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Abstract— In this paper, a maneuver controller for a non-
linear six-degree-of-freedom aircraft is designed, which makes
angle-of-attack, sideslip angle, and roll rate asymptotically
track the reference trajectories respectively. The design pro-
cedures for angle-of-attack and sideslip angle are based on
backstepping method. Appropriate cost functions for angle-of-
attack and sideslip angle are constructed to satisfy Hamilton-
Jacobi-Isaacs (HJI) equations, thereby the tracking of the angle-
of-attack and the sideslip angle attains a desired disturbance
attenuation level. Simulation results on a nonlinear aircraft
model are given to illustrate the performance of the maneuver
controller.

I. INTRODUCTION

With the increasing performance requirements for modern

aircraft, conventional flight control designs are difficult to

build a well performed controller because they lack the

ability to deal with the existence of high nonlinearity, strong

couple between longitudinal and lateral motion, model un-

certainty. Nonlinear dynamic inversion (NDI) is a widely

used modern control method in flight control system. NDI

cancels system nonlinearity using coordinate transformation

and feedback linearization, decouples the system into a linear

form. NDI assumes that full information of system model

is perfectly known, otherwise this cancelation and decouple

are approximate. This shortcoming is more obvious when

NDI is used in flight control, so a lot of efforts have been

paid to develop robust flight control methods based on NDI

[1–4]. There also exists the problem called non-minimum

phase or unstable zero dynamics when NDI is applied to

some nonlinear systems [5]. For these nonlinear systems,

straightforward application of NDI may cause systems with

linear input-output form but unstable zero dynamics. When

NDI is used to design a flight controller, the non-minimum

phase phenomenon results from either the choice of output

vector or the small aerodynamic forces generated by control

surfaces deflections [6], [7]. This makes the stable tracking

design a challenge problem.

Backstepping is a Lyapunov-based recursive design

method proposed by Kokotović etc. in 1991 [8], which

has attracted a great deal of attentions from then on. A

lot of research papers have been published to investigate

the fundamental theory and application of backstepping in

nonlinear systems [9–11]. Backstepping design provides a

systematic method to constructive Lyapunov for nonlinear
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systems with low-triangular form, and doesn’t require the

precise system model, so many papers have already discussed

using backstepping method to design robust flight control

law [12–18]. [14] designed a backstepping controller for

aircraft longitudinal control with the existence of control

input saturations. [15] used a command backstepping to

design flight controller, which removed the low-triangular

form restriction and simultaneously taken account of the

rate and magnitude constraints of control surfaces. Block

backstepping designs for flight control were considered in

[16–18].

In the presence of model or parameters uncertainty and

extern disturbances in a nonlinear system, how to design a

controller that makes the system stable and simultaneously

attains the desired level of disturbance attenuation, motivates

the study of nonlinear H∞ control theory [19]. The difficulty

of applying nonlinear H∞ comes from the difficulty to solve

the Hamilton-Jacobi-Bellman (HJB) or the more general

Hamilton-Jacobi-Isaacs (HJI) partial differential equation

[10], [19]. So a lot of researches have focused on finding

a solution to HJI equation without solving it directly. By

using the freedom in the choice of the cost function in

backstepping, [20] gave a tracking and disturbance atten-

uation controller for a class of parametric strict-feedback

nonlinear systems. Under this controller, the closed-loop

system satisfied the HJI equation associated with a cost

function, thereby guaranteeing tracking and a desired level

disturbance attenuation performance.

In this paper, based on the controller proposed in [19], a

maneuver controller is designed for a nonlinear six-degree-

of-freedom aircraft. Backstepping approach is used in the

design procedure. This controller makes the angle-of-attack,

sideslip angle, and roll rate track the reference trajectories in

the presence of disturbance. Appropriate cost functions for

angle-of-attack and sideslip angle are constructed to satisfy

HJI equations, thereby the tracking of angle-of-attack and

sideslip angle attains a desired level disturbance attenuation.

