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Multistep Look-Ahead Policy Iteration for Optimal
Control of Discrete-Time Nonlinear Systems

With Isoperimetric Constraints
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Abstract—In this article, a novel multistep look-ahead policy
iteration with isoperimetric constraints (MLPIIC) method is
developed to solve infinite horizon optimal control problems
(OCPs) with isoperimetric constraints for discrete-time nonlin-
ear systems. In order to overcome the difficulty that Bellman’s
principle of optimality does not hold directly in OCPs with
isoperimetric constraints, a method to approximate OCPs with
isoperimetric constraints by OCPs with new constraints is
developed. For the MLPIIC method initialized with an admissi-
ble control law, the convergence and optimality of the iterative
value function and the feasibility of the iterative control law are
proven. Utilizing the function approximator, the implementation
of the MLPIIC method is described. Finally, simulation results
are provided.

Index Terms—Adaptive dynamic programming (ADP), isoperi-
metric constraints, nonlinear systems, optimal control, policy
iteration.

I. INTRODUCTION

IN RECENT years, there has been a dramatic increase
in the demand for system performance. At the same
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time, modern industrial processes are increasingly compli-
cated [1], [2], [3]. Hence, the optimal control of complex
processes is becoming a great challenge. Although dynamic
programming is a very useful tool in solving the Bellman
equation which is always encountered in optimal control
problems (OCPs), it is computationally untenable because
of the curse of dimensionality [4]. Nevertheless, adaptive
dynamic programming (ADP) algorithms are proposed by [5]
and [6] as a way to obtain numerical solutions of the Bellman
equation. There are several synonyms for ADP, including
adaptive critic designs [7], [8], [9], ADP [10], [11], [12],
[13], [14], approximate dynamic programming [15], [16],
[17], [18], neuro-dynamic programming [19], [20], neural
dynamic programming [21], [22], relaxed dynamic program-
ming [23], [24], and reinforcement learning [25], [26], [27].
ADP methods have been utilized in many different control
problems and received more and more attention [28], [29],
[30], [31], [32].

The PI algorithm is an important iterative ADP algorithm,
which is proposed by [33], and it is verified that the optimal
control law is achieved as the iteration index tends to infinity.
It is also shown that the system controlled by any iterative
control law (ICL) is stable, which is a great merit of the PI
algorithm. In [34], a generalized PI algorithm is proposed,
and its convergence and optimality are proven. In [35], a local
PI algorithm is proposed, which updates the iterative value
function (IVF) on a subset of the state space to reduce the
computation. Furthermore, the convergence of the multistep
look-ahead version of the PI algorithm is analyzed in [36]. For
discounted finite Markov decision processes (MDPs), the idea
of the multistep look-ahead version of the PI algorithm is first
briefly mentioned in [19]. Additionally, the policy improve-
ment through solving a dynamic programming problem that
involves feature-based aggregation is discussed in [37] and
the first analysis for multistep look-ahead policy improvement
is presented by [38] and [39].

Almost all discussions about PI algorithms are interested
in optimizing a single performance index function [33], [34],
[35], [36]. However, many applications do not require the
performance index function to reach the minimum but require
it to be less than an upper bound. For example, the objective
of guaranteed cost control is to guarantee the boundedness
of the performance index function for any uncertainty in the
system. Guaranteed cost control problems can be solved by
ADP methods [40], [41], [42]. Actually, many OCPs describe
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goals by two types of performance index functions, where one
type of performance index function needs to be optimized,
and the other type of performance index function is required
to satisfy the upper bound constraint, simultaneously. In order
to distinguish between these two types of performance index
functions, the constrained performance index functions are
referred to as constraint functions. In this research, OCPs
minimizing a performance index function with constraint func-
tions are known as OCPs with isoperimetric constraints [43],
[44]. OCPs with isoperimetric constraints are also known as
OCPs with integral constraints [45]. In [46], the necessary con-
ditions for OCPs with isoperimetric constraints are derived.
In [47], the OCP with isoperimetric constraints is transformed
into the OCP for an augmented system. In [48], the appli-
cation of optimal control with isoperimetric constraints in
the chemotherapy of tumors is demonstrated. In [49], the
OCP with isoperimetric constraints is solved by a novel value
iteration method, which is initialized by a feasible control law.
For linear OCPs subject to terminal and isoperimetric con-
straints, Sun [50] derived conditions for guaranteed solvability
and addresses terminal constraints by adding penalty terms on
terminal states. The results in [45] and [50] depend on the con-
vexity of the OCP with linear systems, quadratic performance
index functions, and isoperimetric quadratic constraints, and
hence cannot trivially extend to nonlinear systems. OCPs with
isoperimetric constraints are also similar to the optimization
problems of constrained MDPs (CMDPs) [51] in terms of
optimization goals. For finite CMDPs, Chow et al. [52] for-
mulated safe reinforcement learning as CMDPs and presented
a Lyapunov method to solve them. For CMDPs with Borel
state and action spaces, assumptions that guarantee the solv-
ability of CMDPs are studied considering unbounded reward
functions [53]. However, it is not an easy task to extend
research results on CMDPs [51], [52], [53] to discrete-time
nonlinear dynamical systems in the control theory. For OCPs
with isoperimetric constraints, the conclusions in [45] and [50]
show that the optimal control is a nonlinear function of the cur-
rent state and the initial state. These conclusions show that the
optimal control law is related to the previous state, which vio-
lates the principle of optimality. In addition, according to the
conclusion in [54], the value function of OCPs with isoperi-
metric constraints does not directly satisfy Bellman’s principle
of optimality. Therefore, the ADP methods cannot be directly
applied to solve OCPs with isoperimetric constraints.

In this article, for discrete-time nonlinear OCPs with
isoperimetric constraints, a novel multistep look-ahead pol-
icy iteration with isoperimetric constraints (MLPIIC) method
is developed. The main contributions are summarized as
follows.

1) In comparison with studies on linear OCPs with isoperi-
metric constraints [45], [50], we extend the problem
to the case of infinite-horizon performance index func-
tions and nonlinear systems. In comparison with the
existing method in [49], the proposed MLPIIC method
is initialized by an admissible control law rather than
a feasible control law. In comparison with existing
results on CMDPs [51], [52], [53], we study the infinite-
horizon undiscounted performance index functions with

unbounded utility functions and emphasize the stability
of the system.

2) To overcome the difficulty that the value function of
the OCP with isoperimetric constraints does not directly
satisfy Bellman’s principle of optimality, by construct-
ing an auxiliary function, the OCP with isoperimetric
constraints is approximated as a special OCP, where the
principle of optimality holds.

3) Based on the approximation of the OCP with isoperi-
metric constraints, a novel MLPIIC method is developed
to solve them. The MLPIIC method is initialized by an
admissible control law, which is the same as traditional
PI algorithms. We prove that the constraint function of
any ICL is less than the given upper bound, and the
system controlled by any ICL is stable. We also analyze
the convergence and optimality of the MLPIIC method.

