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   Abstract—Cyber-physical  systems  (CPSs)  have  emerged  as  an
essential  area  of  research  in  the  last  decade,  providing  a  new
paradigm for the integration of computational and physical units
in  modern  control  systems.  Remote  state  estimation  (RSE)  is  an
indispensable  functional  module  of  CPSs.  Recently,  it  has  been
demonstrated that malicious agents can manipulate data packets
transmitted through unreliable channels of RSE, leading to severe
estimation performance degradation.  This  paper aims to present
an  overview  of  recent  advances  in  cyber-attacks  and  defensive
countermeasures, with a specific focus on integrity attacks against
RSE.  Firstly,  two representative  frameworks for  the synthesis  of
optimal deception attacks with various performance metrics and
stealthiness  constraints  are  discussed,  which  provide  a  deeper
insight into the vulnerabilities of RSE. Secondly, a detailed review
of  typical  attack  detection  and  resilient  estimation  algorithms  is
included,  illustrating  the  latest  defensive  measures  safeguarding
RSE  from  adversaries.  Thirdly,  some  prevalent  attacks  impair-
ing the confidentiality and data availability of RSE are examined
from both attackers’ and defenders’ perspectives. Finally, several
challenges  and  open  problems  are  presented  to  inspire  further
exploration and future research in this field.
    Index Terms— Cyber-attacks,  Kalman  filtering,  remote  state  esti-
mation, unreliable transmission channels.
  

I.  Introduction

THE last decade has witnessed rapid progress in the devel-
opment of cyber-physical systems (CPSs), which are tight

integrations of computational, networking, and physical com-
ponents.  CPSs  provide  a  general  modeling  framework  that
covers various industrial processes and critical infrastructures,
e.g.,  power  grids [1],  water  distribution  networks [2],  intelli-
gent transportation systems [3], smart medical devices [4], and
industrial  control  systems [5].  The  safe  and  efficient  opera-
tion  of  CPSs  depends  significantly  on  the  reliable  transmis-
sion  of  data  packets,  which  could  be  manipulated  craftily  by
malicious  agents  particularly  if  wireless  networks  are
deployed. Stuxnet is  one  such  well-known  cyber-worm  that
caused  great  damage  to  nuclear  facilities  in  Iran  by  injecting

falsified  control  commands [5].  In  2015,  a  synchronized  and
coordinated  cyber-attack  compromised  three  Ukrainian
regional  electric  distribution  companies,  resulting  in  power
outages  affecting  approximately  225  000  customers  for  sev-
eral  hours [6].  A recent  cyber-attack  that  crippled  the  largest
fuel pipeline in the U.S. and led to energy shortages across the
east  coast  was  another  prominent  example [7].  These  real-
world  incidents  evidently  indicate  the  necessity  and  urgency
to  explore  the  inherent  vulnerabilities  of  CPSs  and  develop
defensive countermeasures against cyber-attacks.

The  security  of  CPSs  can  be  conceptualized  as  comprising
three primary facets in Fig. 1: integrity, availability, and confi-
dentiality.  Correspondingly,  the  cyber-threats  that  undermine
these attributes are respectively termed as false-data injection
(FDI),  denial-of-service  (DoS),  and  eavesdropping  attacks
[8]–[10]. Among these, FDI and DoS attacks have constituted
the  predominant  share  of  real-world  incidents  and  have  been
the central focus of academic research in CPS security for the
past  decade.  In  DoS  attacks,  adversaries  disseminate  noisy
packets  to  obstruct  communication  channels  among  data  ter-
minals, thereby rendering valuable information inaccessible to
the intended recipients [11], [12]. FDI attacks, also referred to
as  integrity  attacks,  demand  more  substantial  resources  for
practical implementation. Adversaries must infiltrate commu-
nication links to alter original packets or insert  falsified data.
In  both  scenarios,  CPS  nominal  performance  undergoes  sig-
nificant  deterioration,  potentially  resulting  in  increased  con-
trol  costs [13],  diminished  state  estimation  quality [14],  and
even  instability  within  closed-loop  systems [15].  Eavesdrop-
ping attacks, while seemingly less intrusive since the attacker’
s actions do not directly impact system performance, can still
have  devastating  consequences  owing to  the  leakage  of  criti-
cal  information [16], [17].  Other  less  frequently  encountered
cyber threats in the industrial realm encompass topology poi-
soning,  load  redistribution,  and  data  framing  attacks [18].
Despite the inevitability of these malicious disruptions, adver-
saries are typically unable to execute uncontrolled attacks due
to  the  countermeasures  employed  by  system  defenders,  such
as  virus  firewalls,  anomaly  detectors,  and  data  encryption
mechanisms [19]–[21].  Moreover,  the  limited  resource  bud-
gets of adversaries and their restricted access to secure infor-
mation also narrow down the spectrum of feasible attack poli-
cies.