The validity of the proposed controller is evaluated using a

nonlinear aircraft model. The rest of this paper is organized

as follows: The dynamic model of the aircraft is described in

section II. In section III, we give the design procedure of the

maneuver controller. Simulation results are given in section

IV. Conclusions are drawn in section V.

II. AIRCRAFT MODEL DESCRIPTION

The dynamic equations for a six-degree-of-freedom air-

craft are as follows [21]
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V̇T =
1
m

(−D + FT cos α cos β + mg1)

α̇ =q − (p cos α + r sin α) tanβ

+
1

mVT cos β
(−L − FT sin α + mg3)

β̇ =p sin α − r cos α

+
1

mVT
(Y − FT cos α sin β + mg2)

Jω̇ = − ω × Jω + M

J =

⎛
⎝ Jx 0 −Jxz

0 Jy 0
−Jxz 0 Jz

⎞
⎠

(1)

where m is the mass of the aircraft, VT , α, β are velocity,

angle-of-attack, sideslip angle respectively, D, Y, L, FT are

drag force, side force, lift force and thrust respectively, ω
def=

(p, q, r)T is the angular velocity vector expressed in the body

axes frame, J is the inertia matrix of the aircraft, M =
(Mx, My, Mz)T is the external torque vector in body frame.

g1, g2, g3 can be calculated as

g1 = g(− cos α cos β sin θ + sin β sin φ cos θ

+ sin α cos β cos φ cos θ)
g2 = g(cos α sin β sin θ + cos β sin φ cos θ

− sin α sin β cos φ cos θ)
g3 = g(sin α sin θ + cos α cos φ cos θ)

(2)

where g is the gravitational constant, θ, φ are the pitch angle

and the roll angle respectively. D, Y, L are defined as

D = −X̄ cos α cos β − Ȳ sin β − Z̄ sin α cos β

Y = −X̄ cos α sin β + Ȳ cos β − Z̄ sin α sin β

L = X̄ sin α − Z̄ cos α

(3)

where X̄, Ȳ , Z̄, are the aerodynamic forces in the body

frame. The aerodynamic coefficients of the aircraft are de-

scribed as follows

Cxtot = Cx(α, δe) +
c̄q

2VT
Cxq(α)

Cytot = −0.02β + 0.021
δa

21.5
+ 0.086

δr

30
+

br

2VT
Cyr(α)

+
bp

2VT
Cyp(α)

Cztot = Cz(α, β, δe) +
c̄q

2VT
Czq(α)

Cltot = Cl(α, β) + Clδa
(α, β)

δa

21.5

+ Clδr
(α, β)

δr

30
+

br

2VT
Clr(α) +

bp

2VT
Clp(α)

Cmtot = Cm(α, δe) + Cztot(xcgr
− xcg) +

c̄q

2VT
Cmq(α)

Cntot = Cn(α, β) − c̄

b
Cytot(xcgr − xcg) + Cnδa(α, β)

δa

21.5

+ Cnδr (α, β)
δr

30
+

br

2VT
Cnr(α) +

bp

2VT
Cnp(α)

(4)

where b is the reference wing span of the aircraft, c̄ is the

mean aerodynamic chord of the aircraft, xcg is the gravity

location center, xcgr is the gravity reference location center.

δe, δa, δr are the available aerodynamic control surfaces.

The aerodynamic coefficients Cx(α, δe), Cz(α, β, δe) etc. are

obtained from low-speed static and dynamic wind-tunnel

tests and have been stored in lookup tables as a function

of the current flight condition(e.g., α, β, and δe) in the from

of 1-D, 2-D, or 3-D.

The aerodynamic forces and external torques are obtained

as X̄ = q̄SCxtot, Ȳ = q̄SCytot, Z̄ = q̄SCztot, Mx =
q̄SbCltot, My = q̄Sc̄Cmtot, Mz = q̄SbCntot, where q̄ =
1
2ρV 2

T is the aerodynamic pressure, S is the reference wing

area.

