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Abstract
With the rapid growth of image and video data on the web, hashing has been extensively studied for image or video search in
recent years. Benefiting from recent advances in deep learning, deep hashing methods have shown superior performance over
the traditional hashing methods. However, there are some limitations of previous deep hashing methods (e.g., the semantic
information is not fully exploited). In this paper, we develop a general deep supervised discrete hashing framework based
on the assumption that the learned binary codes should be ideal for classification. Both the similarity information and the
classification information are used to learn the hash codes within one stream framework. We constrain the outputs of the
last layer to be binary codes directly, which is rarely investigated in deep hashing algorithms. Besides, both the pairwise
similarity information and the triplet ranking information are exploited in this paper. In addition, two different loss functions
are presented: l2 loss and hinge loss, which are carefully designed for the classification term under the one stream framework.
Because of the discrete nature of hash codes, an alternating minimization method is used to optimize the objective function.
Experimental results have shown that our approach outperforms current state-of-the-art methods on benchmark datasets.

Keywords Supervised discrete hashing · l2 loss · Hinge loss · Alternating minimization method

1 Introduction

Hashing has attracted much attention in recent years because
of the rapid growth of image and video data on the web.
It is one of the most popular techniques for image or video
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search due to its low computational cost and high storage effi-
ciency. Generally speaking, hashing is used to encode high
dimensional data into a set of binary codes while preserv-
ing the similarity of images or videos. Fast image or video
retrieval can be carried out by calculating the Hamming dis-
tance between different samples, which dramatically reduces
computational costs.

Many hashing methods have been proposed (Gionis et al.
1999; Wang et al. 2018; Weiss et al. 2009; Gong et al.
2013; Wang and Zhang 2019). Existing hashing methods
can be roughly grouped into two categories: data indepen-
dentmethods and data dependentmethods. Data independent
methods rely on random projections to construct hash func-
tions, while data dependent methods refer to using training
data to learn hash functions. Data independent methods does
not rely on data samples, thus it is usually less efficient and
requires longer hashing codes to obtain high accuracy. Data
dependent hashing methods can be further categorized into
unsupervised and supervised methods. Unsupervised hash-
ing methods try to explore the intrinsic structure of data
samples without semantic labels. One of their limitations is
that the semantic structure between different data samples
are not fully exploited. Supervised methods can learn the
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Fig. 1 The framework of our algorithm. It consists of two parts: the
similarity part and the classification part. The similarity part is used to
measure the similarity between different samples, and the classification

part is used to measure the classification capability of the hash codes.
These two parts are unified into one stream under our framework

hashing codes by incorporating semantic labels to mitigate
the semantic gap and improve the retrieval performance.

Recently, Convolutional Neural Networks (CNNs) has
achieved a big breakthrough in computer vision. They are
capable of learning rich feature representations for image
and text classification (Krizhevsky et al. 2012; Liu et al.
2019a), object detection (Girshick et al. 2014; Liu et al. 2020;
Zhang et al. 2018a), segmentation or localization (Long et al.
2015; Li et al. 2016a; Wang et al. 2019), etc. Deep learning
based hashing methods have also been proposed to simul-
taneously learn the image representation and hash coding,
which have shown superior performance over the traditional
hashingmethods. Semantic hashing (Salakhutdinov andHin-
ton 2009) is one of the early works to learn the hash codes
using deep neural networks. Xia et al. (2014) propose a two
stage framework to learn hashing codes. It is one of the early
works to incorporate deep neural networks into hash code
learning, which consists of two stages to learn the image
representations and hash codes respectively. The first stage
is used to learn the fixed hash codes given the pairwise sim-
ilarity matrix. Then the second stage is used to learn image
representations and hash functions based on the learned hash
codes. Lai et al. (2015) propose an end to end method for
learning hashing codes, which uses triplet ranking loss to
capture the relative similarities of different images. Zhao

et al. (2015) also propose a deep semantic ranking method
for learning hashing functions between multi-label images.
Other ranking-based deep hashing methods and pairwise
label based deep hashing methods have also been proposed
in recent years (Yao et al. 2016; Li et al. 2016b; Zhu et al.
2016).

Although deep learning based methods have achieved
great progress in image retrieval, there are still some ongoing
issues for deep hashing methods. Particularly, current deep
hashingmethods try to divide thewhole learning process into
two streams under the multi-task learning framework (Lin
et al. 2015; Yang et al. 2018; Yao et al. 2016). The hash
stream is used to learn a hash function,while the classification
stream is utilized tomine the semantic information.Although
the two streams framework can improve the retrieval perfor-
mance, the classification stream is only employed to learn the
image representations, which does not have a direct impact
on learning hash functions.

In this paper, we use CNNs to learn the image repre-
sentation and hash function simultaneously. Different from
previous deep hashing methods, one basic assumption of our
algorithm is that the learned binary codes are ideal for clas-
sification as well. Based on this assumption, we develop a
deep supervised discrete algorithm for hash coding. Both the
similarity information and the classification information are
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incorporated into the objective function directly. Due to the
discrete nature of binary codes, an alternating strategy is used
to optimize the objective function. Figure 1 shows the frame-
work of our algorithm.This paper is an extended version of Li
et al. (2017b). Compared with the previous work, the differ-
ences are listed as follows. (1) In this paper, we propose a
general deep supervised discrete hashing framework to learn
hash codes. It mainly consists of two parts: the similarity
part and classification part. Different similarity information
and loss functions can be exploited under our framework.
(2) The triplet ranking information and hinge loss are further
exploited to measure the similarity information and the clas-
sification information under the proposed framework. The
advantage o using the triplet ranking information and hinge
loss is that our method can achieve more promising results
on benchmark datasets when more training images are avail-
able. (3)More experimental results are presented to illustrate
the effectiveness of ourmethod. (4) Parameter sensitivity and
efficiency analysis are also analyzed in this paper. The main
contributions of our work can be summarized as follows.

1) We propose a general deep supervised discrete hashing
framework to learn hash codes. Both the similarity infor-
mation and classification information are exploited to
learn hash codes under one stream framework. To the best
of our knowledge, this is the first deep hashing method
that uses both the similarity information and classifica-
tion information to learn the hash codes under one stream
framework.

2) The last layer of our method is constrained to output
binary codes directly. The binary codes are learned to
preserve the similarity relationship and keep the label
consistent simultaneously.

3) In order to reduce the quantization error, we keep the
discrete nature of hash codes during the optimization pro-
cess. An alternating minimization method is proposed
to optimize the objective function by using the discrete
cyclic coordinate descend method.

4) Extensive experiments have shown that our method
outperforms current state-of-the-art methods on three
benchmark image retrieval datasets, which demonstrates
the effectiveness of the proposed method.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews some related works. Section 3 presents
the details of the proposed algorithm. Experimental results
are reported in Sect. 4. Finally, we give our conclusions in
Sect. 5.

2 RelatedWork

Locality Sensitive Hashing (LSH) (Gionis et al. 1999) is one
of the representative data independent hashing methods. It

uses random linear projections to map nearby data in the
original space into the similar binary codes. LSH is widely
used for large scale image search or matching tasks. In order
to generalize LSH to accommodate arbitrary kernel func-
tions, Kenelized Locality Sensitive Hashing (KLSH) (Kulis
and Grauman 2009; Raginsky and Lazebnik 2009) is pro-
posed. It can be applied to high-dimensional kernelized data.
The discriminative version of LSH is also proposed in Tomar
and Rose (2013). Other variants of LSH are also proposed in
recent years, such as super-bit LSH (Ji et al. 2012), non-
metric LSH (Mu and Yan 2010), χ2-LSH (Gorisse et al.
2012), ML-LSH (Kulis et al. 2009). However, data indepen-
dent hashing methods suffer from a number of limitations,
such as low learning efficiency caused by making no use of
training data and undesirable longer hash codes with simi-
lar accuracy. Due to the limitations of the data independent
hashingmethods, many recent hashingmethods try to exploit
various machine learning techniques to learn more effective
hashing function from a given dataset.

Unsupervised data dependent hashing methods try to
retrieve the neighbors under some kind of distance metric.
Iterative Quantization (ITQ) (Gong et al. 2013) is one of
the representative unsupervised hashing methods, in which
the projection matrix is optimized by iterative projection and
thresholding according to the given training samples. In order
to utilize the semantic labels of data samples, the supervised
data dependent hashing methods are proposed. Supervised
Hashing with Kernels (KSH) (Liu et al. 2012) is a well-
known method of this kind, which learns the hash codes by
minimizing the Hamming distances between similar pairs,
and at the same time maximizing the Hamming distances
between dissimilar pairs. Binary Reconstruction Embedding
(BRE) (Kulis and Darrell 2009) learns the hash functions by
explicitly minimizing the reconstruction error between the
original distances and the reconstructed distances in Ham-
ming space. Order Preserving Hashing (OPH) (Wang et al.
2013) learns the hash codes by preserving the supervised
ranking list information, which is calculated based on the
semantic labels. A new class of hash functions based on the
ranking structure of feature spaces have been proposed in Li
et al. (2017a)). Shen et al. (2015) propose Supervised Dis-
crete Hashing (SDH) method based on the assumption that
the learned binary codes should be optimal for linear classi-
fication. One contributions of their algorithm is that they use
discrete cyclic coordinate descend method to directly opti-
mize the binary hash codes,which proves to bemore effective
for learning the binary codes. Several following works try to
further improve the accuracy and efficiency of SDH (Gui
et al. 2016; Koutaki et al. 2016; Cui et al. 2018).

