (PSNR) calculated the ratio between the maximum
possible signal power and the power of the error in the images, which caused by the signal noise in this
reconstruction task. Thus, it was employed to indicate the impact of signal noise on the quality of
reconstruction:

2
Igt,max

PSNR(1,4, I,;) = 10log,, ———————,
(Ipas Tgr) 1o MSE(Lg, 1)

(13)

where Ig; max donated the maximum value in Ig. Structural similarity index measure (SSIM) is a metric based on
the perceive visual quality, and can better reflect human evaluation of reconstruction quality:

Qtpgftg + ) 2opa, e + )
(g + 105 + @) (0p + 0y + @)

SSIM(Ipg, L) = (14)

where Hpas Pgr ATE the means of the reconstruction result and ground truth; ¢, ¢ are constants that prevent

division by zero; Uf,d, aﬁt represent the variances and 0;,4,¢ is the covariance between the reconstruction result
and ground truth. All the metrics were directly adopted the functions from skimage (Van der Walt et al 2014).

4, Results

4.1. Analyzes on simulated dataset

We first evaluated performance of the DERnet on the simulation dataset against some traditional reconstruction
method (ART, ADMMj ;, ADMMry, and ADMM, |, v), as well as state-of-art deep learning methods (DIP,
ADMM-Net and PP-MPI). We performed quantitative assessments with 6000 simulation data obtained via
OpenMPI SM, and presented the results in table 2. Among traditional reconstruction methods, ADMM] | v
achieves the best quantitative performance. In comparison to it, DERnet can lead to the reduction 0f 0.067 in
NRMSE (31.5%), an enhancement of the 0.032 in SSIM (3.36%) and a 3.2 dB increase in PSNR (12.5%). Among
all competing methods except for DERnet, PP-MPI achieves the best performance and significantly
outperformed the other competing methods. Compared to PP-MP]I, the proposed DERnet can reduce the 0.031
in term of NRMSE (17.5%), improve 0.013 regarding SSIM (1.34%), and increase 1.6 dB in terms of

PSNR (5.86%).

Some representative reconstruction results are shown in figure 3. ART yields artifacts and noise in the region
without MNPs, but it has a better visual impression than ADMM-based methods. Compared with ART,
ADMM] | v achieves a better quantitative performance (table 2), but poorer qualitative results. The difference
in regularization terms may lead to this contradiction. ADMM] 1 , v uses the L1 norm and TV term, which make
the reconstructed images sparser (pixel values tend to be 0) than that of the ART with L2 norm. Hence,
ADMMy |, 7v offers less noise and has better quantitative performance. However, the TV term also results in
staircasing effects (Wang et al 2018, Knopp et al 2017, Storath et al 2017), and the reconstruction results are
separated into flat regions by artifact boundaries. Hence, the results of the ADMM | , 1 have a worse visual
impression than ART. Moreover, ADMM] ; yields obvious noise, and ADMMry offers less noise but exhibits
staircasing effects. The results of the traditional methods demonstrate that traditional reconstruction methods
can partially suppress noise, but suffer from inadequate noise reduction or staircasing effects due to the
limitation of hand-crafted DC and prior terms. DIP suffers most severely from noise, and the randomness in
DIP algorithm may lead to some poor results. The ADMM-Net demonstrates satisfactory noise-suppression
capabilities in the region without MNPs, but tends to blurry the images. PP-MPI and proposed DERnet
outperform the others. Furthermore, DERnet is significantly better than PP-MPI from the error maps. Overall,
the proposed DERnet demonstrates significant superiority over other approaches based on quantitative and
qualitative analysis.

4.2. Denoising experimental results

We performed denoising experiment with 50 simulated phantoms. The ideal simulation data were exposed with
the noise at the different SNRs, including 20 dB, 25 dB, 30 dB and 35 dB. All data are processed according to 3.1.
(a) with the system matrix from OpenMPI. The quantitative assessments are displayed in table 3. As expected,
the performance of various methods exhibits an overall declining trend with the increase of noise intensity. The
robustness of the ADMM{ ; is relatively poor. The reconstruction results of ADMM-Net are almost unchanged
under different noise interference, which is consistent with the conclusion in (Yang et al 2018). Except for
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Table 2. Comparison based on simulated data at a fixed SNR of 30 dB (mean = std), the simulated data are obtained according to 3.1(a) using the system matrix from OpenMPI.
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Figure 3. Representative reconstruction results and error maps based on the simulated test dataset with the SNR of 30 dB. The test
data are obtained according to 3.1(a) using the system matrix from OpenMPI.