4) By utilizing function approximators, the method to con-
struct an appropriate auxiliary function is developed, and
the implementation of the MLPIIC method is described.

This article is organized as follows. In Section II, the OCP
with isoperimetric constraints is formulated. In Section III, a
method to approximate OCPs with isoperimetric constraints
is developed and the MLPIIC method is derived. The con-
vergence of the IVF is shown. In addition, the stability
and feasibility of the ICL are demonstrated. In Section IV,
the implementation of the MLPIIC method is described.
In Section V, the simulation results are presented. Finally,
conclusions and future works are given in Section VI.

II. PROBLEM FORMULATION

The following nonlinear system is studied:

xk+1 = F(xk, uk), k ∈ N (1)

where xk ∈ R
n is the state vector, uk ∈ R

m is the control
vector, F : R

n × R
m → R

n is the system function, and N is
the set of natural numbers, i.e., N = {0, 1, . . .}.

The control vector is determined by a feedback control law
μ : R

n → R
m, i.e., uk = μ(xk). For the system (1) with

the initial state x0 and the feedback control law μ(·), the
performance index function is given by

Jμ(x0) =
∞∑

k=0

U
(
xμk , μ(x

μ
k )

)
(2)

where U(xμk , μ(x
μ
k )) � Ux(x

μ
k ) + Uu(μ(x

μ
k )) is the utility

function, and xμk denotes the kth element in the state tra-
jectory starting from x0 and controlled by μ(·), i.e., xμk =
F(xμk−1, μ(x

μ
k−1)) ∀k ∈ N+, and xμ0 = x0. Note that N+ is the

set of positive natural numbers, i.e., N+ = {1, 2, . . .}. In (2),
Ux : R

n → R+ and Uu : R
m → R+ are continuous positive-

definite functions, where R+ is the set of non-negative real
numbers. Apart from the performance index function (2), a
constraint function is given by

Dμ(x0) =
∞∑

k=0

d
(
xμk , μ(x

μ
k )

)
(3)
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where d(xμk , μ(x
μ
k )) � dx(x

μ
k ) + du(μ(x

μ
k )) is the constraint

utility function. In (3), dx(·) and du(·) are continuous positive-
definite functions of the same dimension as Ux(·) and Uu(·),
respectively.

Considering a compact set � ⊂ R
n, including the ori-

gin and x0 as interior points, the following assumptions are
standard.

Assumption 1: The system (1) is Lipschitz continuous and
stabilizable on �. Besides, the system (1) satisfies F(0, 0) = 0.

The goal of the OCP with isoperimetric constraints is to
solve a feedback control law μ(·) to move the given initial state
x0 to the origin, minimize the performance index function (2),
and simultaneously guarantee the constraint function (3) to
satisfy

Dμ(x0) ≤ d0 (4)

where d0 > 0 is a given finite upper bound for Dμ(x0).
Problem 1 denotes the OCP for the system (1) at x0 with a

performance index (2) and an isoperimetric constraint (4).
Problem 1:

min
μ(·)

{
Jμ(x0) : Dμ(x0) ≤ d0

}

s.t. xk+1 = F(xk, μ(xk)) ∀k ∈ N.

In order to avoid difficulties caused by the difference of the
finiteness of Jμ(x0) and Dμ(x0), the following assumption is
made.

Assumption 2: Suppose that if μ(·) satisfies
Jμ(xk) < ∞ ∀xk, then Dμ(xk) < ∞ ∀xk, and vice versa.

It is worth pointing out that Assumption 2 is a relatively
strong assumption since Jμ(·) and Dμ(·) are given. We pro-
vide an example here to show that Assumption 2 is reasonable.
Consider the usual quadratic utility function in (2) and con-
straint utility function in (3), i.e., U(xk, μ(xk)) = x	

k Q1xk +
μ	(xk)R1μ(xk), d(xk, μ(xk)) = x	

k Q2xk + μ	(xk)R2μ(xk),
where Q1,R1,Q2, and R2 are symmetric positive-definite
matrices with appropriate dimensions. By using Cholesky fac-
torization [55], we can rewrite Q2 and R2 as Q2 = Q2Q

	
2

and R2 = R2R
	
2 , respectively, where Q2 and R2 are positive-

definite lower-triangular matrices. Let Q̄ = Q−1
2 Q1Q

−	
2 and

R̄ = R−1
2 R1R

−	
2 . Then, according to the properties of the

generalized Rayleigh quotient [55], we have

θmin
(
Q̄

)
x	

k Q2xk ≤ x	
k Q1xk ≤ θmax

(
Q̄

)
x	

k Q2xk (5)

and

θmin
(
R̄
)
μ	(xk)R2μ(xk) ≤ μ	(xk)R1μ(xk)

≤ θmax
(
R̄
)
μ	(xk)R2μ(xk) (6)

where θmin(·) and θmax(·) denote the minimum and maxi-
mum eigenvalues of the matrix, respectively. According to (5)
and (6), if μ(·) satisfies Jμ(xk) < ∞ ∀xk, then we have

∞∑

j=0

x	
k+jQ2xk+j ≤ 1

θmin
(
Q̄

)
∞∑

j=0

x	
k+jQ1xk+j < ∞

and
∞∑

j=0

μ	(
xk+j

)
R2μ

(
xk+j

)

≤ 1

θmin
(
R̄
)

∞∑

j=0

μ	(
xk+j

)
R1μ

(
xk+j

)

< ∞.

Thus, we get

Dμ(xk) =
∞∑

j=0

x	
k+jQ2xk+j + μ	(

xk+j
)
R2μ

(
xk+j

)
<∞.

If μ(·) satisfies Dμ(xk) < ∞ ∀xk, we can get μ(·) satisfies
Jμ(xk) < ∞ ∀xk, in a similar way. Therefore, Assumption 2
holds in this example. We will also discuss the case where
Assumption 2 does not hold at the end of Section III.

We introduce the following definition of admissible and
feasible control laws.

Definition 1: A control law μ(·) is defined to be admissible
for x0 if μ(·) is continuous on �, μ(0) = 0, μ(·) stabilizes (1)
starting from x0, and Jμ(x0) and Dμ(x0) are finite.

Definition 2: A control law μ(·) is defined to be feasible if
μ(·) is admissible and Dμ(x0) satisfies (4).

Let A(x0) be the set containing all admissible control laws,
which is related to the given initial state x0, i.e.,

A(x0) = {
μ(·) : μ(·) stabilizes (1) starting from x0

μ(0) = 0, Jμ(x0) < ∞,Dμ(x0) < ∞}
.

Let F(x0) denote the set of all feasible control laws, i.e.,

F(x0) = {
μ(·) : μ(·) ∈ A(x0),Dμ(x0) ≤ d0

}
.

For OCPs with isoperimetric constraints, the following
assumption is required to guarantee that A(x0) 
= ∅ and
F(x0) 
= ∅.