In the above methods, the input images are all repre-
sented by the hand-crafted features (e.g., GIST), which can
not capture the semantic information of the images effec-
tively. Inspired by recent advances in deep learning, some
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deep learning hashing methods have been proposed to take
advantage of the superior power of the deep neural networks.
Convolutional Neural Network Hashing (CNNH) (Xia et al.
2014) is one of the early works to incorporate deep neural
networks into hash coding. One drawback of CNNH is that
the learned image representation can not give feedback for
learning better hash codes. To overcome the shortcomings
of CNNH, many approaches have been proposed to perform
feature learning and hash coding simultaneously. Network In
Network Hashing (NINH) (Lai et al. 2015) presents a triplet
ranking loss to capture the relative similarities of images.
The image representation learning and hash coding can ben-
efit each other within one stage framework. Deep Semantic
Ranking Hashing (DSRH) (Zhao et al. 2015) learns the hash
functions by preserving semantic similarity between multi-
label images. Other ranking-based deep hashing methods
have also been proposed in recent years (Yao et al. 2016;
Wang et al. 2016).

Besides the triplet ranking based methods, some pairwise
based deep hashing methods are also exploited (Li et al.
2016b; Zhu et al. 2016; Liu et al. 2016). A novel and efficient
training algorithm inspired by alternating direction method
of multipliers (ADMM) is proposed to train very deep neu-
ral networks for supervised hashing in Zhang et al. (2016).
It first relaxes the binary constraint to be continuous, then
thresholds the obtained continuous variables to be binary
codes. Yu et al. (2018) propose a novel product quantiza-
tion network, which mainly consists of a differentiable soft
production quantization layer and an asymmetric triplet loss.
Comparedwith previousmethods, their method is immune to
over-fitting and is more effective. A hash coding layer is pro-
posed in Su et al. (2018) to maintain the discrete constraints
of hash codes. It uses the sign function in forward propa-
gation and transmits the gradients to front layers intactly.
Liu et al. (2018) design a novel triplet section approach to
randomly select hard triplets in the image group. Besides, a
triplet quantization with weak orthogonality is is used during
triplet ranking. A deep variational and structural hashing is
proposed in Liong et al. (2018), which consists of a proba-
bilistic framework to infer latent feature representation and
a structure layer to obtain the hash codes through a simple
encoding procedure. A simple and effective hashing method
is proposed in Shen et al. (2018) to solve the unsupervised
hash coding problem.

Generative Adversarial Networks are also widely used
in hashing. A novel deep semantic hashing with Genera-
tive Adversarial Networks is presented in Qiu et al. (2017).
Besides the hash stream and classification stream, an adver-
sary stream is also used to distinguish synthetic images
from real ones. A binary Generative Adversarial Networks
(BGAN) is used to embed images to binary codes in an
unsupervised way in Song (2018). It mainly consists of an
adversarial loss, a content loss and a neighborhood structure

loss to learn the hash codes. Due to the rapid development of
deep learning, many other deep hashing methods have also
been proposed in recent years (Liong et al. 2017; Zhao et al.
2017; Zhang et al. 2018b). Please refer to Wang et al. (2018)
for a survey of different hashing methods.

3 Deep Supervised Discrete Hashing

3.1 Problem Definition

Given N image samples X = {xi }Ni=1 ∈ R
d×N , hash coding

learns a collection of K -bit binary codes B ∈ {−1, 1}K×N ,
where the i-th column bi ∈ {−1, 1}K represents the binary
codes for the i-th sample xi . The binary codes are gener-
ated by the hash function h (·), which can be rewritten as
[h1 (·) , ..., hK (·)]. For image sample xi , its hash codes can
be represented as bi = h (xi ) = [h1 (xi ) , ..., hK (xi )]. Gen-
erally speaking, hashing is to learn a hash function to project
image samples to a set of binary codes.

3.2 Hash Coding as a Bayesian Process

In supervised hashing, the label information is given as Y =
{yi }Ni=1 ∈ R

C×N , where yi ∈ {0, 1}C corresponds to the
sample xi , C is the number of categories, yic = 1 if the
sample xi comes from the c-th category and0 otherwise.Note
that one sample may belong to multiple categories. Given the
semantic label information, the triplet label information or
pairwise label information can be derived. In this paper, we
mainly focus on the pairwise label information. However, it
can be easily extended to the triplet label information. The
pairwise label information can be represented as: S = {

si j
}
,

si j ∈ {0, 1}, where si j = 1 when xi and x j are semantically
similar, si j = 0 when xi and x j are semantically dissimilar.
For two binary codes bi and b j , the relationship between their
Hamming distance distH (·, ·) and their inner product 〈·, ·〉 is
formulated as follows: distH

(
bi , b j

) = 1
2

(
K − 〈

bi , b j
〉)
. If

the inner product of twobinary codes is small, theirHamming
distance will be large, and vice versa. Therefore the inner
product of different hash codes can be used to quantify their
similarity.

Given the pairwise similarity relationship S = {
si j

}
, the

Maximum a Posterior estimation of hash codes can be rep-
resented as:

p (B|S) ∝ p (S|B) p (B) = Π
si j∈S

p
(
si j |B

)
p (B) (1)

where p (S|B) denotes the likelihood function, p (B) is the
prior distribution. For each pair of the images, p

(
si j |B

)
is

the conditional probability of si j given their hash codes B,
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Table 1 The details of the network structure parameters in our algo-
rithm

Layer Kernal Stride Padding

Conv1 11 × 11 × 64 4 × 4 0

Conv2 5 × 5 × 256 1 × 1 2

Conv3 3 × 3 × 256 1 × 1 1

Conv4 3 × 3 × 256 1 × 1 1

Conv5 3 × 3 × 256 1 × 1 1

Fc1 4096 – –

Fc2 4096 – –

It mainly consists of 5 convolutional layers and 2 fully connected layers

which is defined as follows:

p
(
si j |B

) =
{

σ
(
Φi j

)
, si j = 1

1 − σ
(
Φi j

)
, si j = 0

(2)

where σ (x) = 1/
(
1 + e−x

)
is the sigmoid function, Φi j =

1
2

〈
bi , b j

〉 = 1
2b

T
i b j . From Eq. (2) we can see that, the larger

the inner product
〈
bi , b j

〉
is, the larger p

(
1|bi , b j

)
will be,

which implies that bi and b j should be classified as similar,
and vice versa. Therefore Eq. (2) is a reasonable similarity
measure for hash codes.

3.3 Loss Function

Deep learning based methods have shown their superior per-
formance over the traditional methods on object detection,
image classification and image segmentation, etc. In this sec-
tion, we take advantage of recent advances in CNNs, and use
it for learning the hashing function. In order to have a fair
comparison with existing deep hashing methods, we choose
the CNN-F network architecture (Chatfield et al. 2014) as a
basic component of our algorithm.This architecture iswidely
used for learning the hashing function in recent works (Li
et al. 2016b; Wang et al. 2016). The main differences of var-
ious deep hashing methods are the design of loss functions
and their optimization strategies, which play an important
role for the final performance. Specifically, we have two sep-
arate CNNs for learning the hashing function, which share
the same weights. The pairwise samples are used as the input
for these two separate CNNs. The CNNs model consists of 5
convolutional layers and 2 fully connected layers. The details
of the network architecture are shown in Table 1. Because the
ReLU layer, the pooling layer and the local response normal-
ization layer contain few learned parameters, we omit them
for convenience. The number of neurons in the last fully con-
nected layer is equal to the length of the output hash codes.
Note that other networks, such as, AlexNet (Krizhevsky et al.
2012) and ResNet (He et al. 2016), can also be used in our
algorithm.

Considering the pairwise similarity measure, the follow-
ing loss function is used to learn the hash codes:

J = − log p (S|B) = −
∑

si j∈S
log p

(
si j |B

)

= −
∑

si j∈S

(
si jΦi j − log

(
1 + eΦi j

))
. (3)

Equation (3) is the negative log likelihood function, which
makes the Hamming distance of two similar points as small
as possible, and at the same time makes the Hamming dis-
tance of two dissimilar points as large as possible. Although
pairwise label information is used to learn the hash function
in Eq. (3), the label information is not fully exploited.Most of
the previous works make use of the label information under a
two streamsmulti-task learning framework (Yang et al. 2018;
Yao et al. 2016). The classification stream is used to measure
the classification error, while the hash stream is employed to
learn the hash function. One basic assumption of our algo-
rithm is that the learned binary codes should be ideal for
classification. In order to take advantage of the label infor-
mation directly, we expect the learned binary codes to be
optimal for the jointly learned linear classifier.