Remote  state  estimation  (RSE)  is  an  essential  functional
module  in  CPSs.  The  primary  objective  of  RSE  is  to  derive
estimates  of  physical  processes  based  on  measurements  col-
lected  remotely,  such  as  from  sensors  or  cameras,  without
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necessitating  direct  physical  access.  In  practical  applications,
state  estimates  are  usually  utilized  for  feedback  control  and
operation  status  monitoring,  underscoring  the  pivotal  role  of
RSE in ensuring the safe and efficient operation of industrial
facilities.  Nevertheless,  the  discerption  of  estimators  and
physical units renders it easier for adversaries to launch cyber-
attacks compared to integrated systems. Recently, it has been
demonstrated  in  numerous  publications  that  adversaries  can
manipulate  data  packets  transmitted  through  unreliable  chan-
nels of RSE, resulting in significant degradation of estimation
performance and the leakage of confidential information [22],
[23]. While the field of fault detection and fault-tolerant con-
trol  has  witnessed  the  application  of  effective  algorithms  for
anomaly  detection  and  enhancing  the  resilience  of  physical
systems [24], these methods may fail to defend against cyber-
attacks.  Transmission  or  component  failures  are  usually  con-
sidered as physical events that affect the performance of RSE
in an uncoordinated manner, rendering them relatively easy to
detect.  On  the  contrary,  cyber-attacks  are  ingeniously  desig-
ned by intelligent adversaries, making their detection and mit-
igation a much more challenging task.

In  the  field  of  smart  grids,  Liu et  al. discovered  that  by
introducing falsified data into the sensor channels, it was pos-
sible to greatly amplify the error of least square estimators [1].
Moreover,  this  attack  had  the  capability  to  completely  evade
detection  by  residual-based  bad-data  detectors.  While  their
primary  focus  was  on  least-square  estimators,  this  investiga-
tion  can  be  considered  as  the  pioneering  effort  that  ignited
widespread  research  on  the  vulnerabilities  of  RSE.  The  rele-
vant  investigation  has  been  extended  from  static  systems  in
smart  grids  to  dynamic  ones  in  networked  control  systems.
The estimators that are examined consist of both least square
estimators  and  Luenberger  observers.  In  situations  where  the
process  and  measurement  noises  follow  Gaussian  distribu-
tions,  Kalman filters are typically employed to attain optimal
state  estimates  with  minimal  mean-square  errors.  Recently,
numerous  publications  have  delved  into  the  examination  of
security concerns pertaining to a wide array of topics, includ-
ing  event-triggered  estimators [25]–[27],  distributed  estima-
tors [28]–[30],  multiple-sensor  systems [31], [32],  RSE  in
nonlinear plants [33], [34], and other forms.

The existing research concerning vulnerabilities of RSE can
be broadly classified into two main categories:

Problem  1:  Design  of  worst-case  attacks:  This  category
focuses  on  developing  attacks  that  are  optimized  subject  to
stealthiness  and/or  energy  constraints.  These  studies  seek  to
identify the most effective strategies for degrading system per-
formance, primarily from the perspective of adversaries.

Problem 2: Attack detection/identification and resilient esti-
mation  algorithms:  This  category  is  dedicated  to  developing
methods for detecting and identifying attacks, as well as creat-
ing resilient estimation algorithms. These efforts aim to miti-
gate  the  impacts  of  attacks,  primarily  from  the  standpoint  of
defenders.