Assumption 3: The set of admissible control laws A(x0) is
not empty. The control law μ̃(·) satisfying

μ̃(·) ∈ arg min
μ(·) {Dμ(x0) : μ(·) ∈ A(x0)}

is feasible, i.e., Dμ̃(x0) ≤ d0.
For the OCP with isoperimetric constraints, the optimal

performance index function is defined as

J∗
c (x0) = min

μ(·) {Jμ(x0) : μ(·) ∈ F(x0)} (7)

and the optimal control law is defined as

μ∗
c(·) ∈ arg min

μ(·) {Jμ(x0) : μ(·) ∈ F(x0)}. (8)

Note that the solution μ∗
c(xk) of minimization in (8) may not

be unique. Motivated by [56], the notation “∈” is used here
to allow the selection of any of the minimizers.

It is worth pointing out that the value function of OCPs with
isoperimetric constraints does not directly satisfy the principle
of optimality, Hence, the optimal control law μ∗

c(·) is difficult
to achieve via solving the Bellman equation.
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III. MULTISTEP LOOK-AHEAD POLICY ITERATION

WITH ISOPERIMETRIC CONSTRAINTS METHOD

In this section, the OCP with isoperimetric constraints will
be approximated by an OCP with new constraints where
Bellman’s principle of optimality holds. Then, in order to solve
the above OCP with new constraints, the MLPIIC method will
be developed. Next, the properties of the MLPIIC method will
be proven.

A. Approximation of the OCP With Isoperimetric Constraints

For a control law μ(·) and functions Y : R
n → R+,

h : R
n × R

m → R+, the operator Tμ,h[ · ] is defined as

Tμ,h[Y](xk) = h(xk, μ(xk))+ Y(F(xk, μ(xk))). (9)

Define the operator Tj
μ,h[ · ] as the composition of j ∈ N

operators Tμ,h[ · ], i.e.,

Tj
μ,h[Y](xk) = Tμ,h

[
Tj−1
μ,h [Y]

]
(xk) ∀j ∈ N+ (10)

and

T0
μ,h[Y](xk) = Y(xk). (11)

According to (9)–(11), we have

Tj
μ,h[Y](xk) = h(xk, μ(xk))+ Tj−1

μ,h [Y]
(
xμk+1

)

= h(xk, μ(xk))+ Tμ,h
[
Tj−2
μ,h [Y]

](
xμk+1

)

= h(xk, μ(xk))+ h
(
xμk+1, μ(x

μ
k+1)

)

+ Tj−2
μ,h [Y]

(
xμk+2

)

...

=
j−1∑

i=0

h
(
xμk+i, μ(x

μ
k+i)

) + T0
μ,h[Y]

(
xμk+j

)

=
j−1∑

i=0

h
(
xμk+i, μ(x

μ
k+i)

) + Y
(

xμk+j

)
(12)

where xμk = xk. In the following lemma, it will be shown that
Tμ,h[ · ] is a monotonic operator.

Lemma 1 [57]: For positive-definite functions Y(·) and
Y ′(·), which satisfy

Y(xk) ≤ Y ′(xk) ∀xk

we have

Tμ,h[Y](xk) ≤ Tμ,h
[
Y ′](xk) ∀xk ∀μ(xk).

Next, it will be shown that Problem 1 can be approximated
by an OCP with a new constraint. Let A(�) denote the set of
all admissible control laws for �, i.e.,

A(�) = {
μ(·) : μ stabilizes (1) starting from xk

μ(0) = 0, Jμ(xk) < ∞,Dμ(xk) < ∞
∀xk ∈ �}

.

Let F(�) denote the set containing all feasible control laws
associated with �, i.e.,

F(�) = {
μ(·) : μ(·) ∈ A(�),Dμ(x0) ≤ d0

}
.

Since x0 ∈ �, we know A(�) ⊆ A(x0) and F(�) ⊆ F(x0)

obviously. In the following assumption, it will be supposed
that neither A(�) nor F(�) is an empty set.

Assumption 4: Suppose A(�) 
= ∅ and F(�) 
= ∅.
Suppose there is a known finite positive-definite auxiliary

function � : R
n → R+ that satisfies

�(x0) ≤ d0. (13)

For p ∈ N, define a set of control laws as

Sp� {μ(·) : μ(·) ∈ A(�),T2p

μ,d[�](xk) ≤ �(xk) ∀xk ∈ �}.
Then, the relationship between Sp, p ∈ N, and F(x0) will be
proven.

Theorem 1: If Assumptions 1–4 hold, then

S0 ⊆ S1 ⊆ S2 ⊆ . . . ⊆ S∞
= {μ(·) : μ(·) ∈ A(�),Dμ(xk) ≤ �(xk) ∀xk ∈ �}
⊆ F(�) ⊆ F(x0). (14)

Proof: First, we will prove

S∞={μ(·) : μ(·) ∈ A(�),Dμ(xk) ≤ �(xk) ∀xk ∈ �}. (15)

Let μ(·) ∈ A(�). According to (12), we have

lim
j→∞ T2j

μ,d[�](xk) = lim
j→∞

⎧
⎨

⎩

2j−1∑

i=0

d
(
xμk+i, μ(x

μ
k+i)

)

+�
(

xμ
k+2j

)
⎫
⎬

⎭.

Since μ(·) ∈ A(�), we know

lim
j→∞ xμ

k+2j = 0.

Then, we have

lim
j→∞�

(
xμ

k+2j

)
= 0

because �(·) is positive definite. Thus, it can be derived that

lim
j→∞ T2j

μ,d[�](xk) = lim
j→∞

⎧
⎨

⎩

2j−1∑

i=0

d
(
xμk+i, μ(x

μ
k+i)

)

+�
(

xμ
k+2j

)
⎫
⎬

⎭

= Dμ(xk).

Therefore, (15) is proven.
Next, we will prove

Sp ⊆ Sp+1 ∀p ∈ N. (16)

Let μ(·) ∈ Sp, p ∈ N. Then, we have

T2p

μ,d[�](xk) ≤ �(xk) ∀xk ∈ �. (17)

According to Lemma 1, using Tμ,h[ · ] to map 2p times on
both sides of (17), we get

T2p+1

μ,d [�](xk) ≤ T2p

μ,d[�](xk) ∀xk ∈ �.
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Thus, we obtain

T2p+1

μ,d [�](xk) ≤ �(xk) ∀xk ∈ �
i.e., μ(·) ∈ Sp+1. Therefore, (16) is proven.

Since �(x0) ≤ d0, we have

{μ(·) : μ(·)∈A(�),Dμ(xk)≤�(xk) ∀xk ∈ �}⊆F(�). (18)

According to (15), (16), and (18), (14) can be derived. The
proof is completed.

Since the value function of Problem 1 does not directly
satisfy Bellman’s principle of optimality, it is difficult to obtain
μ∗

c(·) by solving the Bellman equation. However, according to
Theorem 1, we can use S0 to approximate F(x0). Then, an OCP
subject to μ(·) ∈ S0 is constructed as Problem 2.