We use a simple linear classifier to model the relationship
between the learned binary codes and the label information:

Y = WT B, (4)

where W = [
w1, w2,...,wC

]
is the classifier weight, Y =[

y1, y2,...,yN
]
is the ground-truth label vector. The loss func-

tion can be calculated as:

Q = L
(
Y ,WT B

)
+ λ ‖W‖2F

=
N∑

i=1

L
(
yi ,W

Tbi
)

+ λ ‖W‖2F , (5)

where L (·) is the loss function, λ is the regularization param-
eter, ‖·‖F is the Frobenius norm of a matrix. Combining
Eqs. (3) and (5), we have the following formulation to learn
hash codes:

F = J + μQ

= −
∑

si j∈S

(
si jΦi j − log

(
1 + eΦi j

))

+μ

N∑

i=1

L
(
yi ,W

Tbi
)

+ ν ‖W‖2F , (6)

where μ is the trade-off parameters, ν = λμ.
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3.4 Optimization with l2 Loss

Suppose that we choose l2 loss for the linear classifier, Eq. (6)
can be rewritten as follows:

F = −
∑

si j∈S

(
si jΦi j − log

(
1 + eΦi j

))

+μ

N∑

i=1

∥∥∥yi − WTbi
∥∥∥
2

2
+ ν ‖W‖2F , (7)

where ‖·‖2 is the l2 norm of a vector. The hypothesis for
Eq. (7) is that the learned binary codes should make the pair-
wise label likelihood as large as possible, and at the same time
should be optimal for the jointly learned linear classifier.

The minimization of Eq. (7) is a discrete optimization
problem, which is difficult to optimize directly. There are
several ways to solve this problem. (1) In the training stage,
the sigmoid or tanh activation function is utilized to replace
the ReLU function after the last fully connected layer, and
then the continuous outputs are used as a relaxation of the
hash codes. In the testing stage, the hash codes are obtained
by applying a thresholding function on the continuous out-
puts. One limitation of this method is that the convergence
of the algorithm is slow. Besides, there will be a large quan-
tization error. (2) The sign function is directly applied after
the outputs of the last fully connected layer, which constrains
the outputs to be binary variables strictly. However, the sign
function is non-differentiable, which is difficult to back prop-
agate the gradient of the loss function.

Because of the discrepancy between the Euclidean space
and the Hamming space, it would result in suboptimal hash-
ing codes if one totally ignores the binary constraints. Similar
to Shen et al. (2015), we emphasize that it is essential to keep
the discrete nature of binary codes. Note that in our formula-
tion, we constrain the outputs of the last layer of the CNN to
be binary codes directly, thus Eq. (7) is difficult to optimize
directly. Similar to Yao et al. (2016), Wang et al. (2016) and
Li et al. (2016b), we solve this problem by introducing an
auxiliary variable. Then we approximate Eq. (7) as:

F = −
∑

si j∈S

(
si jΨi j − log

(
1 + eΨi j

))

+μ

N∑

i=1

∥∥∥yi − WTbi
∥∥∥
2

2
+ ν ‖W‖2F

s.t . bi=sgn(hi )i , hi ∈ R
K×1, (i=1, ..., N )

(8)

where Ψi j = 1
2hi

T h j . hi (i = 1, ..., N ) can be seen as the
output of the last fully connected layer, which is represented

as:

hi = MTΘ (xi ; θ) + n (9)

where θ denotes the parameters of the previous layers before
the last fully connected layer, Θ (xi ; θ) is the output of the
fully connected layer with respect to the sample xi , M ∈
R4096×K represents the weight matrix, n ∈ RK×1 is the bias
term.

According to the Lagrange multipliers method, Eq. (8)
can be reformulated as:

F = −
∑

si j∈S

(
si jΨi j− log

(
1+eΨi j

))

+μ

N∑

i=1

∥∥∥yi−WTbi
∥∥∥
2

2
+ν ‖W‖2F+η

N∑

i=1

‖bi−sgn(hi )‖22

s.t . bi ∈ {−1, 1}K , (i = 1, ..., N ) (10)

where η is the Lagrange Multiplier. Equation (10) can be
further relaxed as:

F = −
∑

si j∈S

(
si jΨi j − log

(
1 + eΨi j

))

+μ

N∑

i=1

∥∥∥yi − WTbi
∥∥∥
2

2
+ ν ‖W‖2F + η

N∑

i=1

‖bi − hi‖22

s.t . bi ∈ {−1, 1}K , (i = 1, ..., N ) (11)

The last term actually measures the constraint violation
caused by the outputs of the last fully connected layer. If
the parameter η is set sufficiently large, the constraint viola-
tion is penalized severely. Therefore the outputs of the last
fully connected layer are forced closer to the binary codes,
which are employed for classification directly. The benefit
of introducing auxiliary variable is that we can decompose
Eq. (11) into three sub optimization problems, which can be
iteratively solved by the alternating optimization method.

First, when fixing bi , W , we have:

∂F

∂hi
= −1

2

∑

j :si j∈S

(
si j − log

(
eΨi j

1 + eΨi j

))
h j

−1

2

∑

j :s ji∈S

(
s ji − log

(
eΨ j i

1 + eΨ j i

))
h j

−2η (bi − hi ) (12)

Then we update parameters M , n and Θ as follows:

∂F

∂M
= Θ (xi ; θ)

(
∂F

∂hi

)T
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∂F

∂n
= ∂F

∂hi
∂F

∂Θ (xi ; θ)
= M

∂F

∂hi
(13)

The gradient will propagate to previous layers by Back Prop-
agation (BP) algorithm (Rumelhart et al. 1988).

Second, when fixing M , n, Θ and bi , we solve W as:

F = μ

N∑

i=1

∥∥∥yi − WTbi
∥∥∥
2

2
+ ν ‖W‖2F (14)

Equation (14) is a least squares problem, which has a closed
form solution:

W =
(
BBT + ν

μ
I

)−1

BY T (15)

where B = {bi }Ni=1 ∈ {−1, 1}K×N , Y = {yi }Ni=1 ∈ R
C×N

Finally, when fixing M , n, Θ and W , Eq. (11) becomes:

F = μ
N∑

i=1

∥∥yi − WTbi
∥∥2
2 + η

N∑

i=1
‖bi − hi‖22

s.t . bi ∈ {−1, 1}K , (i = 1, ..., N )

(16)

In this paper, we use discrete cyclic coordinate descend
method to iteratively solve B row by row:

min
B

∥∥WT B
∥∥2 − 2 Tr

(
BT P

)

s.t . B ∈ {−1, 1}K×N
(17)

where P = WY+ η
μ
H , H = {hi }Ni=1 ∈ R

K×N . Let gTk be the

kth row of B, k = 1, ..., K , B1 be the matrix of B excluding
gk , pT be the kth row of matrix P , P1 be the matrix of P
excluding p, wT be the kth row of matrix W , W1 be the
matrix of W excluding w, then

gk = sgn
(
p − BT

1 W1w
)

(18)

It is easy to see that each bit of the hash codes is computed
based on the pre-learned K − 1 bits B1. We can iteratively
update each bit until the algorithm converges.

3.5 Optimization with Hinge Loss

Similar to Shen et al. (2015), we can also choose hinge loss
for the linear classifier. Comparedwith l2 loss, hinge loss tries
to separate different data samples from a maximum margin
view. If we choose hinge loss for the linear classifier, Eq. (6)

can be rewritten as follows:

F=− ∑

si j∈S
(
si jΦi j− log

(
1+eΦi j

)) +μ
N∑

i=1
ξi+ν ‖W‖2F

s.t . ∀i, c wT
li
bi + yic − wT

c bi ≥ 1 − ξi ,

bi ∈ {−1, 1}K , i = 1, ..., N , c = 1, ...,C

(19)

where li is the category label of xi , ξi is the slack variable.
Equation (19) makes the pairwise label likelihood as large as
possible, and at the same time learns the linear classifier that
can separate data samples from a maximum margin view.

Similar to Sect. 3.4, we introduce an auxiliary variable
and then Eq. (19) can be approximated as:

F=− ∑

si j∈S
(
si jΨi j− log

(
1+eΨi j

)) + μ
N∑

i=1
ξi+ν ‖W‖2F

s.t . ∀i, c wT
li
bi + yic − wT

c bi ≥ 1 − ξi ,

bi=sgn (hi ) , hi ∈ R
K×1, i=1, ..., N , c=1, ...,C

(20)

According to the Lagrange multipliers method, Eq. (20) can
be relaxed as:

F = − ∑

si j∈S
(
si jΨi j − log

(
1 + eΨi j

)) + μ
N∑

i=1
ξi

+ ν ‖W‖2F + η
N∑

i=1
‖bi − hi‖22

s.t . ∀i, c wT
li
bi + yic − wT

c bi ≥ 1 − ξi ,

bi ∈ {−1, 1}K , i = 1, ..., N , c = 1, ...,C

(21)

There are totally three unknown parts in Eq. (21), which can
be divided into three sub optimization problems and itera-
tively solved using the alternating optimization method.