Table 3. Comparison based on simulated data at SNRs ranging from 20 to 35 dB. The PSNRis reported as mean = std, and the simulated
data are obtained according to 3.1(a) using the system matrix from OpenMPI.

Dataset ART ADMM, ADMM vy ADMM i 1v PP-MPI DIP ADMM-Net DERnet

20 dB 21.2+£2.23 176 £1.93 2024235 21.3 £2.39 23.0 £2.34 17.4 +£3.35 18.3 £1.87 24.0 +2.82
25 dB 2324220 21.6+£251 241+£271 25.6 £2.19 25.7 + 2.60 18.9 +4.21 18.4 £1.84 26.6 +2.73
30 dB 2494257 229+£257 24.0£2.61 25.8 £2.48 27.3+£2.48 19.2 +5.47 18.4 +1.86 28.4 £2.82
35dB 257£293 260429 269 £3.10 28.5£2.94 29.0 £2.91 20.7 £ 4.01 18.4 £1.88 29.6 +3.27

ADMM-Net, DIP exhibits minimal reduction in terms of PSNR, but the overall performance of ADMM-Net
and DIP is unsatisfactory. The proposed DERnet outperforms other methods, and the PSNR declines 5.6 dB as
the SNR of the signals decreases from 35 dB to 20 dB. Although the PSNRs of ART, DIP and ADMM-Net results
decrease less, their PSNRs are lower by 2.8-11.2 dB compared with our method. Under various noise levels, the
proposed DERnet outperforms those state-of-the-art algorithms with an average improvement of 0.9-8.8 dB in
terms of PSNR. Some representative reconstruction results are displayed in figure 4. Similar to the quantitative
analysis, the proposed DERnet achieves superior fidelity and demonstrates better denoising ability. It is worth
noting the parameters of most other methods are optimized at different SNRs, while DERnet remains
unchanged. Overall, the denoising experimental results demonstrate the advantages of our approach in
suppressing noise interference.

4.3. OpenMPI data reconstruction results
In this study, we evaluated the reconstruction performance of the proposed method using the 2D phantom
measurement from OpenMPI. The DERnet was trained with the simulation data, and used to reconstruct the
measured data. The data consisted of some slices of the three phantom measurement data mentioned above, and
the normalized reconstruction images using their maximum values are shown in figure 5. It was worth
mentioning that the ground truth was not available, and the reference images were from the computer-aided
design model of the phantoms. Thus, we could only perform qualitative analysis based on visual observations.
For the resolution phantom, the reconstruction results of the ART and DIP show noticeable noise in the
surroundings. ADMMy ; exhibits information loss in its results, and ADMMy and ADMM | , v suffer from
blurred artifacts. The ADMM-Net yields poorest reconstruction results, which is consistent with the analysis
results on the simulation dataset. More modifications based on MPI principles and characteristics may improve
the performance of ADMM-Net. The PP-MPI and DERnet have the similar reconstruction quality and
outperform the others. For the Concentration phantom, all the method can reconstruct the region with the
minimum concentration MNPs, but it is visually inconspicuous in the results of the ADMMy and
ADMMy |, Tv. Moreover, there is some noise in the results of ART, DIP, ADMM ; and PP-MPI, and the
ADMM-Net fails to reconstruct the distribution of magnetic particles well. Compared with the other methods,
the DERnet shows better noise suppression and information preservation capabilities.
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Figure 4. Representative results in the denoising experiment and error maps using the indicated methods, and the test data are
obtained according to 3.1(a) using the system matrix from OpenMPI. The SNRs of the data are 20-35 dB.

Ref ART ADMM,, ADMM;, ADMM,, . PP-MPI DIP ADMM-Net  DERnet "
1.
0.6

(b)
0.4
0.2

(c)
0.0

Figure 5. Reconstruction results of OpenMPI phantom data using the indicated methods. Reconstructions are shown for the (a) 11th
slice of the Resolution phantom data in the OpenMPI database, (b) 7th slice of the Concentration phantom data and (c) 10th slice of
the Shape phantom data.