Problem 2:

min
μ(·)

{
Jμ(x0) : Tμ,d[�](xk) ≤ �(xk) ∀xk ∈ �, k ∈ N

}

s.t. xk+1 = F(xk, μ(xk)) ∀k ∈ N.

Note that Sp, p ∈ N+, cannot be used to approximate F(x0)

because the optimality principle does not hold in the OCP
subject to μ(·) ∈ Sp, p ∈ N+.

The error resulting from approximating Problem 1 with
Problem 2 is analyzed as follows. From (14), S∞\S0 
= ∅

{
μ(·) : μ(·) ∈ A(�),Dμ(xk) ≤ �(xk) ∀xk ∈ �}

\ {
μ(·) : μ(·) ∈ A(�),Dμ(x0) ≤ d0

} 
= ∅ (19)

and

F(�)\F(x0) 
= ∅
all contribute to the approximation error. According to (19),
�(x0) should be close to d0 to reduce the approximation
error. Since it is challenging to find a function �(·) satisfying
S∞ = S0, it will not be covered in this study. �(·) should also
guarantee S0 
= ∅ and the following theorem will provide a
sufficient condition for �(·) to guarantee S0 
= ∅.

Theorem 2: Let μ�(·) be obtained by

μ�(xk) = arg min
μ(xk)

Tμ,d[�](xk) ∀xk ∈ �.
If Assumptions 1–4 hold, and

�(xk) ≥ Tμ�,d[�](xk) ∀xk ∈ � (20)

then S0 
= ∅.
Proof: From (20), it can be derived that

�(F(xk, μ�(xk)))−�(xk)

≤ −d(xk, μ�(xk))

≤ 0.

According to the Lyapunov stability theory [58], �(·) is a
Lyapunov function and the system using μ�(·) is asymptoti-
cally stable. From (20) and Lemma 1, we get

�(xk) ≥ Tμ�,d[�](xk)

≥ T∞
μ�,d[�](xk)

= lim
j→∞

{ j−1∑

i=0

d
(
xμ�k+i, μ�(x

μ�
k+i)

) +�
(

xμ�k+j

)}
.

Since �(·) is positive definite and μ�(·) is asymptotically
stable, we have

lim
j→∞

⎧
⎨

⎩

j−1∑

i=0

d
(
xμ�k+i, μ�(x

μ�
k+i)

) +�
(

xμ�k+j

)
⎫
⎬

⎭

= lim
j→∞

j−1∑

i=0

d
(
xμ�k+i, μ�(x

μ�
k+i)

)

= Dμ�(xk).

Thus, we obtain

Dμ�(xk) ≤ �(xk) < ∞ ∀xk ∈ �. (21)

Then, according to Assumption 2, we know

Jμ�(xk) < ∞ ∀xk ∈ �. (22)

According to (20)–(22), we know μ�(·) ∈ S0. Therefore,
S0 
= ∅. The proof is completed.

According to the above analysis, the finite positive-definite
function �(·) should satisfy (13) and (20). It is also implied
that �(x0) close to d0 helps reduce the approximation error.
A method to find �(·) is given in Section IV-A.

For Problem 2, assuming that there is a known �(·) satis-
fying (13) and (20), the optimal performance index function
J∗(·) satisfies the Bellman equation

J∗(xk)= min
μ(xk)

{
Tμ,U

[
J∗](xk) : Tμ,d[�](xk)≤�(xk)

}
(23)

and the optimal control law μ∗(·) satisfies

μ∗(xk) ∈ arg min
μ(xk)

{
Tμ,U

[
J∗](xk) :

Tμ,d[�](xk) ≤ �(xk)

}
. (24)

According to the above analysis, solving Problem 1 is trans-
formed into solving the Bellman equation (23). Next, the
MLPIIC method for solving (23) is introduced.

B. Derivation of the MLPIIC Method

In this section, the MLPIIC method to solve (23) is
developed. For simplicity of expression, define the control
vector sequence of μ(·) from k to k + l − 1 as

μ
k : k+l−1

= {
μ(xk), μ

(
xμk+1

)
, . . . , μ

(
xμk+l−1

)} ∈ R
ml

where l is a positive integer.
The MLPIIC method is given as follows. Let μ0(·) ∈ A(�)

be an arbitrary admissible control law. For i = 1, 2, . . .,
the MLPIIC method iterates between the policy evaluation
equation

Vμi (xk) = Tμi−1,U
[
Vμi

]
(xk) ∀xk ∈ � (25)

and the l-step look-ahead policy update equation with isoperi-
metric constraints

μi(xk) ∈ arg min
μ

k : k+l−1

Tl
μ,U

[
Vμi

]
(xk)

s.t. Tμ,d[�]
(

xμk+j

)
≤ �

(
xμk+j

)
, j = 0, 1, . . . , l − 1 (26)
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for all xk ∈ �. The detailed explanation of (26) is as
follows. For a certain xk and Vμi (·), Tl

μ,U[Vμi ](xk) is a
function with respect to μ

k : k+l−1
and Tμ,d[�](xμk+j) ≤

�(xμk+j), j = 0, 1, . . . , l − 1, are constraints of μ
k : k+l−1

.
The meaning of (26) is to first solve μ∗

i,k : k+l−1
=

{μ∗
i (xk), μ

∗
i (x

μ∗
i

k+1), . . . , μ
∗
i (x

μ∗
i

k+l−1)} that satisfies

μ∗
i,k : k+l−1

∈ arg min
μ

k : k+l−1

Tl
μ,U

[
Vμi

]
(xk)

s.t. Tμ,d[�]
(

xμk+j

)
≤ �

(
xμk+j

)
, j = 0, 1, . . . , l − 1 (27)

and then let μi(xk) = μ∗
i (xk).

The MLPIIC method for discrete-time nonlinear systems is
summarized in Algorithm 1.

When (25) cannot be solved directly, an iterative process to
solve Vμi (·) ∀i ∈ N+ is given as

Vμi (xk) = lim
j→∞ Tj

μi−1,U

[
Vμi−1

]
(xk) ∀xk ∈ � ∀i ∈ N+ (28)

where Vμ0 (·) is an arbitrary positive-definite function. The
convergence of (28) is proven in [59].

The developed MLPIIC method possesses inherent dif-
ferences with the traditional PI algorithms [33], [34], [35].
First, traditional PI methods are generally suitable for opti-
mizing a single performance index function, which cannot
work out the OCPs with isoperimetric constraints. However,
the MLPIIC method aims to solve OCPs with isoperimet-
ric constraints. Second, for traditional PI algorithms, the
ICL is updated with 1 step look-ahead, while it is updated
with multistep look-ahead in the MLPIIC method. Third,
for traditional PI algorithms, the ICL is obtained through
solving unconstrained optimization problems. However, in
the MLPIIC method, the ICL is achieved by resolving
inequality-constrained optimization problems.