First, when fixing bi , W , we have:

∂F

∂hi
= −1

2

∑

j :si j∈S

(
si j − log

(
eΨi j

1 + eΨi j

))
h j

−1

2

∑

j :s ji∈S

(
s ji − log

(
eΨ j i

1 + eΨ j i

))
h j

−2η (bi − hi ) (22)

The parameters M , n and Θ can be updated as follows:

∂F

∂M
= Θ (xi ; θ)

(
∂F

∂hi

)T

∂F

∂n
= ∂F

∂hi
∂F

∂Θ (xi ; θ)
= M

∂F

∂hi
(23)
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Second, when fixing M , n, Θ and bi , Eq. (21) becomes:

F = μ
N∑

i=1
ξi + ν ‖W‖2F

s.t . ∀i, c wT
li
bi + yic − wT

c bi ≥ 1 − ξi ,

i = 1, ..., N , c = 1, ...,C

(24)

Equation (24) is actually a multi-class Support Vector
Machine problem, which can be efficiently solved by many
algorithms (Hsu and Lin 2002).

Finally, when fixing M , n, Θ and W , Eq. (21) becomes:

F = η
N∑

i=1
‖bi − hi‖22

s.t . ∀i, c wT
li
bi + yic − wT

c bi ≥ 1 − ξi ,

bi ∈ {−1, 1}K , i = 1, ..., N , c = 1, ...,C

(25)

According to the Lagrange multipliers method, Eqn (25) can
be rewritten as:

F = η
N∑

i=1
‖bi − hi‖22

− γ
N∑

i=1

C∑

c=1

(
wT
li
bi + yic − wT

c bi − 1 + ξi ,
)

s.t . bi ∈ {−1, 1}K
(26)

where γ is the regularization parameter.Minimizing Eq. (26)
is equivalent to maximizing the following equation:

N∑

i=1

(
bTi

(
hi + γ

2η

C∑

c=1

(
wli − wc

)))

s.t . bi ∈ {−1, 1}K
(27)

From Eq. (27), we can easily obtain the final solution for bi
as:

bi = sgn

(

hi + γ

2η

C∑

c=1

(
wli − wc

)
)

(28)

The whole algorithm is summarized in Algorithm 1.

3.6 Relation to PreviousWorks

Our method is inspired by recent advances in deep hashing
methods (Xia et al. 2014; Lai et al. 2015; Li et al. 2016b;
Wang et al. 2016) and discrete hashing methods (Kang et al.
2016; Shen et al. 2015; Gui et al. 2016). Among the above
methods, DPSH (Li et al. 2016b) and SDH (Shen et al. 2015)
are the most similar ones. It is worthwhile to mention the
difference between these methods and our method.

First, we will discuss the difference between SDH and our
method. SDH also insists that the optimal hash codes should

Algorithm 1 Deep Supervised Discrete Hashing (DSDH).
Input:

The set of training images X ∈ R
d×N , and their training labels

Y ∈ R
C×N ;

Hash code length K ;
Total epoch number T ;
Batch size M ;

1: for epoch = 1, 2, ..., T do
2: Randomly permute training images X ;
3: for i ter = 1 : round(N/M) − 1 do
4: SampleM data points sequentially from X to construct amini-

batch;
5: Calculate the gradient according to Eqs. (12) or (22), and then

update the network parameters according to Eqs. (13) or (23);
6: Update the classifier weightW according to Eqs. (15) or (24);
7: Update the hash code B according to Eqs. (18) or (28);
8: end for
9: end for
Output:

Parameters of the deep convolution neural network.

be ideal for classification. However, the pairwise label infor-
mation and deep learned features are not exploited in SDH.
There is also a simple variant of SDH, whose inputs are the
learned features extracted bydeepCNN.Onedrawbackof the
simple combination of deep CNN and SDH is that it contains
two separate learning processes. Compared with the straight-
forward combination of deep CNN and SDH, our method is
an end to end learning framework. The learned hashing codes
can be used to guide the learning of image representations,
and the learned image representations can give feedback for
learning better hash codes. Experimental results have also
shown that our method outperforms the simple combination
of deep CNN and SDH by a large margin.

Our work also has some relationships with DPSH. One
major difference is that the learned binary codes are ideal
for classification in our method. Thus a linear classifier is
exploited to guide both the feature learning and hash coding
procedure. Besides, we constrain the outputs of the last layer
to be binary codes, which aims to reduce the quantization
error directly. Note that our method is not restricted to the
pairwise label information. Other constraints, such as the
triplet ranking information, can also be incorporated into our
method easily. In the following, we will briefly illustrate how
to utilize the triplet ranking information to generate hash
codes under our framework.

Given N training images X = {xi }Ni=1 withU triplet labels
T = {(

xau , x p
u , xnu

)| u = 1, 2, ...,U
}
, where xau denotes

the anchor image, x p
u denotes the positive image and xnu

denotes the negative image. Suppose that the inner prod-
uct of hash codes is Φi j = 1

2b
T
i b j , similar to Eq. (2), we

can define the conditional probability p
((
xau , x p

u , xnu
) |B)

as: p
((
xau , x p

u , xnu
) |B) = σ

(
Φxau x

p
u

− Φxau x
n
u

− α
)
, where

σ (x) = 1/
(
1 + e−x

)
is the sigmoid function. Then the like-
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lihood function can be summarized as:

p (T |B) =
U∑

u=1

p
((
xau , x p

u , xnu
) |B)

=
U∑

u=1

σ
(
Φxau x

p
u

− Φxau x
n
u

− α
)

(29)

The final objective function becomes:

F = J + μQ

= − log p (T |B) + μL
(
Y ,WT B

)
+ ν ‖W‖2F

= −
U∑

u=1

(
Φxau x

p
u
−Φxau x

n
u
−α− log

(
1+e

Φ
xau x

p
u

−Φxau x
n
u
−α

))

+μ

N∑

i=1

L
(
yi ,W

Tbi
)

+ ν ‖W‖2F (30)

The optimization process of Eq. (30) is similar to Sects. 3.4
and 3.5.

4 Experiments

4.1 Datasets and Experimental Settings

We conduct extensive experiments on the following public
benchmark datasets.

– CIFAR-10CIFAR-10 is a dataset containing 60,000 color
images in 10 classes, and each class contains 6000 images
with a resolution of 32 × 32. The entire dataset is parti-
tioned into a training set with 50,000 images and a test
set with 10,000 images. We follow the previous experi-
mental setting in Lai et al. (2015), Li et al. (2016b) and
Wang et al. (2016). 100 images per class (1000 images
in total) are randomly selected as the test query set. For
unsupervised hashing methods, the rest of all images are
used as the training set. For supervised hashing methods,
500 images per class are chosen (5000 images in total)
as the training set. CIFAR-10 is one of the most popular
datasets for evaluating different hashing methods.

– NUS-WIDE Different from CIFAR-10, NUS-WIDE is
a public multi-label image dataset. There are 269,648
color images in total with 5018 unique tags. Each image
is annotated with one or multiple class labels from the
5018 tags. Similar to Lai et al. (2015), Liu et al. (2011),
Xia et al. (2014) and Zhang et al. (2015), we use a subset
of 195,834 images which are associated with the 21 most
frequent concepts. Each concept consists of at least 5000
color images in this dataset. For NUS-WIDE dataset, we

randomly sample 100 images per class (2100 images in
total) as the test query set. The rest of all images are
used as the training set for unsupervised hashing meth-
ods. While 500 images per class (10,500 images in total)
are further selected as the training set for supervised hash-
ing methods.

– MIRFLICKR MIRFLICKR consists of 25,000 images
downloaded from the social photography site Flickr,
where each image is labeled with at least one of the 38
semantic concepts. Following previous experimental set-
tings (Zhu et al. 2016; Zhang and Peng 2017; Cao et al.
2016), 1000 images are randomly selected as the query
set. The rest of all images are used as the training set
for unsupervised hashing methods. While we randomly
select 5000 images from the rest of the images to form
the training set for supervised hashing methods.

Deep hashingmethods usually needmany training images
to learn the hash function. Thus we also conduct experiments
on CIFAR-10 and NUS-WIDE dataset under a different
experimental setting. In CIFAR-10, 1000 images per class
(10,000 images in total) are selected as the test query set,
the remaining 50,000 images are used as the training set. In
NUS-WIDE, 100 images per class (2100 images in total) are
randomly sampled as the test query images, the remaining
images (193,734 images in total) are used as the training
set. The similar pairs are constructed according to the image
labels: two images will be considered similar if they share
at least one common semantic label. Otherwise, they will be
considered dissimilar.