III. DISTURBANCE ATTENUATION MANEUVER

CONTROLLER DESIGN

[20] gives a tracking and disturbance attenuation con-

troller for a class of parametric strict-feedback nonlinear

systems using the freedom in the choice of the cost function

in backstepping. Based on this design procedure, we design

a general maneuver controller for aircraft in this section. For

general parametric strict-feedback nonlinear systems, how to

design an adaptive controller which guarantees the tracking

performance and attains a required level of disturbance

attenuation, please refer to [20].

The common commands for general maneuver are angle-

of-attack, sideslip angle, and roll rate [12], [13]. The sideslip

angle always should be kept at zero in the whole maneuver

process. The control objectives are summarized as follows:

α = αref, β = 0, ps = pref
s (5)

Because this controller is based on backstepping, which

can only handle such systems that can be transformed into a

low-triangle form, transformation and some assumptions are

needed.

Firstly, the angular velocity vector ωs
def= (ps, qs, rs)T in

the stability-axes can be used to get a convenient form for

controller design [12], [13]. The relationship of ωs and ω is

ωs = Sαω, where

Sα =

⎛
⎝ cos α 0 sin α

0 1 0
− sin α 0 cos α

⎞
⎠

Secondly, we neglect the forces produced by control

surfaces deflection, and angular rates. Then the dynamics

equations of ps, α, β can be given as follows

ṗs = u1 (6)

α̇ = qs − ps tanβ

+
1

mVT cos β
(−L(α) − FT sin α + mg2) + wα (7)

q̇s = u2 (8)

β̇ = −rs +
1

mVT
(Y (β) − FT cos α sin β + mg3) + wβ

(9)

ṙs = u3 (10)
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Fig. 1. Block diagram of maneuver controller.

where u1 = ṗs, u2 = q̇s, u3 = ṙs, wα, wβ are the terms

due to the neglecting of aerodynamic effects, the unmodeled

dynamics and the extern disturbances.

Equations (7)-(8) and (9)-(10) are suitable for backstep-

ping design. So we first view u1, u2, u3 as our control inputs,

that is we design control law u1 for roll rate ps, control law

u2 for angle-of-attack α, control law u3 for sideslip angle

β. After u
def= (u1, u2, u3)T is designed, we solve the control

surfaces deflection from u using control allocation.

The block diagram of this maneuver controller is depicted

in Fig.1.

A. Angle-of-attack α control law

For the control of angle-of-attack, consider equations (7)-

(8)

α̇ = qs + fα + wα

q̇s = u2

(11)

where fα = −ps tanβ+ 1
mVT cos β (−L(α)−FT sin α+mg2)

Step 1: Define the control error

z1 = α − αref (12)

The derivative of z1 is

ż1 = α̇ − α̇ref

= qs − α̇ref + fα + wα

Define

a1 = k1z1 + fα (13)

z2 = qs − α̇ref + a1 (14)

where k1 is a positive constant to be designed. Then, the

derivative for z1 can be rewritten as

ż1 = z2 − k1z1 + wα

Step 2: Consider the derivative of z2

ż2 = q̇s − α̈ref + ȧ1

= u2 − α̈ref +
∂a1

∂z1
(z2 − k1z1 + wα) +

∂a1

∂αref
α̇ref

+
∂a1

∂fα
ḟα

Define

a2 = k2z2 + z1 +
∂a1

∂z1
(z2 − k1z1) +

∂a1

∂αref
α̇ref

+
1

2γ2
α

∂a1

∂z1
z1 +

∂a1

∂fα
ḟα (15)

where k2 is a positive constant to be designed. Then

ż2 = u2 − α̈ref − k2z2 − z1 + a2 − 1
2γ2

α

∂a1

∂z1
z1

+
∂a1

∂z1
wα

The control law for angle-of-attack can be designed as

u2 = α̈ref − a2 (16)

then

ż2 = −k2z2 − z1 − 1
2γ2

∂a1

∂z1
z1 +

∂a1

∂z1
wα

The closed-loop system under the control law is described

by the following differential equations

ż1 = z2 − k1z1 + wα

ż2 = −k2z2 − z1 − 1
2γ2

α

∂a1

∂z1
z1 +

∂a1

∂z1
wα

which can be rewritten as(
ż1

ż2

)
= F + Hwα

where

F =
(

z2 − k1z1

−k2z2 − z1 − 1
2γ2

α

∂a1
∂z1

z1

)
, H =

(
1

∂a1
∂z1

)