C. Properties of the MLPIIC Method

In this section, the properties of the MLPIIC method will be
analyzed. First, Theorem 3 shows that the IVF is nonincreasing
and the ICL is feasible. Then, Theorem 4 demonstrates the
convergence and optimality of the MLPIIC method.

For simplicity of expression, based on (9)–(11), the operator
Tl

min,h[ · ] is defined as

Tl
min,h[Y](xk) = min

μ
k : k+l−1

Tl
μ,h[Y](xk)

s.t. Tμ,d[�]
(

xμk+j

)
≤ �

(
xμk+j

)
, j = 0, 1, . . . , l − 1. (29)

Let Tjl
min,h[ · ] be the composition of j operators Tl

min,h[ · ], i.e.,

Tjl
min,h[Y](xk) = Tl

min,h

[
T(j−1)l

min,h [Y]
]
(xk) ∀j ∈ N+ (30)

and

T0l
min,h[Y](xk) = Y(xk). (31)

Theorem 3: For i = 1, 2, . . ., let Vμi (·) and μi(·) be
obtained by the MLPIIC method (25)–(26) with μ0(·) ∈ A(�).
If Assumptions 1–4 hold, then Vμi (·) is positive definite for

Algorithm 1 MLPIIC
Initialization: Select a compact set � ⊂ R

n including x0 and
the origin.
Select a finite positive definite function �(·) that satisfies
(13) and (20).
Select a computation precision ε.
Select the number of steps to look ahead l.
Select an initial admissible control law μ0(·).
Let the iteration index i be 0.

Iteration:
1: Let i = i + 1. Obtain Vμi (·) by solving

Vμi (xk) = Tμi−1,U
[
Vμi

]
(xk) ∀xk ∈ �.

2: Obtain μi(·) by solving

μi(xk) ∈ arg min
μ

k : k+l−1

Tl
μ,U

[
Vμi

]
(xk)

s.t. Tμ,d[�]
(

xμk+j

)
≤ �

(
xμk+j

)
, j = 0, 1, . . . , l − 1

for all xk ∈ �.
3: If ∀xk ∈ �, |Vμi (xk) − Vμi−1(xk)| ≤ ε, goto next step.

Otherwise, goto Step 1.
4: return J∗(·) = Vμi (·) and μ∗(·) = μi(·).

i ∈ N+ and nonincreasing as i increases for i ∈ N+\{1}, and
μi(·) is feasible for i ∈ N+.

Proof: First, we will prove Vμ1 (·) is positive definite. Since
Vμ1 (·) satisfies that

Vμ1 (xk) = Tμ0,U
[
Vμ1

]
(xk) ∀xk ∈ � (32)

we have

Vμ1 (xk) =
∞∑

j=0

U
(

xμ0
k+j, μ0(x

μ0
k+j)

)
(33)

because μ0(·) is admissible. Thus, we get

Vμ1 (xk) > 0 ∀xk 
= 0,Vμ1 (0) = 0. (34)

Therefore, Vμ1 (·) is positive definite.
Second, we will prove μ1(·) is feasible. When i = 1, we

have

μ1(xk) ∈ arg min
μ

k : k+l−1

Tl
μ,U

[
Vμ1

]
(xk)

s.t. Tμ,d[�]
(

xμk+j

)
≤ �

(
xμk+j

)
, j = 0, 1, . . . , l − 1 (35)

for all xk ∈ �. Thus, μ1(·) satisfies

Tμ1,d[�](xk) ≤ �(xk) ∀xk ∈ �. (36)

Then, we get

�(F(xk, μ1(xk)))−�(xk)

≤ −d(xk, μ1(xk))

≤ 0. (37)
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By the Lyapunov stability criteria [58], �(·) is a Lyapunov
function and μ1(·) is asymptotically stable. From (36) and
Lemma 1, it can be derived that

�(xk) ≥ Tμ1,d[�](xk)

≥ lim
j→∞ Tj

μ1,d
[�](xk)

= lim
j→∞

⎧
⎨

⎩

j−1∑

i=0

d
(
xμ1

k+i, μ1(x
μ1
k+i)

) +�
(

xμ1
k+j

)
⎫
⎬

⎭

= Dμ1(xk) (38)

because μ1(·) is asymptotically stable and �(·) is positive
definite. Then, Dμ1(·) is finite. According to Assumption 2,
we know Jμ1(·) is finite. Thus, μ1(·) is admissible. Based on
(13) and (38), we get

Dμ1(x0) ≤ �(x0) ≤ d0. (39)

Therefore, μ1(·) is a feasible control law.
Next, for i = 2, we will prove μ2(·) is feasible and

Vμ3 (xk) ≤ Vμ2 (xk) ∀xk ∈ �. Because μ1(·) is feasible, we
can prove Vμ2 (·) is positive definite similar to (32)–(34). Since
μ2(·) is obtained by (26), we have

μ2(xk) ∈ arg min
μ

k : k+l−1

Tl
μ,U

[
Vμ2

]
(xk)

s.t. Tμ,d[�]
(

xμk+j

)
≤ �

(
xμk+j

)
, j = 0, 1, . . . , l − 1 (40)

for all xk ∈ �. Then, similar to (36)–(39), we can prove μ2(·)
is a feasible control law. According to (40), we have

Tl
μ2,U

[
Vμ2

]
(xk) = Tl

min,U

[
Vμ2

]
(xk)

≤ Tl
μ1,U

[
Vμ2

]
(xk)

= Vμ2 (xk).

Then, according to (12) and Lemma 1, we have

Vμ2 (xk) ≥ Tl
μ2,U

[
Vμ2

]
(xk)

≥ T2l
μ2,U

[
Vμ2

]
(xk)

...

≥ lim
j→∞ Tj

μ2,U

[
Vμ2

]
(xk)

= Vμ3 (xk) ∀xk ∈ �.
Suppose that the statement holds for i = q − 1, q ∈ N+

and q ≥ 3. Because μq−1(·) is feasible, we can prove Vμq (·) is
positive definite similar to (32)–(34). Since μq(·) is obtained
by (26), we have

μq(xk) ∈ arg min
μ

k : k+l−1

Tl
μ,U

[
Vμq

]
(xk)

s.t. Tμ,d[�]
(

xμk+j

)
≤ �

(
xμk+j

)
, j = 0, 1, . . . , l − 1 (41)

for all xk ∈ �. Then, similar to (36)–(39), we can prove μq(·)
is a feasible control law. As μq−1(·) is a feasible control law,
we have

Tl
μq,U

[
Vμq

]
(xk) = Tl

min,U

[
Vμq

]
(xk)

≤ Tl
μq−1,U

[
Vμq

]
(xk)

= Vμq (xk).

Then, according to (12) and Lemma 1, we have

Vμq (xk) ≥ Tl
μq,U

[
Vμq

]
(xk)

≥ T2l
μq,U

[
Vμq

]
(xk)

...