Due to practical restrictions, the synthesis of optimal attacks
and defensive countermeasures often takes the form of a con-
strained  optimization  problem.  This  problem  seeks  to  maxi-
mize  the  benefit  of  an  agent,  whether  an  attacker  or  a
defender, while adhering to stealthiness, resource budget, and
information  constraints [23], [35].  There  are  also  some  stud-
ies  assuming  that  the  dynamic  actions  of  both  attackers  and
defenders  are  known  to  each  other.  Consequently,  each  side
can  react  optimally  based  on  their  opponent’s  actions.  The
decision-making  process  for  both  parties  is  explored  within
the framework of game theory [36]–[38].

To provide an up-to-date perspective on the current state of
research and to stimulate further exploration in this area,  this
paper aims to provide an extensive overview of recent devel-
opments in the model-based synthesis of cyber-attacks against
RSE  and  defensive  countermeasures.  In  contrast  to  many
existing  surveys  that  cover  a  broader  range  of  cyber-attacks,
including  aspects  such  as  control  performance  loss,  attack-
resilient  control,  or  domain-oriented  reviews [4], [7], [18],
[19], [21], [39]–[46], this paper is dedicated to a more detailed
examination  on the  performance  degradation  of  RSE and the
defense techniques. A comparison of recent surveys on cyber-
security of CPSs is listed in Table I.

The  remainder  of  this  paper  is  organized  as  follows.  Sec-
tion  II  describes  the  system  model  and  formulates  the  prob-
lem  of  cyber-attacks  against  RSE.  Section  III  discusses  the
synthesis  of  integrity  attack  strategies  with  various  perfor-
mance metrics and stealthiness/energy constraints. Section IV
reviews  the  representative  defensive  measures  against  cyber-
attacks. Section V briefly discusses other types of attacks that
affect  data  confidentiality  and  availability  of  RSE.  Finally,
Section VI concludes the discussion and addresses some chal-
lenging issues related to this topic.  

II.  System Model and Problem Setup

The system configuration of RSE is illustrated in Fig. 2. The
process  dynamics  are  characterized by a  discrete  linear  time-
invariant (LTI) system:
 

xk+1 = Axk +wk (1a)
 

yk =Cxk + vk (1a)
xk yk

wk vk
wk

vk

xk|k
Pk|k

where  and  represent  the  state  and  sensor  measurement,
respectively;  and  are  the  process  and  measurement
noises, respectively. In the majority of existing works,  and

 are  assumed  to  be  zero-mean  independent  and  identically
distributed  (i.i.d.)  Gaussian  noises  with  known  covariances.
Therefore,  a  standard  Kalman  filter  without  packet  dropouts
and delays can be employed at the remote end to estimate sys-
tem  states.  Let  denote  the a  posteriori minimum  mean-
square  error  (MMSE) state  estimate  and  the  correspond-
ing estimation error covariance, 
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Fig. 1.     Three facets of CPS security.
 

 852 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 4, APRIL 2024



Pk|k = E[(xk − xk|k)(xk − xk|k)T ] (2)

Trace(Pk|k)
then  the  state  estimation  quality,  also  known  as  the  perfor-
mance  of  RSE,  can  be  measured  by .  To  reveal
potential  faults  or  attacks within physical  units  and transmis-
sion  channels,  a  residual-based  anomaly  detector  is  typically
deployed  in  parallel  with  RSE  and  generates  a  binary  alarm
sequence according to
 

Ak =

{
1 if gk(zk) ≥ δ
0 else

(3)

zk = yk −Cxk|k−1 xk|k−1
δ > 0

gk(·)

wk vk gk(zk)

Ak = 1
g(k)

where  is  called  innovation  or  residual, 
represents  the a priori state  estimates  of  RSE,  and  is  a
defender-specified  scalar  that  controls  the  false-alarm  rate
(FAR)  at  nominal  conditions;  is  the  evaluation  function
that  takes  various  forms  depending  on  the  statistical  proper-
ties of  and . If  exceeds a given detection threshold,
an alarm indicating the occurrence of abnormal events will be
raised ( ).  As  will  be  discussed in  the  next  section,  the
different  selections  of  the  function  result  in  two popular
frameworks  for  the  design  of  so-called  stealthy  integrity
attacks.