For the shape phantom, ADMM]| ; and ADMM-Net exhibit information loss, and the results of the
ADMMry and ADMMy 1v are blurred. The ART, DIP and PP-MPI did not effectively suppress noise. As
expected, the proposed method shows the best performance among all competing methods.

The parameters of the competing methods are selected based on visual optimization, and the proposed
network is not fine-tuned after training. Thus, it can be seen that our method can robustly reconstruct the
measured data with the unknown noise and achieve the best reconstruction performance compared to other
reconstruction methods.

4.4. In-house data reconstruction results

In this study, we demonstrated the reconstruction performance of our method on an in-house dataset. Due to
the different SM used in the reconstruction tasks, we retrained the network. The normalized reconstruction
results are shown in figure 6 along with the corresponding reference images.
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Figure 6. Reconstruction results of in-house data using the competing methods and DERnet. (a) The reference image and
reconstructions of cylindrical phantom data (two parallel cylindrical tubes with 5 mm distance). (b) The reference image and
reconstructions of C-shape phantom data.
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Table 4. The number of iterations and mean reconstruction time, and data are simulated according to 3.1(a) using the system matrix from
OpenMPIL.

ART ADMM; ADMM 1y ADMM] ; ;1v PP-MPI DIP ADMM-Net DERnet
Iteration numbers 10 200 200 200 20 4000 4
Time (s) 4.84 0.113 0.882 0.904 0.120 95.5 0.0439 0.0380

For the cylindrical phantom, DIP and ADMM-Net fail to reconstruct the distribution of magnetic particles
well. The ART, ADMM ;, ADMM-y and PP-MPI produce residual noise outside of the two cylinders, and
ADMM |, Tv shows the information loss. Our DERnet presents less noise outside of the two cylinders and some
low-intensity artifacts. Overall, our method still maintained superior or comparable reconstruction quality
compared to other methods.

For the C-shape phantom, ADMM-Net, ART and DIP yields residual noise and fails to reconstruct a
complete phantom shape. Distorted information is presented in the upper half of ADMMj ; reconstruction
result, and the concentration in certain regions of ADMMry and ADMM | , 1y results exhibits significantly
higher intensity, which deviates noticeably from reality. In comparison, the trained DERnet reconstructs the
C-shaped phantom with less noise and higher fidelity.

The parameters for the alternative algorithms are selected based on their visually optimal performance. In
comparison, the trained DERnet does not require fine-tuning and exhibits significant superiority over other
approaches in terms of reconstruction quality.

4.5. Reconstruction time

Table 4 lists the mean reconstruction time of 50 simulated data with a SNR of 30. All methods were implemented
in Python and deployed on a NVIDIA GeForce RTX 1080 GPU without any explicit parallelization. The DIP
uses an untrained network, which requires a particularly large number of iterations to update model parameters
until satisfactory results are obtained. The ART is also relatively inefficient, and the ADMM-based and PP-MPI
can complete the inference in less time. The ADMM-Net requires matrix inversion, which limits the
reconstruction speed. Moreover, Though PP-MPI model is more lightweight, it requires multiple iterations,
which reduces its reconstruction efficiency. DERnet can complete the end-to-end reconstruction of the MPI
images without iterations, and hence, it offers the highest reconstruction efficiency among all the methods.

5. Discussion

MPI images is effectively affected by signal noise as its reconstruction is an ill-posed inverse problem. To
improve the MPI reconstruction quality and reduce the noise interference, we proposed an end-to-end
reconstruction network called DERnet. Different from the traditional methods, the DERnet seeks to map the
MPI signals to the MNP distribution in a data-driven manner, and it emulates the regularization term and DC
using an FM subnetwork and a post-processing subnetwork, respectively, but is learning-based. The FM is
applied to preliminary filtering of signal noise and extracting spatial features from signals. The post-processing
subnetwork optimizes reconstruction results based on learned spatial features, resulting in reduced noise
output. By doing so, DERnet can better capture signal and spatial features without relying on hand-crafted priors
and strategies, thereby effectively reducing noise interference and achieving improved fidelity.
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Quantitative assessments show that our proposed method yielded less noise in reconstruction results and
offered robust performance for various data types and noise levels. Compared with the competing algorithms,
the DERnet outperforms the state-of-the-art algorithms 0.9-8.8 dB in PSNR across the simulated data with
various SNRs ranging from 20 to 35 dB. Furthermore, the model trained on the simulated data can be employed
to measured MPI data, whose noise distribution is unknown. The reconstruction results of the openMPI and in-
house data show that our method achieve the superior quality with improved fidelity and reduced noise.
Moreover, Due to its enhanced feature extraction capability, our method successfully suppresses the noise
effects on the reconstruction results without requiring parameter adjustments based on the noise levels.
Additionally, our end-to-end method does not require the iterations, which is beneficial to the reconstruction
efficiency.