≥ lim
j→∞ Tj

μq,U

[
Vμq

]
(xk)

= Vμq+1(xk) ∀xk ∈ �. (42)

According to mathematical induction, the proof is
completed.

Note that the sequence of the IVF {Vμi (·)}∞i=1 is pointwise
nonincreasing in the traditional PI algorithm, while {Vμi (·)}∞i=2
is pointwise nonincreasing in the MLPIIC method. Besides, all
ICLs are admissible in the traditional PI algorithm, while the
initial control law is admissible and subsequent ICLs are fea-
sible in the proposed MLPIIC method. Next, the convergence
and optimality of the MLPIIC method are proven.

Theorem 4: For i = 1, 2, . . ., let Vμi (·) and μi(·) be
obtained by the MLPIIC method (25)–(26) with μ0(·) ∈ A(�).
If Assumptions 1–4 hold, then the IVF Vμi (·) converges to the
optimal performance index function J∗(·), as i → ∞, where
J∗(·) satisfies the Bellman equation (23).

Proof: According to Theorem 3, Vμi (·) is nonincreasing as
i increases for i ∈ N+\{1} and also lower bounded by zero.
Hence, the limit of Vμi (·) exists as i → ∞. The limit of Vμi (·)
is defined as

Vμ∞(xk) = lim
i→∞ Vμi (xk).

The limit of μi(·) is defined as

μ∞(xk) = lim
i→∞μi(xk).

First, we will prove Vμ∞(·) satisfies the l-step look-ahead
version of the Bellman equation, i.e.,

Vμ∞(xk) = Tl
min,U

[
Vμ∞

]
(xk). (43)

According to (42), we get

Vμ∞(xk) ≤ Vμi+1(xk) ≤ Tl
μi,U

[
Vμi

]
(xk) = Tl

min,U

[
Vμi

]
(xk).

Let i → ∞, we obtain

Vμ∞(xk) ≤ Tl
min,U

[
Vμ∞

]
(xk) (44)

Since lim
i→∞ Vμi (xk) = Vμ∞(xk) and Vμi (·) is nonincreasing

∀ε > 0, ∃q ∈ N+, such that

Vμq (xk) ≥ Vμ∞(xk) ≥ Vμq (xk)− ε. (45)

Hence, we can get

Vμ∞(xk) ≥ Tμq−1,U

[
Vμq

]
(xk)− ε

= Tl
μq−1,U

[
Vμq

]
(xk)− ε

≥ Tl
μq−1,U

[
Vμ∞

]
(xk)− ε

≥ Tl
min,U

[
Vμ∞

]
(xk)− ε.

Since ε is arbitrary, we obtain

Vμ∞(xk) ≥ Tl
min,U

[
Vμ∞

]
(xk). (46)
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Combining (44) and (46), we can obtain (43).
Second, we will prove Vμ∞(·) is the unique solution of the

l-step look-ahead version of the Bellman equation (43) in �.
Assume that there is another solution V∗(·) of (43), i.e.,

V∗(xk) = Tl
min,U

[
V∗](xk)

and

μ∗
V(xk) ∈ arg min

μ
k : k+l−1

Tl
μ,U

[
V∗](xk)

s.t. Tμ,d[�]
(

xμk+j

)
≤ �

(
xμk+j

)
, j = 0, 1, . . . , l − 1.

Next, we will prove V∗(xk) = Vμ∞(xk) ∀xk ∈ �. Assume that

V∗(xk) < Vμ∞(xk), ∃xk ∈ �. (47)

Then, we can prove

Tl
μ∗

V ,U

[
Vμ∞

]
(xk) < Vμ∞(xk), ∃xk ∈ � (48)

by contradiction. Assuming that (48) does not hold, we have

Tl
μ∗

V ,U

[
Vμ∞

]
(xk) ≥ Vμ∞(xk) ∀xk ∈ �.

Then, we can derive that

l−1∑

j=0

U
(

x
μ∗

V
k+j, μ

∗
V(x

μ∗
V

k+j)
)

+ Vμ∞
(

x
μ∗

V
k+l

)
≥ Vμ∞

(
x
μ∗

V
k

)
(49)

for all x
μ∗

V
k ∈ � and

l−1∑

j=0

U
(

x
μ∗

V
k+l+j, μ

∗
V(x

μ∗
V

k+l+j)
)
+Vμ∞

(
x
μ∗

V
k+2l

)
≥Vμ∞

(
x
μ∗

V
k+l

)
(50)

for all x
μ∗

V
k+l ∈ �. Substituting (50) into (49), we get

2l−1∑

j=0

U
(

x
μ∗

V
k+j, μ

∗
V(x

μ∗
V

k+j)
)

+ Vμ∞
(

x
μ∗

V
k+2l

)
≥Vμ∞

(
x
μ∗

V
k

)
(51)

for all x
μ∗

V
k ∈ �. Repeating the process (49)–(51) for N − 2

times, where N = 2, 3, . . ., we obtain

Nl−1∑

j=0

U
(

x
μ∗

V
k+j, μ

∗
V(x

μ∗
V

k+j)
)

+ Vμ∞
(

x
μ∗

V
k+Nl

)

≥ Vμ∞
(

x
μ∗

V
k

)
∀x
μ∗

V
k ∈ �.

Let N → ∞. Since Vμ∞(·) is positive definite and μ∗
V(·) is

admissible, we have

lim
N→∞ Vμ∞

(
x
μ∗

V
k+Nl

)
= 0.

Thus, we obtain

V∗(xk) ≥ Vμ∞(xk) ∀xk ∈ �
which contradicts (47). Therefore, if (47) holds, then (48) can
be derived. According to (48), we have

Tl
μ∗

V ,U

[
Vμ∞

]
(xk) < Vμ∞(xk)

= Tl
μ∞,U

[
Vμ∞

]
(xk), ∃xk ∈ �

which contradicts

μ∞(xk) ∈ arg min
μ

k : k+l−1

Tl
μ,U

[
Vμ∞

]
(xk)

s.t. Tμ,d[�]
(

xμk+j

)
≤ �

(
xμk+j

)
, j = 0, 1, . . . , l − 1.

Therefore, (47) does not hold, i.e.,

V∗(xk) ≥ Vμ∞(xk) ∀xk ∈ �.
Similarly, we can prove

V∗(xk) ≤ Vμ∞(xk) ∀xk ∈ �
by contradiction. Thus, V∗(·) = Vμ∞(·). Therefore, Vμ∞(·) is
the unique solution of (43) in �.

According to Bellman’s principle of optimality, J∗(·) satis-
fies (43). Therefore, J∗(·) = Vμ∞(·).

From Theorem 3 to Theorem 4, we have discussed prop-
erties of the MLPCC method when Assumption 2 holds.
Furthermore, if we have an initial feasible control law μf (·),
then Assumption 2 can be removed and we have the following
corollary.