In  this  paper,  our  discussion  primarily  centers  on  the  dis-
crete-time  LTI  system in  (1),  a  model  that  has  been  adopted
by massive existing studies. This model serves as a fundamen-
tal structure that can be readily extended to various scenarios
including multiple-sensor systems, distributed estimators, and
event-based  estimation.  The  control  inputs  are  omitted  in  (1)
because they do not affect the estimation quality if attacks are
launched on only the sensor channel.  

A.  Attack Model

yk zk

The above system configuration is standard in model-based
fault  detection [24].  Nevertheless  in Fig. 2,  what  differenti-
ates  cyber-attacks  from  transmission  faults  is  that  the  sensor
outputs ( , or  for smart sensors) in unreliable links can be

intentionally eavesdropped on and altered by adversaries. Our
ultimate objective is to safeguard RSE from malicious attacks.
However,  the  ancient  proverb “If  you  know  both  the  enemy
and yourself, you will fight hundreds of battles without a loss”
highlights the importance of examining worst-case attacks that
maximize  the  adversary’s  advantage.  In Problem  1,  one
assumes  the  perspective  of  an  attacker  and  explores  optimal
strategies capable of causing the most significant degradation
in estimation quality within RSE, taking into account various
stealthiness and performance metrics. These studies are essen-
tial  for  uncovering  vulnerabilities  of  RSE  and  laying  the
groundwork for the development of countermeasures. To this
end, the following assumptions are often made to characterize
the capabilities of potential adversaries.

1) An attacker knows all system parameters, noise statistics,
and  other  necessary  knowledge  (system  configuration,  the
type of anomaly detectors, etc.).

2) An attacker can eavesdrop on and/or modify the original
data packets transmitted in unreliable channels. They may also
be able to manipulate noise or interference power in transmis-
sion links.

These  characteristics  enable  adversaries  to  launch  FDI,
DoS,  and  eavesdropping  attacks.  While  powerful  attackers
may  be  rare  in  real-world  scenarios,  the  above  assumptions
align  with Shannon’s  maxim,  asserting  that  a  system’s  secu-
rity should not depend on its obscurity [47]. Though it might
be  difficult  in  practice  to  obtain  system  parameters,  we  fre-
quently adopt the perspective that adversaries can obtain them
through methods  such  as  system identification  and  controller
intrusion. Stuxnet cyber-worm serves as a concrete example in
the industrial realm [5]. Only by assuming that attackers pos-
sess  comprehensive  knowledge  of  target  facilities,  we  can
investigate the impact of the worst-case attacks.  

B.  Performance Assessment and Stealthiness Metrics

x̃k|k−1
x̃k|k xk|k−1 xk|k

P̃k|k

When adversaries compromise RSE, their primary goal is to
amplify  the  estimation  error  to  a  maximum extent.  Let 
and  represent the counterparts of  and  with pres-
ence  of  integrity  attacks;  is  the  corresponding a  posteri-
ori estimation error covariance. In existing studies, the perfor-
mance indices can be categorized as:

1) Error Covariance Related Performance: At each instant,
the compromised online data is designed to maximize the cur-

 

TABLE I 

Related Surveys on Cybersecurity of RSE

Year References Target plants Attack types Main focus

2019
[40] Smart grids Integrity, topology, eavesdropping Distributed state estimation in smart grids

[41] Linear models DoS, integrity Modeling and secure control

2020 [42] Linear models Integrity Attack detection

2021

[43] Feedback control systems DoS, integrity Attack detection, estimation, and control

[44] General CPSs DoS, integrity Secure state estimation and control

[45] Multi-agent systems DoS, integrity Fault (attack) detection and tolerant (resilient) control

2022
[39] LTI and discrete-event systems DoS, integrity, eavesdropping System modeling, attack design and defense

[46] Discrete event systems Integrity Attack design and countermeasures

This study LTI systems DoS, integrity, eavesdropping Attack design and countermeasures in RSE
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Fig. 2.     System configuration of RSE.
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Jg = Trace(P̃k|k)
Jh =
∑k2

i=k1
Trace(P̃i|i)

Ja = limk→∞
1
k
∑k1+k

i=k1
Trace(P̃i|i)

rent-step estimation error ( ), the summation of
estimation errors in a fixed time window ( ),
or  the  limit  of  the  time-averaged  MSE  (

).
2)  Error  Norm  Related  Performance: The  compromised

measurement is  designed to cause a large difference between
the  corrupted  and  nominal  state  estimates.  Some  integrity
attacks  may  cause  the  RSE  to  become  unstable,  leading  to
unbounded estimation errors.