As for the comparison methods, we roughly divide them
into two groups: traditional hashing methods and deep hash-
ing methods. The compared traditional hashing methods
consist of unsupervised and supervised methods. Unsuper-
vised hashing methods include SH (Weiss et al. 2009),
ITQ (Gong et al. 2013). Supervised hashing methods include
SPLH (Wang et al. 2010), KSH (Liu et al. 2012), FastH (Lin
et al. 2014), LFH (Zhang et al. 2014), and SDH (Shen et al.
2015). The deep hashing methods include CNNH (Xia et al.
2014), NINH (Lai et al. 2015), DSRH (Zhao et al. 2015),
SSDH (Zhang and Peng 2017), DRCSH (Zhang et al. 2015),
DSCH (Zhang et al. 2015), DHN (Zhu et al. 2016), DPSH (Li
et al. 2016b), DTSH (Wang et al. 2016). These methods are
briefly introduced as follows.

– SH (Weiss et al. 2009) SH is a data dependent unsu-
pervised hashing method, which learns hash codes by
thresholding a subset of eigenvectors of the Laplacian of
the similarity graph.

– ITQ (Weiss et al. 2009) ITQ is also a data dependent
unsupervised hashing method. It first projects the data
samples into a low dimensional space by using princi-
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ple component analysis. Then the quantization error is
minimized to learn hash codes.

– SPLH (Wang et al. 2010) SPLH uses linear projection
coupled with mean thresholding as a hash function. It
learns the projection matrix to correct the errors made by
previous one sequentially.

– LSH (Gionis et al. 1999) The basic idea of LSH is
to compute randomized hash functions that guaran-
tee a high probability of collision for similar exam-
ples.

– KSH (Liu et al. 2012) KSH is a kernel-based super-
vised hashing method, which maps the data samples
to compact hash codes by minimizing the Hamming
distances between similar pairs and maximizing the
Hamming distances between dissimilar pairs at the same
time.

– FastH (Lin et al. 2014) A two step learning strat-
egy is employed in FastH, which decomposes the
learning process into the binary code inference and
the simple binary classification training of decision
trees.

– LFH (Zhang et al. 2014)LFH learns similarity-preserving
binary codes based on latent factor models. A linear time
variant with stochastic learning is proposed for training
LFH.

– SDH (Shen et al. 2015) SDH is a supervised hashing
method, which leverages class label information to learn
discrete hash codes.

– CNNH (Xia et al. 2014) CNNH is a two stage deep
hashing methods. It learns hash codes in the first stage,
and then train the deep neural networks in the second
stage.

– NINH (Lai et al. 2015) NINH learns bitwise hash codes
for images via a carefully designed one stage deep
neural network. Triplet loss is designed to measure
the ranking information and preserve relative similari-
ties.

– SSDH (Zhao et al. 2015) A deep neural network with
online graph construction strategy is used to make full
use of unlabeled data. Both the semi-supervised loss
function and the supervised loss function are used tomin-
imize the embedding error on the labeled and unlabeled
dataset.

– DRSCH (Zhao et al. 2015) DRSCH is also a triplet based
deep hashing method, which utilizes triplet loss func-
tion to maximize the margin between matched pairs and
mismatched pairs in the Hamming space. A Laplacian
regularization term is also introduced to enforce the adja-
cency consistency.

– DSRH (Zhao et al. 2015) DSRH is one simplified vari-
ant of DRSCH by removing the Laplacian regularization
term.

– DHN (Zhu et al. 2016) DHN learns hash codes in
a Bayesian learning framework, which simultaneously
optimizes the pairwise cosine loss on semantic similarity
pairs and the product quantization loss on compact hash
codes.

– DPSH (Li et al. 2016b)DPSHsimultaneously learns hash
codes and image featurewith the pairwise labels. It is also
an end-to-end hashing memthod.

– DTSH (Wang et al. 2016) DTSH utilizes the triplet labels
to simultaneously learn hash codes and image features. It
directly learns hash codes by maximizing the likelihood
of the given triplet labels.

In order to have a fair comparison with traditional hash-
ing methods, both the hand-crafted features and the features
extracted by CNN-F network architecture are used as the
input for traditional hashing methods. Similar to previous
works, the handcrafted features include a 512-dimensional
GIST descriptor to represent images of CIFAR-10 dataset
and MIRFLICKR dataset, and a 1134-dimensional feature
vector to represent images of NUS-WIDE dataset.

As for deep hashing methods, the images are resized to
be a resolution of 224× 224 firstly. Then the raw image pix-
els are used as the input for different hashing methods. Note
that DPSH, DTSH and DSDH are based on the CNN-F net-
work architecture, while DQN, DHN, DSRH are based on
AlexNet architecture. Both the CNN-F network architecture
and AlexNet architecture consist of five convolutional lay-
ers and two fully connected layers. In order to have a fair
comparison, most of the results are directly reported from
previous works (Li et al. 2016b; Zhang and Peng 2017; Zhu
et al. 2016; Cao et al. 2016), and for the other methods, we
re-run the codes provided by the authors, and try our best to
tune the parameters. The parameters of our algorithm are set
based on the standard cross-validation procedure. μ, ν and η

in Eq. (11) are set to 1, 0.1 and 55, respectively. The mini-
batch size is fixed to be 128, and the learning rate is tuned
from 10−2 to 10−6 with a step size of 20.

Similar to Lai et al. (2015), we adopt the widely used eval-
uation metrics to evaluate the image retrieval quality: Mean
Average Precision (MAP) for different number of bits, pre-
cision curves within Hamming distance 2, precision curves
with different number of top returned samples, precision
within top 500 retrieved samples and precision-recall curves.
These evaluation metrics are defined as follows.

– Mean Average Precision (MAP) MAP is an indicator of
the overall performance of hash functions. Specifically,
given a query point q, its average precision (AP) can be
calculated as:

AP = 1

l

R∑

r=1

pq (r) δq (r) (31)
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where l is the number of ground-truth neighbors of the
query sample, pq (r) denotes the precision at cutoff r
for the ranking list, δq (r) indicates whether the r -th data
item is relevant to the query sample. Then given Q query
samples, the Mean Average Precision is defined as:

MAP = 1

Q

Q∑

i=1

AP (qi ) (32)

where Q is the number of query samples.
– Precision curveswithHamming distance 2 It is computed
as the precision curve of returned images in the buckets
that fall within the Hamming radius 2 of the query image.

– Precision curves with different number of top returned
samples The percentage of true neighbors among the
top k retrieved images. This metric is averaged over all
queries.

– precision within top 500 retrieved samples The average
precision of the top 500 returned images for each query.

– Precision recall curves The precisions at certain levels of
recall. It is a good indicator of the overall performance
of different algorithms.

SinceNUS-WIDEdataset contains a large amount of images,
when computingMAP forNUS-WIDE dataset under the first
experimental setting, we only consider the top 5000 returned
neighbors. While we consider the top 50,000 returned neigh-
bors under the second experimental setting for this dataset.

4.2 Empirical Analysis

In order to verify the effectiveness of our method, several
variants of our method are also proposed. First, we only
consider the pairwise label information while neglecting the
classification information in Eq. (6), which is named DSDH-
A (similar to Li et al. 2016b). Then we design a two-stream
deep hashing algorithm to learn the hash codes. One stream is
designed based on the pairwise label information in Eq. (3),
and the other stream is constructed based on the classifica-
tion information. These two streams share the same image
representations except for the last fully connected layer. We
denote this method as DSDH-B. Besides, we also design
another approach directly applying the sign function after
the outputs of the last fully connected layer in Eq. (7), which
is denoted as DSDH-C. The loss function of DSDH-C can
be represented as:

F = − ∑

si j∈S

(
si jΨi j− log

(
1+eΨi j

))

+ μ
N∑

i=1

∥∥∥yi−WT hi
∥∥∥
2

2
+ν ‖W‖2F + η

N∑

i=1
‖bi − sgn (hi )‖22,

s.t . hi ∈ RK×1, (i = 1, ..., N )

(33)

Then we use the alternating minimization method to
optimizeDSDH-C.Wedenote ourmethod asDSDH-l2 (opti-

mization with l2 loss) and DSDH-hinge (optimization with
hinge loss). Besides, we also design a deep supervised hash-
ing algorithm with the triplet ranking information, which is
named DSDH-triplet. Our algorithm with the triplet rank-
ing information and l2 loss based linear classifier is denoted
as DSDH-triplet-l2. Similarly, the triplet ranking informa-
tion and hinge loss based linear classifier is represented as
DSDH-triplet-hinge.