Corollary 1: For i = 1, 2, . . ., let Vμi (·) and μi(·) be
obtained by the MLPIIC method (25)–(26) with μ0(·) = μf (·)
and �(·) = Dμf (·). If Assumptions 1, 3, and 4 hold, then
Vμi (·) is positive definite and nonincreasing as i increases for
i ∈ N+. Vμi (·) also converges to the optimal performance index
function J∗(·), as i → ∞, where J∗(·) satisfies the Bellman
equation (23). Furthermore, for all i ∈ N, μi(·) is feasible.

Proof: The corollary can be proven similar to Theorems 3
and 4 and the proof is omitted.

Remark 1: Optimal control with isoperimetric constraints
has been widely applied in boiler–turbine generating
systems [60], [61], chemotherapy of tumors [48], and risk-
aware control [62]. For boiler–turbine generating systems, by
applying the proposed MLPIIC method, an economical con-
trol scheme satisfying the power generation demand can be
obtained. For the chemotherapy of tumors, by applying the
proposed MLPIIC method, we can obtain a treatment plan to
minimize cancer cells using a certain amount of drugs. For
the risk-aware control of robotics, by applying the proposed
MLPIIC method, we can obtain a high-performance and safe
control scheme.

IV. IMPLEMENTATION OF THE MLPIIC METHOD

In this section, the implementation of the MLPIIC method
will be described in detail. First, a method to determine an
appropriate auxiliary function �(·) will be introduced. Second,
the implementation of the MLPIIC method will be described.

A. Determination of the Auxiliary Function

In this section, the method of determining a finite positive-
definite function �(·) that satisfies (13) and (20) will be
introduced.

First, by the function approximation theory [63], �(·) is
parameterized as

�(xk) =
N�∑

j=1

wjφj(xk) = W	
�φ(xk) (52)
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where N� is the number of basis functions, {φj(·)}N�
j=1 is a set

of continuously differentiable and linearly independent basis
functions satisfying φj(0) = 0 for j = 1, 2, . . . ,N�, and
W� = [w1 w2 · · · wN� ]	 is the weight of the basis func-
tions. Then, the problem of determining �(·) is transformed
into the problem of determining W�. Second, let an array
containing p state vectors randomly sampled from � be X,
i.e., X = {x1

k, x2
k, . . . , xp

k}. Noting that �(x0) close to d0 helps
reduce the approximation error between Problems 1 and 2, so
we set ρ > 0 as an upper bound of d0 − �(x0). Then, W�

can be achieved by solving the following nonlinear inequality
equations:
⎧
⎪⎪⎨

⎪⎪⎩

W	
�φ

(
xj

k

)
> 0, j = 1, 2, . . . , p

W	
�φ

(
xj

k

)
≥ minμ(xk) Tμ,U

[
W	
�φ

](
xj

k

)
, j = 1, 2, . . . , p

d0 − ρ ≤ W	
�φ(x0) ≤ d0.

(53)

The nonlinear inequality (53) can be solved by many meth-
ods. In this article, we provide a method to solve (53) as
follows. Let one of the solutions of (53) be W∗

�. The problem
of solving (53) can be transformed into solving the following
optimization problem:

W∗
� ∈ arg min

W�

c

s.t. (53) (54)

where c is an arbitrary constant. Then, (54) can be solved
by many mature optimization algorithms, such as the interior
point method [64] and the genetic algorithm [65].

B. Implementation of the MLPIIC Method

In order to implement the MLPIIC method, similar to (52),
we introduce two sets of continuously differentiable and lin-
early independent basis functions {ϕj(·)}NV

j=1 and {ψj(·)}Nμ
j=1

satisfying ϕj(0) = 0 and ψj(0) = 0 for j = 1, 2, . . ., where NV

and Nμ are the numbers of basis functions. Then, Vμi (·) and
μi(·) are approximated as

V̂μi (xk) =
NV∑

j=1

wV
j ϕj(xk) = WV	

i ϕ(xk)

and

μ̂i(xk) =
Nμ∑

j=1

wμj ψj(xk) = Wμ	
i ψ(xk)

where ϕ(xk) = [ϕ1(xk) ϕ2(xk) · · · ϕNV (xk)]	, ψ(xk) =
[ψ1(xk) ψ2(xk) · · · ψNμ(xk)]	, WV

i = [wV
i,1 wV

i,2 · · · wV
i,NV

]	
and Wμ

i = [wμi,1 wμi,2 · · · wμi,Nμ ]	 are weights of V̂μi (·) and

μ̂i(·), respectively. Given input sets and target sets of V̂μi (·)
and μ̂i(·), a least-squares solution of WV

i and Wμ
i can be

obtained by the weighted residuals method [66].
The implementation of the MLPIIC method is described as

follows. The MLPIIC method is first initialized with an admis-
sible control law μ0(·), which can be obtained by feedback
linearization [67]. In the first step of the MLPIIC method, we
know Vμi (·) can be obtained by (28). However, this process
cannot be implemented infinite times. In the implementation

Algorithm 2 Implementation of the MLPIIC Method
Initialization:

Define the iteration index i = 0.
Select the initial admissible control law μ0(·).
Select a computation precision ε.
Select a finite positive definite function �(·) that satisfies
(13) and (20).
Select an array of p state vectors randomly in �, X ={
x1

k, x2
k, . . . , xp

k

}
.

Iteration:
1: Let i = i + 1. Calculate the target of V̂i(·) by (55) and

obtain {V̂μi,target(x
1
k), V̂μi,target(x

2
k), . . . , V̂μi,target(x

p
k)}. Obtain

the least squares solution of WV
i .

2: Calculate the target of μ̂i(·) by (56) and obtain
{μ̂target

i (x1
k), μ̂

target
i (x2

k), . . . , μ̂
target
i (xp

k)}. Obtain the least
squares solution of Wμ

i .
3: If

|V̂μi (xk)− V̂μi−1(xk)| ≤ ε ∀xk ∈ X,

goto next step. Otherwise, goto Step 1.
4: return V̂∗(·) = V̂μi (·) and μ̂∗(·) = μ̂i(·).

of the MLPIIC method, we actually compute the target of
V̂μi (·) by

V̂μi,target(xk)

= TK
μ̂i−1,U

[
V̂μi−1

]
(xk)

=
K−1∑

j=0

U
(

xμ̂i−1
k+j , μ̂i−1(x

μ̂i−1
k+j )

)
+V̂μi−1

(
xμ̂i−1

k+K

)
(55)

for all i ∈ N+, where K is a large positive integer, μ̂0(·) =
μ0(·) and V̂μ0 (·) is an arbitrary positive-definite function. In
this article, we set K to be a multiple of l, i.e., K = κl, where
κ ∈ N+. In the second step, the target of μ̂i(·) is calculated by

μ̂
target
i (xk) ∈ arg min

μ
k : k+l−1

Tl
μ,U

[
V̂μi

]
(xk)

s.t. Tμ,d[�]
(

xμk+j

)
≤ �

(
xμk+j

)
, j = 0, 1, . . . , l − 1. (56)

The implementation of the MLPIIC method is summarized in
Algorithm 2.