From an adversary’s  perspective,  enabling  integrity  attacks
to  bypass  anomaly  detectors  is  one  of  their  primary  impera-
tives.  In  existing  studies,  different  definitions  of  stealthiness
can be categorized as:

gk(zk) = zT
kΣ
−1zk Σ

zk

z̃k ∼ N(0,Σ)

1) Stochastic Stealthiness: With Gaussian process and mea-
surement  noises,  applies,  where  is  the
covariance  of  in  steady  state.  It  is  then  required  that  the
compromised  innovation  exhibits  the  same  statistical  proper-
ties as the nominal condition [22]. The stealthiness constraint
is . This definition can be extended to the case of
relaxed  stealthiness  quantified  by  the  Kullback-Leibler  (KL)
divergence  between  the  compromised  and  nominal  innova-
tions (or outputs).

gk(zk) = ∥zk∥

∥∆zk∥ ≤ ϵ ∆zk = z̃k − zk

2)  Deterministic  Stealthiness: In  more  general  cases,  the
process and measurement noises are not necessarily Gaussian
(e.g.,  norm-bounded),  then  a  Luenberger  observer  can  be
adopted;  the  norm-based  residual  detector  admits  the  form

. A frequently employed approach involves limit-
ing the norm of the difference between the compromised and
nominal system residuals to remain within a specified thresh-
old, i.e., , where .

The  design  of  integrity  attacks  maximizing  covariance
related  performance  metrics  subject  to  stochastic  stealthiness
will  be  discussed  in  Section  III-A.  The  design  of  integrity
attacks  with  estimation  error  norm  related  performance  and
deterministic stealthiness will be discussed in Section III-B.  

III.  Optimal Attack Strategies

In  the  following,  two  representative  frameworks  for  the
design of stealthy integrity attacks are discussed. The relevant
studies and defensive measures are classified in Fig. 3.
 

Stochastic 

Deterministic

Synthesis

Defense

Innovation-based linear attacks

Dynamic linear attacks

Proactive 

Passive 

Moving-target defense  

Watermark-based defense  

Encryption-based defense

Other attack models

(ε, α)-attacks

Integrity 
attacks

Other defense techniques

 
Fig. 3.     Synthesis and defensive measures for integrity attacks.  

A.  Stochastic Attacks
In this section, we examine different attacks aimed at maxi-

mizing  the  performance  index  associated  with  error  covari-

ance while adhering to stealthiness constraints based on statis-
tical properties. Denote the set of eavesdropped data as
 

Ik = {yk̄,yk̄+1, . . . ,yk}

Ik

(ỹk) z̃k

then  creating  an  optimal  attack  involves  determining  a  map-
ping from  to the space of sensor outputs,  and obtaining its
general  form  can  be  challenging.  Note  that  synthesizing  the
compromised  output  is  equivalent  to  designing  if  the
initial  state  of  RSE  is  known  to  the  adversary.  Some  earlier
work frequently adopted linear attack models.  Recently,  gen-
eral  information-based  attacks  without  the  linearity  assump-
tion have also been derived.