The results of different methods on CIFAR-10 under the
first experimental setting are shown in Fig. 2. From Fig. 2
we can see the following information. (1) The performance
of DSDH-C is better than DSDH-A. DSDH-B is better than
DSDH-A in terms of precision with Hamming radius 2 and
precision-recall curves. More information is exploited in
DSDH-C than in DSDH-A, which demonstrates the clas-
sification information is helpful for learning the hash codes.
(2) The improvement of DSDH-C overDSDH-A ismarginal.
The reason is that the classification information in DSDH-
C is only used to learn the image representations, which is
not fully exploited. BothDSDH-triplet-l2 andDSDH-triplet-
hinge perform better than DSDH-triplet, which indicates the
effectiveness of our algorithm with the triplet ranking infor-
mation. (4) DSDH-l2 and DSDH-hinge achieve a similar
performance under the one stream classification framework.
Due to the violation of the discrete nature of hash codes,
DSDH-C suffers from a large quantization loss. Note that
both DSDH-l2 and DSDH-hinge beat DSDH-B and DSDH-
C by a large margin.

Both the semantic information part and the classification
information part play an important role in our algorithm.
Our algorithm with the pairwise label information usually
achieves a more satisfied result than with the triplet ranking
information. As for the classification part, both l2 loss and
hinge loss based linear classifier achieve a similar retrieval
performance with limited training samples. However, if we
have more training images, the large margin based linear
classifier usually performs better than the l2 loss based linear
classifier in our algorithm.

4.3 Results on CIFAR-10 Dataset

TheMAP results of all methods on CIFAR-10 under the first
experimental setting are listed in Table 2. From Table 2 we
can see that DSDH-l2 and DSDH-hinge achieve a similar
performance on this dataset due to the usage of classifi-
cation information. Both of them substantially outperform
the traditional hashing methods. The average MAP result of
DSDH-l2 is 0.787, and the average MAP result of DSDH-
hinge is 0.790, which is slightly better than DSDH-l2. Both
of them are more than twice as much as SDH, FastH and
ITQ. Due to the random sampling strategy, DSDH-triplet-l2
and DSDH-triplet-hinge perform inferior than DSDH-l2 and
DSDH-hinge. However, they still perform better than most
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Fig. 2 The results of DSDH-A, DSDH-B, DSDH-C and DSDH on CIFAR-10 dataset: a precision curves within Hamming radius 2; b precision
curves with respect to different number of top returned images; c precision-recall curves of Hamming ranking with 48 bits

Table 2 MAP for different methods on CIFAR-10 dataset under the
first experimental setting

Method CIFAR-10
12 bits 24 bits 32 bits 48 bits

DSDH-l2 0.740 0.786 0.801 0.820

DSDH-hinge 0.751 0.785 0.801 0.822

DSDH-triplet-l2 0.720 0.763 0.774 0.780

DSDH-triplet-hinge 0.710 0.772 0.775 0.785

DPSH 0.713 0.727 0.744 0.757

DHN 0.555 0.594 0.603 0.621

DTSH 0.710 0.750 0.765 0.774

NINH 0.552 0.566 0.558 0.581

CNNH 0.439 0.511 0.509 0.522

FastH 0.305 0.349 0.369 0.384

SDH 0.285 0.329 0.341 0.356

KSH 0.303 0.337 0.346 0.356

LFH 0.176 0.231 0.211 0.253

SPLH 0.171 0.173 0.178 0.184

ITQ 0.162 0.169 0.172 0.175

SH 0.127 0.128 0.126 0.129

of the other hashing algorithms. We believe with a much
more efficient sampling strategy, the performance of DSDH-
triplet-l2 and DSDH-triplet-hinge can be further improved.
Besides, most of the deep hashing methods perform better
than the traditional hashing methods. In particular, DTSH
achieves the best performance among all the other meth-
ods exceptDSDH-l2 andDSDH-hinge onCIFAR-10 dataset.
Compared with DTSH, our method further improves the per-
formance by 3–6%. These results verify that learning the
hash function and classifier within one stream framework
can boost the retrieval performance.

Figure 3 further shows: (a) precision curves with Ham-
ming radius 2; (b) precision curves with different number
of top returned images when the 48 bits hash codes are

used; (c) precision-recall curves of Hamming ranking with
48 bits hash codes on CIFAR-10 dataset under the first
experimental setting. From Fig. 3 we can see that, similar
messages are conveyed through this figure as observed in
Table 2. Deep hashing methods have shown superior perfor-
mance over traditional hashingmethods in terms of precision
curves with Hamming radius 2, precision curves with dif-
ferent number of top returned images and precision-recall
curves. Both DSDH-triplet-l2 and DSDH-triplet-hinge per-
form better than most of the other hashing algorithms due to
the combination of the triplet ranking information and classi-
fication information.Among all of the deep hashingmethods,
both DSDH-hinge and DSDH-l2 perform more favorably
against others on this dataset.

Deep hashing methods usually need more training images
to learn the hash function. In order to have a fair comparison,
we further compare with other deep hashing methods under
the second experimental setting, which contains more train-
ing images. Table 3 lists MAP results for different methods
under the second experimental setting. As shown in Table 3,
with more training images, most of the deep hashing meth-
ods perform better than in the previous experimental setting.
The average MAP result of DRSCH is 0.624 on CIFAR-10
dataset, and the average MAP results of DPSH and DTSH
are 0.787, 0.922, respectively. The average MAP results
of DSDH-l2 and DSDH-hinge are 0.938, 0.926, respec-
tively. DTSH and DPSH have a significant advantage over
other deep hashingmethods.Ourmethod further outperforms
DTSH and DPSH by 2–10%. Table 3 also shows that DSDH-
hinge is slightly better than DSDH-l2 with more training
images. The reason is that the experimental setting is differ-
ent with the previous one. If there are fewer training images,
the supervised information may play a limited role in learn-
ing the hash codes. Thus DSDH-l2 andDSDH-hinge achieve
a similar performance. However, with more training images,
our method with the hinge loss based linear classifier may
perform better than with the l2 loss based linear classifier.
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Fig. 3 The results of different methods on CIFAR-10 dataset: a precision curves within Hamming radius 2; b precision curves with respect to
different number of top returned images; c precision-recall curves of Hamming ranking with 48 bits

Table 3 MAP for different methods under the second experimental setting

Method CIFAR-10 Method NUS-WIDE
16 bits 24 bits 32 bits 48 bits 16 bits 24 bits 32 bits 48 bits

DSDH-l2 0.935 0.940 0.939 0.939 DSDH-l2 0.815 0.814 0.820 0.821

DSDH-hinge 0.943 0.946 0.946 0.947 DSDH-hinge 0.817 0.819 0.824 0.825

DTSH 0.915 0.923 0.925 0.926 DTSH 0.756 0.776 0.785 0.799

DPSH 0.763 0.781 0.795 0.807 DPSH 0.715 0.722 0.736 0.741

DRSCH 0.615 0.622 0.629 0.631 DRSCH 0.618 0.622 0.623 0.628

DSCH 0.609 0.613 0.617 0.620 DSCH 0.592 0.597 0.611 0.609

DSRH 0.608 0.611 0.617 0.618 DSRH 0.609 0.618 0.621 0.631

The MAP for NUS-WIDE dataset is calculated based on the top 50,000 returned neighbors

4.4 Results on NUS-WIDE Dataset

In this section, we compare with other methods on NUS-
WIDE dataset. The MAP results of different methods are
listed inTable 4. FromTable 4wecan see that the gapbetween
deep hashing methods and traditional hashing methods is not
very large on NUS-WIDE dataset, which is different from
CIFAR-10 dataset. For example, the average MAP result of
SDH is 0.603, while the average MAP result of NINH is
0.700. The MAP results of most of the traditional hashing
methods are larger than 0.5. DTSH achieves the best perfor-
mance among all of the other methods except ours.

Figure 4 further shows: (a) precision curves with Ham-
ming radius 2; (b) precision curves with different number of
top returned images when the 48 bits hash codes are used;
(c) precision-recall curves of Hamming ranking with 48 bits
hash codes on CIFAR-10 dataset under the first experimental
setting. From Fig. 4 we can see that DHN is slightly better
than NINH and CNNH due to the joint optimization of pair-
wise cross entropy loss and quantization loss. Our method
achieves a similar performance with DPSH and DTSH. Note
that Fig. 4a shows precisions with Hamming radius 2 using
hash lookup. Precisions of DSDH-l2 and DSDH-hinge are
slightly inferior to DTSH on 24 bits or 48 bits. The possi-
ble reason is that the Hamming space becomes increasingly

Table 4 MAP for different methods on NUS-WIDE dataset under the
first experimental setting

Method NUS-WIDE
12 bits 24 bits 32 bits 48 bits

DSDH-l2 0.776 0.808 0.820 0.829

DSDH-hinge 0.772 0.809 0.819 0.832

DPSH∗ 0.752 0.790 0.794 0.812

DHN 0.708 0.735 0.748 0.758

DTSH 0.773 0.808 0.812 0.824

NINH 0.674 0.697 0.713 0.715

CNNH 0.611 0.618 0.625 0.608

FastH 0.621 0.650 0.665 0.687

SDH 0.568 0.600 0.608 0.637

KSH 0.556 0.572 0.581 0.588

LFH 0.571 0.568 0.568 0.585

SPLH 0.568 0.589 0.597 0.601

ITQ 0.452 0.468 0.472 0.477

SH 0.454 0.406 0.405 0.400

The MAP for NUS-WIDE dataset is calculated based on the top 5000
returned neighbors. DPSH∗ denotes re-running the code provided by
the authors of DPSH

sparse when hash codes become longer, and very few data
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Fig. 4 The results of different methods on NUS-WIDE dataset: a precision curves within Hamming radius 2; b precision curves with respect to
different number of top returned images; c precision-recall curves of Hamming ranking with 48 bits

points fall within the Hamming ball with radius 2 in our
method.

