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Abstract. Head pose estimation and facial landmark localization are
crucial problems which have a large amount of applications. We propose
a cross-cascading regression network which simultaneously perform head
pose estimation and facial landmark detection by integrating information
embedded in both head poses and facial landmarks. The network con-
sists of two sub-models, one responsible for head pose estimation and the
other for facial landmark localization, and a convolutional layer (channel
unification layer) which enables the communication of feature maps gen-
erated by both sub-models. To be specific, we adopt integral operation
for both pose and landmark coordinate regression, and exploit expecta-
tion instead of maximum value to estimate head pose and locate facial
landmarks. Results of extensive experiments demonstrate that our app-
roach achieves state-of-the-art performance on the challenging AFLW
dataset.
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1 Introduction

Head pose estimation and facial landmark localization have drawn much atten-
tion from computer vision community as they are of great significance and broad
applications in problems such as face verification, face animation, and emotion
recognition.
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Traditionally, head pose estimation and facial landmark localization are
treated as independent problems and seldomly be studied jointly.

Thanks to the development of Deep Convolutional Neural Networks (DCNN),
there has been significant progress on both head pose estimation and facial land-
mark localization [1–3] and recent methods generally adopt DCNN as their main
building blocks. One of the major advantages of DCNN is its capability of per-
forming end-to-end optimization, especially for multitask problems [4] where
related tasks can benefit from each other. Facial landmark detection algorithms
could be roughly classified into two categories, detection based methods and
regression based methods. At present, most best performing methods are detec-
tion based, in which heatmaps indicating the probability of the precense of the
facial landmarks are generated and the exact locations of landmarks are deter-
mined according to maximum likelihood. However, since the operation of tak-
ing maximum value is not differentiable, it breaks the back propagation chain
required for end-to-end learning. Intuitively, head pose estimation and facial
landmark detection are not isolated problems and low-level facial representa-
tions could be shared by the two objectives, thus they attract the attention of
many researchers [5,6].

The motivation of this work is to integrate information from head pose and
facial landmarks for improving the performance of both facial landmark detec-
tion and head pose estimation on arbitrary faces, taking advantages of DCNN.
In this work, we propose a novel network architecture named Cross-Cascading
Regression network which integrates information from both pose and landmarks,
and simultaneously perform head pose estimation and facial landmark detection.
Since our network structure is topological symmetric, we expand a single net-
work module by consecutively appending multiple modules together at the end
which achieves finer prediction.

To overcome the obstacle of non-differentiable operations, we adopt integral
regression [7], and use expectation instead of maximum value to locate land-
marks. The loss of the network consists of two components: classification and
regression.

The proposed method achieves comparable or better results in comparison
with state-of-the-art algorithms on the challenging dataset AFLW [8] for both
head pose estimation and facial landmark detection. With more blocks stacked,
the performance improves significantly.

2 Related Works

In this section, we introduce some related works in facial landmark localization
and head pose estimation. Traditionally, these two problems are addressed as
independent problems.

Facial Landmark Localization. There are two distinct families of methods
for facial landmark localization: detection based and regression based meth-
ods. Detection based methods handle facial landmark detection as a heat map
prediction problem, and many explorations have been made such as stacked
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architectures, residual connections, and multiscale processing. Newell et al. [9]
proposed the Stacked Hourglass Network, which incorporates multi-resolution
features and improves scores on 2D pose estimation challenges significantly. On
the other hand, facial landmark detection is essentially a regression problem.
Typically, regression based methods use cascaded regressors to predict land-
marks’ coordinates directly from intensities of input images. Cao et al. [10] used
a vectorial regression function to infer the whole facial shape from the input.
Xiong et al. [11] proposed a Supervised Descent Method (SDM) for minimiz-
ing a Non-linear Least Squares (NLS) function to optimize the performance of
facial feature detection. Although regression based methods have been widely
used, the performance is still not satisfactory. The idea that using information
from different tasks to constrain the solution space is also a optional approach
to achieve better results. Zhang et al. [5] trained a multi-task network which
optimizes facial landmark detection together with correlated tasks such as head
pose estimation and facial attribute inference. Huang et al. [6] proposed a unified
FCN framework named DenseBox to accomplish landmark localization and face
detection simultaneously. Wu et al. [12] propose an iterative cascade method for
simultaneous facial landmark detection, head pose estimation, and facial defor-
mation analysis.

Head Pose Estimation. Head pose estimation usually serves as a by-product
of facial landmark detection, which means the precision of head pose estimation
is closely related to the accuracy of landmark detection. However, extremely
relevant information can disturb prediction precision. It also fails to make the
utmost of facial information. The research of independent head pose estimation
is rare. Nataniel et al. [3] trained a multi-loss convolutional neural network on
300W-LP to estimate pose directly from input image through joint binned pose
classification and regression.