Jg

S

1)  Innovation-Based  Static  Linear  Attacks: In  the  pioneer-
ing work [22], Guo et al. introduced an innovation-based lin-
ear attack that maximizes , where the compromised innova-
tion  is  assumed  to  be  a  linear  transformation  of  the  current-
step  nominal  innovation,  augmented  by  compensatory  Gaus-
sian  white  noises.  It  is  then  proved  that  the  optimal  attack
strategy  is  simply  inverting  the  sign  of  the  nominal  innova-
tion.  This  interesting  result  has  sparked  extensive  research
endeavors since then;  a  majority of  them lie  in the following
linear domain with different  [35], [48]–[53]:
 

z̃k =
∑
i∈S

T k
i zi+bk, bk ∼ N(0,Φk) (4)

S T k
i Φk

χ2

χ2

χ2

where  is the index set of employed innovations;  and 
are  parameters  to  be  determined.  The  optimal  attack  in [22]
led to an i.i.d.  compromised innovation sequence,  enabling it
to deceive  detectors of arbitrary detection lengths. To strike
a balance between attack performance and stealthiness, Li and
Yang developed a  linear  attack that  utilizes  the  current  inno-
vation and an additional historical one, positioned beyond the
sliding window of  detectors [48]. This modification enhan-
ced  the  attack’s  stealthiness,  enabling  it  to  deceive  anomaly
detectors  that  use  a  fixed-length  moving  window.  To  further
enhance  attack  performance  by  incorporating  more  informa-
tion  available,  Shang  and  Chen  employed  a  range  of  histori-
cal  nominal  innovations  to  design  linear  attacks [49].  They
derived explicit solutions for optimal attack coefficients, elim-
inating  the  need  for  numerical  optimization.  The  policy  can
achieve greater attack performance compared with [22], [48].
However, the compromised innovation showed sequential cor-
relations  across  consecutive  steps,  allowing  the  attack  to
bypass only single-step  detectors.

Jh

Owing  to  its  simplicity,  the  linear  strategy  has  also  been
adopted to synthesize FDI attacks that maximize . This opti-
mization  presents  greater  complexity  as  the  influence  of  the
compromised  measurements  will  keep  propagating  through
the estimator dynamics. To address this problem, Li and Yang
studied  a  linear  attack  strategy  based  on  Gaussian  distribu-
tions  with  arbitrary  means [50].  The  optimal  attack  coeffi-
cients are determined through the application of the Lagrange
multiplier  method  to  solve  a  constrained  quadratic  optimiza-
tion  problem.  Shang et  al.  examined  a  similar  linear  attack
model,  where  the  worst-case  attacks  without  zero-mean  con-
straints are analytically derived [54].  The linear attack model
has also found applications in various scenarios where attack-
ers  can  deploy  extra  sensors  to  measure  system  states [35],
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[51], [53] and  in  optimal  integrity  attacks  featuring  relaxed
stealthiness measured by the KL divergence [52], [54].

2)  Dynamic  Linear  Attacks: Although  substantial  research
efforts  have  been  invested  in  synthesizing  innovation-based
linear  attacks,  the  inherent  linearity  assumption  significantly
confines the feasible behaviors of attackers, and thus all these
policies  are  not  guaranteed  to  achieve  the  maximum  attack
performance globally. In order to address this limitation, Ren
et al. designed the compromised innovation as a linear combi-
nation  of  the  current-step  nominal  innovation  and  a  histori-
cally  compromised  one,  resulting  in  a dynamic linear  attack
model [55]. It can be proved that the attack generated by this
model leads to an equivalent estimation performance degrada-
tion as the innovation-based approach that incorporates all his-
torical  data [49],  but  the  dynamic  one  shows  distinct  advan-
tages since it requires only two parameters to be determined at
each step because of the recursive structure.

The dynamic model in [55] accommodates only the case of
symmetric information, where the compromised innovation is
designed  based  on  only  the  eavesdropped  measurements.
Recently, a surprising finding by Zhou et al. revealed that the
information-based  optimal  attack  should  be  designed  as  an
affine  function  of  the  MMSE  estimate  of  the  current-step
compromised  prediction  error  of  RSE [56]–[58].  A “separa-
tion principle” is proposed as a comprehensive design frame-
work  that  can  accommodate  diverse  information  scenarios.
The  conclusion  indicates  that  the  worst-case  attack  perfor-
mance  depends  on  both  the  quantity  of  online  information
available and the width of the detection window. Furthermore,
the compromised outputs can also be generated by the follow-
ing linear time-varying (LTV) system:
 

θk =Gk−1θk +Fkyk +Ebk−1 (5a)
 

z̃k = Tkθk +bk (5b)
whose coefficient matrices are fully determined offline by sys-
tem parameters.