Define a cost function Vα = 1
2z2

1 + 1
2z2

2 . We assume that

before the maneuver, the aircraft is in an equilibrium state,

which implies α̇(t)|t=0 = 0. Chosen reference trajectory αref

satisfies αref(0) = α(0), α̇ref(t)|t=0 = 0, then Vα(0) = 0.

Consider the Hamilton-Jacobi-Isaacs equation

∂Vα

∂z
F +

1
4γ2

α

∂Vα

∂z
HHT

(
∂Vα

∂z

)T

+
2∑

l=1

blz
2
l = 0 (17)

where b1 ≥ 1, b2 ≥ 1 are design parameters. This implies

that

z2
1

(
4γ2

αb1 − 4γ2
αk1 + 1

)
+ z2

2

(
k2
1 + 4γ2

αb2 − 4γ2
αk2

)
= 0

If we choose k1 = b1 + 1
4γ2

α
and k2 = b2 + k2

1
4γ2

α
, then the

HJI equation can be satisfied. The derivative of Vα is

V̇α = −b1z
2
1 − b2z

2
2 + γ2

αw2
α

− γ2
α(wα − 1

2γ2
α

z1(1 + k1))2 (18)

Integrating both sides of (18), we get

Vα(t) = −
∫ t

0

(b1z
2
1 + b2z

2
2)dτ + γ2

α

∫ t

0

w2
αdτ + Vα(0)

−
∫ t

0

γ2
α(wα − 1

2γ2
α

z1(1 + k1))2dτ

≤ −
∫ t

0

(b1z
2
1 + b2z

2
2)dτ + γ2

α

∫ t

0

w2
αdτ + Vα(0)
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which means∫ t

0

(z2
1 + z2

2)dτ ≤
∫ t

0

(b1z
2
1 + b2z

2
2)dτ

≤ γ2
α

∫ t

0

w2
αdτ + Vα(0) − Vα(t)

≤ γ2
α

∫ t

0

w2
αdτ (19)

It implies that the control law u2 makes α asymptotically

track the reference trajectory with disturbance attenuation

level γα. If wα = 0, the closed-loop system of α is asymp-

totically stable. The derivative of fα can’t be calculated

analytically, we can use a Tracking Differentiator (TD) [22]

to get its derivative in simulation. The tracking error of fα’s

derivative can be incorporated in wα in the control law design

analysis.

B. Sideslip angle β control law
For the control of sideslip angle, consider equations (9)-

(10)

β̇ = −rs + fβ + wβ

ṙs = u3

(20)

wherefβ = 1
mVT

(Y (β) − FT cos α sin β + mg3). Because

(20) has a similar form with (11), so similarly to the design

procedure for α, we get the control law for β:

u3 = −(β̈ref − a4) (21)

where

a4 = k4z4 + z3 +
∂a3

∂z3
(z4 − k4z3) +

∂a3

∂βref
β̇ref

+
1

2γ2
β

∂a3

∂z3
z3 +

∂a3

∂fβ
ḟβ

k3 = b3 +
1

4γ2
β

z3 = β − βref

a3 = k3z3 + fβ

k4 = b4 +
k2
3

4γ2
β

z4 = −rs − β̇ref + a3

b3 ≥ 1, b4 ≥ 1 are positive constants corresponding to b1, b2

in the α control law design respectively. It is easy to verify

that the closed-loop of β satisfies a HIJ function associated

with cost function Vβ = 1
2 (z2

3 + z2
4), thereby the control law

u2 makes β asymptotically track the reference trajectory with

disturbance attenuation level γβ . The derivative of fβ can

also be got by using a tracking differentiator in simulation.

C. Roll rate ps control law
For the control of roll rate, we just use a proportional

control law. Given the roll rate command, the control law

for ps is designed as

u1 = kP (pref
s − ps) (22)

where kP > 0.