3 Approach

In this section, we present the technical details of Cross-cascading Regression
Network. The proposed model consists of two sub-networks, which performs head
pose estimation and facial landmark localization simultaneously with intermedi-
ate facial feature sharing. Specifically, the network takes a face image as input,
and outputs heatmaps where each per-pixel indicates the likelihood for loca-
tions of key points. Meanwhile, it outputs three float numbers which indicate
the degrees of yaw, pitch and roll, and a combination of information maps for
further processing.

3.1 Head Pose Estimation

The pose estimation sub-network aims at getting appraisals of three Euler angles
Y , P and R ( Y denotes yaw, P denotes pitch and R denotes roll). Since the
range of head poses is divided into N classes, we adopt a N -way softmax layer at
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Fig. 1. Our cross-cascading regression network consists of head pose estimation sub-
network and facial landmark localization sub-network

the top of the sub-network, generating the probability distribution of the head
pose in the input image over N classes.

Instead of inferring head pose from the estimated landmarks, we directly
predicted intrinsic Y , P , R from image intensities through joint binned pose
classification and regression [3], which avoids irrelevant information damaging
the prediction accuracy so that the module has greater robustness.

For network training, an cross-entropy loss is employed:

Lpc = −
∑

p

yp log ŷp (1)

where yp is the target probability distribution of head pose, and ŷp is the pre-
dicted head pose probability distribution.

Inspired by [3], we also add a regression loss to improve the performance of
head pose prediction, which is the Mean Square Error between the predicted
pose and ground truth. The total loss of pose estimation sub-network is:

Lossp = Lpe + α1Lpc =
3∑

k=1

∥∥∥Qk − Q̂k

∥∥∥
2

+ α1Lpc (2)

where α1 is the balance factor, k indicates the kth pose, Qk and Q̂k refers to the
predicated and ground truth pose, respectively.

The pose estimation sub-network is built upon ResNet50 [13], with three
fully-connected layers appended at the end to predict each angle independently.
Pervious convolutional layers of the backbone network are shared by all of these
fully-connected layers. By enabling back-propagation of the regression results of
head pose angles, network learns to obtain fine-grained pose predictions.

3.2 Facial Landmark Localization

The design of the facial landmark localization sub-network is based on the Hour-
glass Networks [9] which has shown outstanding results on human pose estima-
tion. We adapted the idea to the case of facial landmark localization. The output
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of the sub-network are k heatmaps, and each heatmap Hk indicates the proba-
bility of the presence for the kth key point.

Several convolutional and max pooling layers process the input image down
to a very low resolution (4× 4, for example). At the end of down-sampling oper-
ations, the network begins the top-down sequence of upsampling. In this pro-
cedure, features across different scales are combined together. After reaching
the output resolution, we applied two 1-demention convolutions to get the final
prediction, which is a set of heat maps.

In general, the final joint location coordinate is obtained as the location
with the maximum value in a learnt heatmap. However, obtaining the location
possessing the maximum value is non-differentiable, which breaks down the end-
to-end training framework. On the other hand, since the size of heatmap is
usually smaller than inputs, it also produces quantization error. We modifies the
max operation to operation of taking expectation, formulated as

Jk =
H∑

py=1

W∑

px=1

p · Ĥk(p) (3)

where H and W are the height and width of predicted heatmap Ĥk.
In addition, we adopt the Mean Square Error as a loss function Llc to cal-

culate the loss between predicted heat maps and ground truth, formulated as
follows:

Llc =
M∑

k=1

∥∥∥Hk − Ĥk

∥∥∥
2

(4)

where M indicates the number of landmarks, Ĥk is the predicted heatmap for
the kth landmark.

In a similar way, we added a regression loss to improve the performance
of facial landmark estimation, which is the Mean Square Error of predicted
landmarks and ground truth. The total loss of landmark sub-network is:

Lossl = Lle + α2Llc =
M∑

k=1

∥∥∥Jk − Ĵk

∥∥∥
2

+ α2Llc (5)

where α2 is the balance factor, M indicates the number of landmarks, Jk and
Ĵk are the predicated and ground truth landmark coordinates, respectively.

3.3 Cross Cascading Regression

Inspired by [14], in order to make full use of the information of head pose and
facial landmarks, we design Cross-cascading Regression Network which connects
facial landmark localization and head pose estimation together.

Through several convolutional and max pooling layers, the input image is
processed down to a lower resolution, which is applicable for facial landmark
localization sub-network and head pose estimation sub-network to take as input.