The preceding discussion primarily focuses on a simplified
system model in Fig. 2. Recently, numerous publications have
delved  into  variations  of  the  fundamental  problem  formula-
tion,  such  as  those  involving  partially  secured  channels [32],
[59]–[63] and event-based estimators [26], [27], [64], [65].

3) Attacks on Partially Secured Channels: In this category,
one  representative  scenario  involves  measurement  data  pos-
sessing different levels of confidentiality or being transmitted
via different mediums to remote terminals. As a consequence,
attackers can compromise only the unreliable channels but not
the  secured  ones.  In  response  to  this  scenario,  Guo et  al.
devised  an  innovation-based  linear  attack  strategy,  which
leverages  additional  equality  constraints  imposed  by  secure
channels [59], [60].  They  provided  explicit  solutions  for  the
optimal attack strategy and analyzed the relationship between
the compromised estimation error covariance and the attacked
sensors. To further enhance attack effectiveness, Xu et al. pro-
posed  the  utilization  of  historical  innovation  intervals  from
both  secure  and  insecure  sensors  to  construct  linear  attacks
[63].  This  approach  is  also  capable  of  completely  deceiving
the  sequential  anomaly  detector  studied  in [31].  However,  it
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should be noted that all the aforementioned attacks are formu-
lated in a static linear format and are designed to maximize .
The  derivation  of  optimal  information-based  attacks  without
the  linearity  assumption  in  the  presence  of  secure  channels
still remains an open problem.

Ja

In practical cases,  attackers may compromise only a subset
of transmitted links simultaneously due to constraints on their
energy  or  resources.  Consequently,  the  allocation  of  attack
power  becomes  a  significant  consideration.  In  light  of  this,
Ren et al. investigated a scenario where attackers could com-
promise  at  most N out  of M channels  at  each  time,  with  the
objective  of  maximizing  at  the  fusion  center [62].  This
problem was formulated as a Markov decision process (MDP)
problem,  and  the  existence  of  an  optimal  deterministic  and
stationary policy was established.

4)  Attacks  on  Event-Based  Estimators: Integrity  attacks  on
event-triggered  RSE  can  either  modify  the  event-triggering
mechanism  or  directly  alter  the  transmitted  data.  In  the  for-
mer case,  Cheng et  al.  investigated an attacker’s  objective to
degrade  RSE  performance  while  evading  detection  based  on
communication  rates [27].  They obtained a  closed-form rela-
tionship between the compromised event-triggering threshold
and the nominal scheduling threshold. In the latter case, Shang
et al. studied a more complicated scenario, where adversaries
had the capability to launch DoS attacks, injection attacks, or
a  combination of  both,  subject  to  constraints  on transmission
rates  and  probability  distributions [64].  In  contrast  to  prior
Gaussian approximations [27], it is shown that the innovation
in event-based RSE follows a complete Gaussian crater distri-
bution,  which  forms  the  basis  for  analyzing  the  stealthiness
properties of the proposed attacks.

There  is  also  some  work  leveraging  event-triggering  tech-
niques  to  design  FDI  attacks.  A  representative  work  is [26],
where Zhao et al.  devised an event-triggered policy in which
the  optimal  attack  in [22] would  be  executed  if  a  stochastic
event-triggering condition was met.

χ2

5)  Other  Attack  Scenarios: In  the  stochastic  framework,
stealthiness  is  defined  based  on  the  statistical  properties  of
single  or  multiple-step  innovations.  This  definition  is  consis-
tent  with  the  detection  logic  of  detectors,  where  innova-
tions  in  a  sliding  window are  utilized  to  construct  the  detec-
tion  index.  On  the  contrary,  several  studies  adopt  the  KL
divergence  between  the  compromised  and  nominal  innova-
tion  (or  output)  sequences  as  a  measure  of  stealthiness [14],
[66], [67].  Some  significant  findings  are  presented  in [14],
[66], where Bai et al. quantified the upper bound of degrada-
tion in the worst-case scenario when an attacker ensures a spe-
cific  level  of  stealthiness.  In  order  to  better  evaluate  the
attack’s  impacts  on  the  estimation  quality,  Li  and  Yang
designed an attack policy that maximizes the weighted combi-
nation of the average and terminal error covariance [68]. Dif-
ferent  from  the  previous  attacks,  the  synthesis  of  the  attack
policy was not based on the historical measurements; the off-
line designed compromised signal was equivalent to adding an
i.i.d. Gaussian noise to the nominal innovation.