D. Control allocation

In order to obtain control surfaces deflection, all aerody-

namic coefficients need to be affine in the control surfaces

deflection, but in the above aircraft model, δe doesn’t appear

affine in Cm(α, δe), Cz(α, β, δe). To solve this problem,

Cm(α, δe), Cz(α, β, δe) can be approximated as

Cm(α, δe) = Cm0(α) + Cmδe
(α)δe

Cz(α, β, δe) = Cz0(α, β) + Czδe
(α, β)δe

In the following simulation, this approximation is achieved

by the Least Squares method.

As long as u is known, the external torque vector M can

be calculated as

M = JS−1
α (u − Ṡαω) + ω × Jω (23)

Then, we get the control surfaces deflection⎛
⎝ δecmd

δacmd

δrcmd

⎞
⎠ = D†

⎡
⎣M −

⎛
⎝ Mx0

My0

Mz0

⎞
⎠

⎤
⎦ (24)

where

Mx0 = q̄Sb

(
Cl(α, β) +

br

2VT
Clr(α) +

bp

2VT
Clp(α)

)

My0 = q̄Sc̄ (Cm0(α) + (xcgr − xcg) (Cz0(α, β)

+
c̄q

2VT
Czq(α)

)
+

c̄q

2VT
Cmq(α)

)

Mz0 = q̄Sb

(
Cn(α, β) − (xcgr − xcg)

c̄

b

(
br

2VT
Cyr(α)

+
bp

2VT
Cyp(α) − 0.02β

)
+

br

2VT
Cnr(α)

+
bp

2VT
Cnp(α)

)

D† is the pseudo-inversion of D =

⎛
⎝ D11 D12 D13

D21 D22 D23

D31 D32 D33

⎞
⎠

D11 = D22 = D23 = D31 = 0
D12 = 1

21.5Clδa
(α, β)q̄Sb D13 = 1

30Clδr
(α, β)q̄Sb

D21 = (Cmδe(α) + Czδe(α, β)(xcgr − xcg))q̄Sc̄
D32 = 1

21.5 (Cnδa
(α, β) − 0.021(xcgr

− xcg) c̄
b )q̄Sb

D33 = 1
30 (Cnδr

(α, β) − 0.086(xcgr
− xcg) c̄

b )q̄Sb

IV. SIMULATIONS

In this section, some simulation results based on a non-

linear six-degree-of-freedom aircraft model are presented to

illustrate the performance of the maneuver controller.

The control surfaces of this aircraft are modeled as first-

order low-pass filters with magnitude and rate limits. These

limits can be found in Table I. The dynamic model of

the control surfaces are δ̇e = SR(ωe(SM (δecmd) − δe)),
δ̇a = SR(ωa(SM (δacmd) − δa)), δ̇r = SR(ωr(SM (δrcmd) −
δr)), where δecmd, δacmd, δrcmd are control surface commands,

δe, δa, δr are the real control surface deflations, ωe =
ωa = ωr = 20.5 rad/s are the control surface bandwidths,
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TABLE I

THE CONTROL INPUT UNITS AND MAXIMUM VALUES

Control units MIN MAX rate limit

Elevator deg −25 25 ±60 deg/s
Ailerons deg −21.5 21.5 ±80 deg/s
Rudder deg −30 30 ±120 deg/s

SM (·), SR(·) represent the magnitude and rate limit func-

tions. The function

SM (x) =

⎧⎨
⎩

M if x ≥ M
x if |x| < M
−M if x ≤ −M

and SR(·) is defined similarly. The aerodynamic datum are

valid when −10 ≤ α ≤ 45 degrees and −30 ≤ β ≤ 30
degrees. The aircraft is trimmed at h = 15000 ft, VT =
500 ft/s. The controller parameters are chosen as b1 =
1, b2 = 5, γα = 3, b3 = 2, b4 = 1, γβ = 3, kP = 5.