Cross-Cascading Regression for Simultaneous Head Pose Estimation 153

At the same time, after obtaining the predicted head pose, two deconvolutional
layers are added to compute the upsampling features. To match the number of
channels of the facial landmark localization’s output features and the upsam-
pling features, we set a convolutional layer serves as channel unification layer.
With the convolutional layer for channel unification, these feature maps are asso-
ciated together, which enables the communication between head pose and facial
landmark information. The output of head pose estimation sub-network is the
summation of facial landmark heatmaps, the upsampling features and interme-
diate features of head pose estimation sub-network.

We adopt the coarse-to-fine strategy and extend network further by stacking
a block at the end, feeding the combination of information maps achieved by
former block as input into the following. Moreover, to facilitate the efficiency
of information communication, we insert the pose information map into the
intermediate structure of hourglass network in the next block. The structure of
our network is shown in Fig. 1.

Since Cross-cascading Regression Network consists of two sub-networks com-
pleting the head pose estimation and facial landmark localization simultaneously,
the loss function must give consideration to the information of both head pose
and facial key points, which is formulated as follows:

Loss = Lossp + λ · Lossl (6)

where λ indicates the relative importance of the two terms.

4 Experiment

4.1 Dataset

We train our network on AFLW datasets. AFLW is a challenging dataset which
consists of 24386 images of human faces in the wild, with head pose ranging from
0◦ to 120◦ for yaw and up to 90◦ for pitch and roll. It also provides at most 21
key points for each face. In our experiments, we train on a subset of the dataset,
which contains nearly 20000 images, and keep the rest for evaluation. For each
sample image, the facial area is cropped out and then resized into 256× 256 for
normalization.

4.2 Implementation Details

The network is implemented using Pytorch framework. The variance σ of the 2D
Guassians in heatmap is set to 1. For invisible landmarks, the ideal estimations
are defined as 0. During training, the learning rate is fixed to 2.5e−4. Instead of
taking the max activated location as the final prediction, we use the expectations
of the output heatmaps to predict landmarks, and the predicted pose is the
expectation of each output angle computed based on the output classification
features.
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4.3 Evalution Metric

To evaluate a facial landmark localization algorithm, we adopt the widely used
Normalized Mean Error (NME) as the evaluation metric, which can be formu-
lated as follows:

NME =
1
n

n∑

i=1

‖xi − x∗
i ‖2

l
(7)

where l denotes the normalized distance and n is the number of facial landmarks
involved in the evaluation. In our experiment, l is the width (or height) of the
face bounding box which is square for test samples in AFLW, and n indicates
the number of visible landmarks.

4.4 Comparison with State of the Arts

We compare our Cross-cascading Regression network (CCR) with state-of-the-
art head pose estimation and facial landmark detection approaches, results are
shown in Tables 1 and 2. The result shows that our Cross-cascading regression
Network achieves better or comparable performance when compared with state-
of-the-art methods, which justifies the effectiveness of combining pose and land-
mark information explicitly.

Table 1. Mean Average Error (MAE) of Euler angles across different methods on
AFLW.

Methods Yaw Pitch Roll MAE

Multi-loss ResNet50 [3] (α=1) 6.26 5.89 3.82 5.324

Multi-loss AlexNet [3] (α=1) 7.79 7.41 6.05 7.084

KEPLER [1] 6.45 5.85 8.75 7.017

Patacchiola, Cangelosi [15] 11.04 7.15 4.40 7.530

CCR (two blocks stacked) 5.22 5.85 2.51 4.527

Fig. 2. Results of landmark detection and pose estimation generated from Cross-
cascading Regression network. The red axis points towards the front of the face, green
pointing downward and blue pointing to the side. (Color figure online)
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Table 2. Normalized Mean Error (NME) of facial landmark detection across different
methods on AFLW.

Methods NME

CDM [16] 12.44

RCPR [17] 7.85

ESR [10] 8.24

Hyperface [18] 4.26

FRTFA [19] 4.23

PIFA [20] 6.80

CCL [21] 5.85

CCR (two blocks stacked) 5.72

5 Conclusion

In this work, we propose a novel network architecture named Cross-cascading
Regression Network which consists of two sub-networks. The proposed model
performs head pose estimation and facial landmark localization simultaneously
with compact information communication. We extend our network architecture
by stacking multiple blocks end-to-end, feeding the combination of information
maps achieved by former block as input into the next, which achieves a coarse-
to-fine prediction scheme. Our loss function consists of regression loss and classi-
fication loss, and the prediction of pose and landmarks are calculated by binned
results. The proposed method achieves superior, or at least comparable per-
formance in comparison with state-of-the-art methods on challenging datasets
AFLW, which demonstrates the effectiveness of combining information from dif-
ferenct tasks and the significance of cascading.
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