Both DSDH-l2 and DSDH-hinge are slightly superior to
DTSH in terms of the MAP results on NUS-WIDE dataset.
The main reasons are that there exists more categories in
NUS-WIDE than CIFAR-10, and each of the image contains
multiple labels. Compared with CIFAR-10, there are only
500 images per class for training, which may not be enough
for DSDH-l2 and DSDH-hinge to learn the multi-label clas-
sifier. Thus the second term in Eq. (6) plays a limited role to
learn a better hash function. In the following, we will show
that our method achieves a better performance than other
deep hashing methods with more training images per class
for the multi-label dataset.

Similar to Sect. 4.3, we also compare with other deep
hashing methods with more training images under the sec-
ond experimental setting on NUS-WIDE dataset. Table 3
lists MAP results for different methods on this dataset. With
more training images, deep hashing methods perform bet-
ter. The average MAP results of DSRH, DSCH and DRSCH
are 0.620, 0.602 and 0.623, respectively. Similar with pre-
vious experimental results, the results of DPSH and DTSH
are better than DSRH, DSCH and DRSCH. DSDH-l2 and
DSDH-hinge further improve the retrieval performance by
5% in terms of the average MAP result. Note that with
more training images, DSDH-hinge also performs better than
DSDH-l2, which is consistent with previous experimental
results on CIFAR-10 dataset.

4.5 Results onMIRFLICKR Dataset

In this section, MIRFLICKR dataset is used to evaluate
different hashing methods. MIRFLICKR is also a multi-
label dataset, which contains more semantic concepts than
NUS-WIDE dataset. In the previous experimental setting,
different deep hashingmethods have different network struc-
tures (DPSH, DTSH and DSDH are based on the CNN-F
network architecture, while DQN, DHN, DSRH are based

Table 5 MAP for different methods on MIRFLICKR dataset

Method MIRFLICKR
12 bits 24 bits 32 bits 48 bits

DSDH-l2 0.795 0.821 0.825 0.829

DSDH-hinge 0.798 0.815 0.819 0.825

SSDH 0.773 0.779 0.778 0.778

DRSCH 0.741 0.741 0.737 0.728

NINH 0.693 0.711 0.718 0.709

CNNH 0.667 0.688 0.654 0.626

SDH 0.595 0.601 0.608 0.605

ITQ 0.576 0.579 0.579 0.580

SH 0.561 0.562 0.563 0.562

LSH 0.557 0.564 0.562 0.569

The results of CNNH, DRSCH, NINH and SSDH are directly reported
from Zhang and Peng (2017)

on AlexNet architecture). Although CNN-F network archi-
tecture and AlexNet architecture have similar components:
five convolutional layers and two fully connected layers, they
may have different influences on the final retrieval perfor-
mance. Thus in this section, we choose CNN-F network as
the basic structure and re-run the source codes of different
deep hashing methods, which eliminates the influence of dif-
ferent network structures.

The results of different methods on MIRFLICKR dataset
are listed in Table 5. As shown in Table 5, SH, LSH and ITQ
achieve similar performance. The average result of SDH out-
performs SH, LSH and ITQ by about 3%. While most of the
deep hashing methods achieve better results than traditional
hashingmethods. The averageMAP result of NINH is 0.708,
which is better than CNNH (0.659). DRSCH improves the
performance by about 2–5%.While SSDH further beats them
due to the large scale semi-supervised information. Note that
although SSDH is a semi-supervised deep hashing method,
it makes use of the labeled dataset. The meaning of semi-
supervised mainly refers to the usage of unlabeled dataset
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Fig. 5 The results of different methods onMIRFLICKR dataset: a precision curves within top 500 retrieved samples with respect to different length
of hash codes; b precision curves with respect to different number of top returned images; c precision-recall curves of Hamming ranking with 48
bits

Table 6 MAP for different traditional hashing methods with deep learned features under the first experimental setting

Method CIFAR-10 NUS-WIDE MIRFLICKR
12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

DSDH-l2 0.740 0.786 0.801 0.820 0.776 0.808 0.820 0.829 0.795 0.821 0.825 0.829

DSDH-hinge 0.751 0.785 0.801 0.822 0.772 0.809 0.819 0.832 0.798 0.815 0.819 0.825

FastH + CNN 0.553 0.607 0.619 0.636 0.779 0.807 0.816 0.825 0.750 0.785 0.800 0.809

SDH + CNN 0.478 0.557 0.584 0.592 0.780 0.804 0.815 0.824 0.695 0.704 0.697 0.708

KSH + CNN 0.488 0.539 0.548 0.563 0.768 0.786 0.790 0.799 0.753 0.760 0.761 0.758

LFH + CNN 0.208 0.242 0.266 0.339 0.695 0.734 0.739 0.759 0.610 0.625 0.623 0.630

ITQ + CNN 0.237 0.246 0.255 0.261 0.719 0.739 0.747 0.756 0.648 0.654 0.652 0.652

SH + CNN 0.183 0.164 0.161 0.161 0.621 0.616 0.615 0.612 0.603 0.595 0.590 0.588

during hash coding. Actually, SSDH uses more information
than other deep hashing methods. The average MAP results
of DSDH-l2 and DSDH-hinge are 0.818 and 0.814, respec-
tively. DSDH-l2 outperforms SSDH by large margin of 2, 4,
5, 5% in MAP with different code length, and DSDH-hinge
outperforms SSDH by large margin of 2, 4, 4, 5% in MAP
with different code length. Both of them achieve a better
performance than previous deep hashing methods.

Figure 5 further shows: (a) precision curves within top
500 retrieved samples with respect to different lengths of
hash codes; (b) precision curves with respect to different
number of top returned images; (c) precision-recall curves
of Hamming ranking with 48 bits. As shown in Fig. 5a,
both DSDH-l2 and DSDH-hinge achieve over 88% preci-
sion on all code lengths, which shows a clear advantage over
SSDH and other state-of-the-art methods. Figure 5b illus-
trates that our method achieves over 90% search accuracy
when the number of retrieved results increases. Figure 5c
further shows precision recall curves of different methods,
which also shows the clear advantage of our methods over
other hashing methods. On all the evaluation metrics, it can
be observed that both DSDH-l2 and DSDH-hinge outper-
form other state-of-the-art methods, which shows the benefit

of unifying the pairwise label information and the classifica-
tion information.

4.6 Comparison with Traditional HashingMethods

In order to have a fair comparison, we also compare with
traditional hashing methods using deep learned features
extracted by the CNN-F network. The deep learned features
are extracted from the second fully connected layer of the
pre-trained CNN-F network, which contains a 4096 dimen-
sional feature descriptors. The results of traditional hashing
methods using deep learning features are denoted as FastH +
CNN, SDH +CNN, KSH +CNN, LFH + CNN, ITQ + CNN,
and SH + CNN. The MAP results of different methods on
CIFAR-10, NUS-WIDE andMIRFLICKR datasets are listed
in Table 6.

As shown in Table 6, most of the traditional hashingmeth-
ods obtain a better retrieval performance using deep learned
features. The average MAP results of FastH and SDH with
traditional handcrafted features on CIFAR-10 dataset are
0.352 and 0.328, respectively.While the averageMAP results
of FastH + CNN and SDH + CNN on CIFAR-10 dataset
are 0.604 and 0.553, respectively. Benefiting from the one
stream framework, the averageMAP result of our method on
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CIFAR-10 dataset is 0.787,which outperforms the traditional
hashing methods with deep learned features substantially.
Note that NUS-WIDE dataset is a multi-label dataset, and
the semantic information of the images from this dataset is
more ambiguous than MIRFLICKR dataset. The proposed
methods achieve a comparable performance with the best
traditional hashing methods with deep learned features on
NUS-WIDE dataset.While both DSDH-l2 and DSDH-hinge
outperform other methods substantially on CIFAR-10 and
MIRFLICKR datasets. This experiment further shows the
enormous advantage of the proposed methods.