V. SIMULATION STUDIES

In order to demonstrate the effectiveness of the MLPIIC
method, Van der Pol’s oscillator [68] is selected as the simu-
lation model. The continuous-time dynamics of Van der Pol’s
oscillator is

ÿ =
(

1 − y2
)

ẏ − y + u.

By defining the state vector x = [y, ẏ]	 and discretizing the
continuous-time dynamics through the forward Euler method
with the sampling time �t = 0.05 s, a discrete-time nonlinear
model is established as

xk+1 = xk +�tf (xk, uk)
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where xk = [x1k, x2k]	 is the system state, and

f (xk, uk) =
[

x2k(
1 − x2

1k

)
x2k − x1k + uk

]
.

The initial state is x0 = [ − 0.7, 1.437]	.
Let the system state be denoted as xk = [x1k, x2k]	. In this

simulation, the goal is to maintain the difference between x1k

and x2k within a given bound while regulating x1k and x2k.
In practical applications, the utility function, constraint util-
ity function, and d0 are given by experts. In this article, for
simulation purposes, the utility function and the constraint util-
ity function are set as U(xk, uk) = 0.25x	

k xk + 0.05u	
k uk and

d(xk, uk) = 4x2
1k +4x2

2k −4x1kx2k +0.05u	
k uk, respectively. The

upper bound d0 is set as d0 = 76. Note that the constraint util-
ity function indicates the intention to guarantee that x1k and
x2k are close.

The implementation details of the MLPIIC method are as
follows. Let

� = {xk : − 1.5 ≤ x1k ≤ 1.5,−1.5 ≤ x2k ≤ 1.5}
and sample randomly 500 states from �. The auxiliary func-
tion �(·) is determined first. The basis functions used to
parameterize �(·) are set as

φ(xk) =
[
x2

1k x1kx2k x2
2k x4

1k x3
1kx2k

x2
1kx2

2k x1kx3
2k x4

2k x6
1k x5

1kx2k

x4
1kx2

2k x3
1kx3

2k x2
1kx4

2k x1kx5
2k x6

2k

]	
.

The weight of �(·) obtained by solving (54) is

W� = [137.10 23.19 16.16 − 0.69 − 0.20

− 1.28 − 0.11 − 0.10 0.14 − 0.01

0.11 0 0 0.01 0.03]	.

From

�(x0) = W	
�φ(x0) = 75.9775 < d0

we know �(x0) is close to d0. The number of steps to look-
ahead is set as 2, i.e., l = 2. The positive number used to
compute the target of V̂μi (·) in (55) is set as 500, i.e., K = 500.
In order to approximate the IVF and the ICL by function
approximators, both ϕ(xk) and ψ(xk) are chosen to be the
same as φ(xk). An initial control law is achieved via feedback
linearization as μ0(xk) = (1 − x2

1k)x2k − 6x1k − 15x2k. Note
that μ0(·) is admissible but not feasible because Dμ0(x0) =
83.65 > d0.

Implement the MLPIIC method to achieve the computation
precision ε = 0.005. The convergence trajectory of the IVF at
x0, i.e., V̂μi (x0), is shown in Fig. 1. In addition, Fig. 2 demon-
strates the convergence trajectory of the constraint function
of the ICL at x0, i.e., Dμ̂i(x0). The state and control tra-
jectories achieved through applying the final control law to
Van der Pol’s oscillator system are displayed in Fig. 3(a)–(c),
respectively.

To show the effectiveness of the developed MLPIIC
method, comparisons with the traditional PI algorithm and

Fig. 1. Convergence trajectory of V̂μi (x0).

Fig. 2. Convergence trajectory of Dμ̂i
(x0).

Fig. 3. (a) Trajectory of state x1. (b) Trajectory of state x2. (c) Trajectory
of control action.

the regularization-based PI algorithm are presented. In the
regularization-based PI algorithm, the optimal control law with
isoperimetric constraints is solved approximately by solving
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the following regularized OCP using the PI algorithm:

min
μ(·)

{
Jμ(x0)+ w

(
Dμ(x0)− d0

)}

s.t. xk+1 = F(xk, μ(xk)) ∀xk, k ∈ N

where w ≥ 0 is the regularization parameter. The initial
control laws utilized in the comparative experiment and the
MLPIIC method are identical. The convergence trajectories
of the regularization-based PI algorithm are demonstrated in
Figs. 1 and 2, respectively. Applying the final control law
in the traditional PI algorithm to the given system, we can
obtain the state and control trajectories, which are displayed
in Fig. 3(a)–(c), respectively.

The simulation results of the MLPIIC method are analyzed
as follows. For the MLPIIC method, the constraint func-
tion of the ICL is always less than d0 when the iteration
index is greater than 1 from Fig. 2, which shows that the
ICL for i ∈ N+ is feasible although μ0(·) is not feasible.
Furthermore, it is displayed that the IVFs at x0 are nonin-
creasing and convergent when the iteration index is greater
than 1 from Fig. 1. For the traditional PI algorithm and
the regularization-based PI algorithm with w = 0.05, Fig. 1
shows that they receive smaller performance index functions
than the present MLPIIC method. However, Fig. 2 shows
that the constraint functions of the ICL obtained by the tra-
ditional PI algorithm and regularization-based PI algorithm
with w = 0.05 are obviously larger than d0. Thus, simulation
results show that the optimal control laws achieved through
these two algorithms are not feasible. By the regularization-
based PI algorithm with w = 0.2, Figs. 1 and 2 show that
a feasible control law whose performance index function is
close to that of the MLPIIC method is obtained. However, the
regularization-based PI algorithm is time consuming since an
appropriate regularization parameter w can only be obtained
by trial and error. Through comparative experiments, the con-
vergence, feasibility, and effectiveness of the MLPIIC method
are verified.

VI. CONCLUSION

In this article, a novel MLPIIC method is developed to
solve infinite horizon OCPs with isoperimetric constraints.
In order to overcome the difficulty that the value function
of the OCP with isoperimetric constraints does not directly
satisfy Bellman’s principle of optimality, by constructing an
auxiliary function, the OCP with isoperimetric constraints is
approximated as a special OCP, where Bellman’s principle
of optimality holds. The conditions that the auxiliary func-
tion should satisfy are analyzed. Initialized with an admissible
control law, the MLPIIC method iterates between the pol-
icy evaluation equation and the multistep look-ahead policy
update equation. The IVF is proven to converge to the optimal
performance index function of the approximated OCP. The
feasibility of the ICL is demonstrated. The implementation
of the MLPIIC method based on function approximators is
described. Numerical results demonstrate the effectiveness of
the proposed method.

Our future work is to extend the MLPIIC method to multiple
isoperimetric constraints settings and stochastic systems.

Furthermore, we will also investigate the application of the
MLPIIC method to safety-critical systems.
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