Itis observed that DIP shows relatively limited performance in this paper, and one possible reason is that its
update only relies on the DC term (Dittmer et al 2020, Askin et al 2022). It might lead to a high sensitivity to noise
and a less accurate reconstruction result, especially when dealing with complex imaging tasks or datasets with
high noise levels. Additionally, DIP’s weight optimization may be computationally expensive and time-
consuming, making it difficult to apply in real-time applications. Overall, while DIP shows promise for the MPI
reconstruction, further research is needed to optimize its performance and address its limitations.

ADMM-Net is an unrolling-based network, which was first used for compressive sensing MRI (Yang et al
2018). In this work, the ADMM-Net framework is directly used as a competing algorithm, and some
implementation details have been modified. Overall, the ADMM-Net demonstrates extremely strong noise
robustness as shown in table 3. Nonetheless, the reconstructed results were of relatively poor quality. The results
might be limited by the model’s design, which comprises just a few convolutional and nonlinear layers.
However, increasing the number of model layers or iterations could easily lead to the model converging to the
extremum, and outputting all-zero images. More modifications based on MPI principles and characteristics
may improve the performance of ADMM-Net. Additionally, matrix inversion is time-consuming, which limits
the reconstruction speed of ADMM-Net.

In this paper, since measured MPI signals have no ground truth, simulation data are adopted for supervised
training. Actually, the self-supervised /unsupervised learning methods do not require ground truth and
therefore have the potential to apply measured data to the training of the model. Unfortunately, the methods
have not yet achieved satisfactory results on MPI reconstruction. Contrastive learning is an unsupervised
method, and has been applied to MPI reconstruction (Schrank and Schulz 2023). However, the trained model is
only used for simple phantoms, and the reconstruction quality is inferior to traditional methods (Schrank and
Schulz 2023). Hence, they were not used as the competing methods. In addition, weakly supervised learning
(Zhou 2018) can be used for model training with imprecise labels, and semi-supervised learning (Van Engelen
and Hoos 2020) can use unlabeled data to improve model performance. Hence, weakly supervised learning/
semi-supervised learning methods also have the potential to use measured MPI signals for model training, but
there is currently no relevant research in MPI reconstruction.

Several developments can be incorporated in our future work to improve the performance of our proposed
method. A potential approach is to incorporate the measured MPI signals and their weak labels into the model
training process by leveraging deep learning techniques such as weakly supervised learning. Furthermore, we
could also use a combination of MPI reconstruction and super-resolution techniques, such as using the low-
resolution phantom images and SM to produce simulation signals, and then applying signals and high-
resolution images to train the network. This would enable us to leverage the strengths of both approaches and
potentially improve the performance of our method.

6. Conclusion

We introduced a deep neural network called DERnet for end-to-end reconstruction in MPL. Its design draws
inspiration from traditional reconstruction methods, and the data-driven approach used in DERnet enables it to
effectively capture both signal and spatial information, thereby reducing the influence of noise. The
experimental results demonstrate that our method can achieve competitive reconstruction efficiency and
significant improvements in reconstruction quality compared with the state-of-the-art methods. This suggests
that DERnet is a promising candidate method for improving reconstruction performance and may facilitate the
biomedical application of MPI. Overall, the use of deep learning techniques in MPI reconstruction holds great
potential for improving the accuracy and efficiency of this important medical imaging technique. By leveraging
the power of artificial intelligence, we may be able to unlock new insights into medical imaging data and improve
patient outcomes.
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