4.7 DSDHwith Different Backbone Networks

Most of the existing hashing methods adopt CNN-F network
architecture or AlexNet network architecture as backbone
networks. Our algorithm is conducted based on CNN-F net-
work architecture in previous experiments. In this section,
we choose AlexNet network architecture as the backbone
and compare with several hashing methods which use the
same network architecture: GreedyHash (Su et al. 2018)
and PQN (Yu et al. 2018). We denote our method, which
use AlexNet network architecture, as DSDH-l2-alexnet and
DSDH-hinge-alexnet.

We conduct experiments on CIFAR-10 dataset under the
first experimental setting. Experimental results are shown in
Table 7. From Table 7, we can see that our algorithm with
AlexNet network architecture performs slightly better than
with CNN-F network architecture, although both of them
have five convolutional layers and two fully connected lay-
ers. DSDH-hinge-AlexNet achieves the highest MAP results
among all of the algorithms listed in Table 7. Compared with
DSDH-hinge, it further improves the retrieval performance
about 2% in terms of MAP. Similar results can be observed
with DSDH-l2-alexnet and DSDH-l2.

Besides, we have also compared with GreedyHash and
PQN on CIFAR-10 dataset. The comparison results are also
presented in Tables 7 and 8. As shown in Tables 7 and 8,
although GreedyHash performs better than DSDH-l2 and
DSDH-hinge, we can achieve comparable results if DSDH-
l2 use AlexNet as the backbone.While DSDH-hinge-alexnet
also performs better than GreedyHash. For example, the
average MAP results of GreedyHash is 0.800 under the
first experimental setting, while the average MAP results of
DSDH-hinge-alexnet is 0.810. The average MAP results of
GreedyHash is 0.943 under the second experimental setting,
while the average MAP results of DSDH-hinge-alexnet is
0.949. Considering the MAP results are nearly saturate, it
is a relatively large improvement. From Table 8 we can see
that, PQN performs slightly better than DSDH-l2, and it is
comparable with DSDH-hinge. If our algorithm also uses
AlexNet as the backbone, we can achieve a comparable or
slightly better performance than PQN.

Table 7 MAP for different methods with AlexNet network architecture
on CIFAR-10 dataset under the first experimental setting

Method CIFAR-10
12 bits 24 bits 32 bits 48 bits

DSDH-l2 0.740 0.786 0.801 0.820

DSDH-hinge 0.751 0.785 0.801 0.822

GreedyHash 0.774 0.795 0.810 0.822

DSDH-l2-AlexNet 0.786 0.809 0.810 0.822

DSDH-hinge-AlexNet 0.787 0.808 0.814 0.830

DSDH-l2-VGG 0.867 0.871 0.873 0.881

DSDH-hinge-VGG 0.845 0.857 0.857 0.853

Table 8 MAP for different methods with AlexNet network architecture
on CIFAR-10 dataset under the second experimental setting

Method CIFAR-10
16 bits 24 bits 32 bits 48 bits

DSDH-l2 0.935 0.940 0.939 0.939

DSDH-hinge 0.943 0.946 0.946 0.947

GreedyHash 0.942 0.943 0.943 0.944

PQN 0.947 0.947 0.946 0.947

DSDH-l2-alexnet 0.940 0.942 0.942 0.943

DSDH-hinge-alexnet 0.948 0.949 0.949 0.950

DSDH-l2-VGG 0.959 0.959 0.952 0.969

DSDH-hinge-VGG 0.942 0.969 0.971 0.970

Usually, using deeper network as the backbone can
improve accuracy of different hashing methods. Since pre-
vious hashing methods also used VGG-16 network as their
backbone (Yelamarthi et al. 2018; Yang et al. 2019), we also
test our method with VGG-16 network (Simonyan and Zis-
serman 2015). We denote our method with VGG-16 network
as DSDH-l2-VGG and DSDH-hinge-VGG. The experimen-
tal results are shown in Tables 7 and 8. As shown in the tables,
our algorithm with VGG-16 network can improve the per-
formance more than 5% in average compared with AlexNet
network on CIFAR-10 dataset under the first experimental
setting. While due to the saturate performance, our algo-
rithm with VGG-16 network can improve the performance
more than 1% in average compared with AlexNet network
on CIFAR-10 dataset under the second experimental setting.

4.8 Parameter Sensitivity

In this section, the impact of different parameters on our
method is evaluated. There are totally three parameters in
both DSDH-l2 and DSDH-hinge, i.e., μ, ν and η. They are
set to 1, 0.1 and 55 in all the experiments. μ is the weighting
parameter of the classification term. ν is the coefficient of
the classification regularization term, and η is the weighting
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parameter of the quantization loss term. In this section, we
will tune these parameters and see the effects of these parame-
ters on ourmethod. First, we fix η and report the performance
when μ and ν are changing. Then we fix μ and ν, and report
the performance when η is changing. The results on cifar-
10 under the first experimental setting are shown in Fig. 6.
As shown in Fig. 6, although the performance of DSDH-l2
and DSDH-hinge varies when the parameters are changing,
these variations are relatively small. We can obtain a better
performance when μ = 1, ν = 0.1 and η = 55. Note that
we haven’t searched the optimal parameters exhaustively.
We just tune the parameters by cross validation and choose
suitable ones. Besides the optimal value, we can vary the
parameters to achieve a satisfactory performance.

Because μ controls the weight of the classification term,
a small value cannot make full of the classification infor-
mation, and a large value will lead to over emphasizing
the classification information while neglecting the pairwise
similarity term. Thus a suitable value for μ can achieve a
satisfactory. We also observe parameter ν controls the classi-
fication regularization term, so that a proper value is needed.
Besides, η is also a very important parameter which controls
the quantization loss, an appropriate value can boost the final
performance.

4.9 Efficiency Analysis

We evaluate the testing time of different hashing methods in
this section. All of the experiments are conducted on a PC
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Fig. 6 Performance variation with respect to different parameters on
CIFAR-10 dataset. The first row is performance variation with respect
toμ and ν when we fix η. The second row is performance variation with
respect to η when we fix μ and ν. a, c DSDH-l2. b, d DSDH-hinge

Table 9 Comparison of the testing time (millisecond per image) on
three benchmark datasets by fixing the hash code length at 48

Method CIFAR-10 NUS-WIDE MIRFLICKR

DSDH-l2 2.04 2.21 1.96

DSDH-hinge 2.02 2.19 1.94

DPSH 2.08 2.25 2.02

CNNH 1.99 2.14 1.89

KSH + CNN 2.24 2.47 2.18

LFH + CNN 1.95 2.15 1.91

ITQ + CNN 2.05 2.26 2.01

with a Intel Core 2.6 GHZ CPU and a NVIDIA GTX Titan
Black GPU. We assume all the images have already been
represented bybinary hash codes. Thus the testing timeof dif-
ferent hashing methods is mainly caused by the query image.
Feature extraction, hash code generation and image search
are three key components for the testing time of different
hashing methods. Note that most of the deep hashing meth-
ods are end-to-end frameworks, whose inputs are raw images
pixels. While most of the traditional hashing methods focus
on hash coding, whose inputs are image features. In order
to have a fair comparison, we use deep learned features for
traditional hashing methods, and the CNN-F network archi-
tecture is adopted for different deep hashing methods. We
denote the testing time for different hashing methods as the
summation of time spent on feature extraction, hashing code
generation and image search.

The average testing time of different approaches on three
benchmark datasets are listed in Table 9. From Table 9 we
can see that the computational time formost of the deep hash-
ing methods are similar, which is mainly caused by forward
propagation of the same neural network. We can also see
that deep hashing methods and traditional hashing methods
are comparable with each other in terms of the testing time.
For example, the testing time of DSDH-l2 on NUS-WIDE
dataset is 2.21 millisecond, while the testing time of ITQ
on NUS-WIDE dataset is 2.26 millisecond. Our method is
comparable with most of the hashing methods in terms of the
testing time. Since the testing time of our method consists of
a series of convolution or inner product operations, it can be
further optimized with more advanced GPU devices.

We also show the training cost of our algorithm in Fig. 7.
Although there is no theoretical guarantee to ensure the con-
vergence of our algorithm, it usually converges with less than
100 epochs.

5 Conclusion

In this paper, we have proposed a general deep supervised
discrete hashing framework. Both the similarity informa-
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Fig. 7 The training cost of our algorithm on CIFAR-10 dataset. X-axis
represents the number of epochs, and Y-axis represents the training cost

tion and classification information are used for learning hash
codes under one stream framework. Besides, we constrain
the outputs of the last layer to be binary codes directly,
which is rarely investigated in previous deep hashing meth-
ods. Both pairwise similarity information and triplet ranking
information are exploited. In addition, two different loss
functions: l2 loss and hinge loss are further analyzed.Because
of the discrete nature of hash codes, we derive an alternating
minimization method to optimize the loss function. Exten-
sive experiments have shown that our method outperforms
state-of-the-art methods on three benchmark image retrieval
datasets.
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