Fig.2. gives the results that the angle-of-attack α responses

to a reference trajectory. The reference trajectory αref is

generated by letting a square wave pass through a command

filter. The dash lines represent the reference trajectories and

the solid lines the responses. From these curves we can

see that angle-of-attack α has a good tracking performance

while the sideslip angle and the roll rate are kept at zero

though there exists rate saturation in the deflection of the

control surface δe. Fig.3. shows the aircraft response to

both lateral and longitudinal commands. Both α and ps

have good tracking performance, and only a small sideslip

angle appears. In all these simulations, variations are added

to aerodynamic coefficients as disturbances. The variations

of Cxtot, Cztot, Cmtot are +20% and Cytot, Cltot, Cntot are

−20%. These simulations show that the designed maneuver

controller has a good tracking and disturbance attenuation

performance.

V. CONCLUSION

In this paper, a maneuver controller based on backstepping

is designed for a nonlinear aircraft, which makes the angle-

of-attack and roll rate asymptotically track the reference

trajectories respectively while keeping sideslip angle zero.

To obtain satisfied disturbance attenuation performance for

the tracking of angle-of-attack and sideslip angle, appropri-

ate cost functions are constructed to satisfy HJI equations.

Simulation results show the good tracking and disturbance

attenuation performance of this controller.
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Fig. 2. Aircraft responses to angle-of-attack command.

0 2 4 6 8 10 12 14 15
0

10

20

30

time/s

A
n
g
le

 o
f 
a
tt
a
c
k
 α

 (
d
e
g
)

response

reference

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 157.5

−20

−10

0

10

20

time/sC
o
n
tr

o
l 
s
u
rf

a
c
e
s
 d

e
fl
e
c
ti
o
n
(d

e
g
)

δ
e

δ
a

δ
r

0 2 4 6 8 10 12 14 15
−50

0

50

100

time/s

R
o
ll
 r

a
te

 p
s
(d

e
g
/s

) response

reference

0 2 4 6 8 10 12 14 15
−1

−0.5

0

0.5

1

time/s

S
id

e
s
li
p
 a

n
g
le

 β
 (

d
e
g
)

response

reference

Fig. 3. Aircraft responses to angle-of-attack and roll rate commands.

754



REFERENCES

[1] Justin Teo, Jonathan P. How, Eugene Lavretsky, “On Approximate
Dynamic Inversion and Proportional-Integral Control,” Proceedings
of the American Control Conference. Hyatt Regency Riverfront, St.
Louis, MO, USA June 10-12, 2009.

[2] Christakis Papageorgious, Keith Glover, “Robustness analysis of
nonlinear dynamic inversion control laws with application to flight
control,” the 43rd IEEE Conferce on Decision and Control, Atlantis,
Paradies Island, Bahamas, December 14-17, 2004.

[3] W. Siwakosit, A. Snell, and R. A. Hess, “Robust Flight Control Design
with Handling Qualities Constrains Using Scheduled Linear Dynamic
Inversion and Loop-Shaping,” IEEE Transactions on control systems
technilogy, Vol.8, No.3, 2000.

[4] A. Snell, “Decoupling control design with applications to flight,”
Journal of Guidance, Control, and Dynamics, Vol.12, No.4, 1998.

[5] A. Isidori, “Nonlinear Control Systems,” Springer, 1995.
[6] Saif A. Al-Hiddabi, N. Harris McClamroch, “Tracking and Maneuver

Regulation Control for Nonlinear Nonminimum Phase Systems: Ap-
plication to Flight Control,” IEEE Transactions on Control Systems
Technology, Vol.10, No.6, Novemeber, 2002.

[7] Saif A. Al-Hiddabi, “Design of a Flight Control System for Non-
minimum Phase 5DOF Aircraft Model,” The 11th Mediterranean
Conference on Control and Automation, June 18-20, 2003.

[8] Ioannis Kanellakopoulos, Petar Kokotović, A.Stephen Morse, “Sys-
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[13] Härkegȧrd, O., “Backstepping and Control Allocation with Application
to Flight Control,” Ph.D.Thesis, Linköping University, Linköping,
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