The design of stochastic attacks largely depends on the for-
mulation  of  the  corresponding  optimization  problem.  Gener-
ally,  it  is  not  appropriate  to  compare  the  effectiveness  of
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attack policies  if  they adopt  different  stealthiness  and perfor-
mance  metrics.  In  contrast  to  the  deterministic  attacks  to  be
covered in the next section, these attacks typically necessitate
the  accessibility  of  online  data  to  adversaries.  This  enables  a
“closed-loop” design  aligning  with  our  intuition:  the  greater
the availability of online data, the more significant the poten-
tial  for  FDI  attacks  to  cause  estimation  quality  degradation.
Future  endeavors  could  be  dedicated  to  researching  stealthy
attacks  in  distributed  estimators  and  sensor  networks,  where
more sophisticated detectors based on connectivity and topol-
ogy information are employed to reveal anomalies. Moreover,
it  is  worth  pointing  out  that  requiring  compromised  innova-
tions  to  match  nominal  innovations  statistically  is  sufficient
(but  not  necessary)  for  maintaining  the  alarm  rate  (AR).
Future studies that directly consider the stealthiness constraint
on AR could possibly produce more destructive attacks.  

B.  Deterministic Attacks

∆x̂k
∆zk

The second approach for crafting stealthy deception attacks
relies  on deterministic  system theory.  This  framework is  bet-
ter suited for designing integrity attacks that compromise sys-
tems  characterized  by  bounded  noises.  By  defining  and

 respectively  as  the  state  estimation  difference  and  the
residual  difference  between  the  compromised  and  nominal
systems, the analysis of deterministic attacks can be achieved
based on the following dynamic model [69]:
 

∆x̂k+1 = (A−KCA)∆x̂k +Kak+1 (6a)
 

∆zk+1 = −CA∆x̂k +ak (6b)
akwhere  denotes the data injection in sensor channels and K

is the estimator gain. This model originates from the linearity
of  LTI  systems  and  is  formulated  by  considering  only  the
effects  of  attacks on system dynamics.  The main objective is
to  determine whether  there  exists  an attack sequence capable
of causing the above system to exhibit unbounded states while
maintaining bounded outputs.

(ϵ,α)

Ik

1) Design of Stealthy Attacks: The pioneering work on vul-
nerabilities  of  linear-quadric  Gaussian  control  systems  was
presented  by  Mo  and  Sinopoli [15],  where  the  notions  of

-attackability  and  perfect  attackability  are  defined.  The
paper also provided a necessary and sufficient condition for a
system to be perfectly attackable, which depends on the unsta-
ble  eigenvalues  (denoted  as λ)  and  eigenvectors  of A.  Based
on (6), a typical stealthy attack sequence independent of  is
generated according to
 

ỹk = ỹk−1−ρλk+1µ (7)

∆zk

limk→∞ ∥∆zk∥ → 0

where ρ is  a constant and μ is  determined by the eigenvector
associated with λ. Motivated by [15], Hu et al. gave a similar
insecure  definition  for  RSE and  derived  necessary  and  suffi-
cient  conditions  for  such  property  when  all  communication
channels and partial channels are compromised [69]. It should
be  highlighted  that  in  these  studies  had  to  stay  bounded.
To  completely  mitigate  the  impact  of  FDI  attacks  on  the
detection  function,  Zhang  and  Ye  introduced  the  concept  of
complete  stealthiness,  which  further  necessitates  that

.  This  idea  was  later  expanded  upon  to
include  energy  stealthiness,  which  aims  to  deceive  the  sum-

mation  (SUM)  detector  by  maintaining  a  bounded  level  of
accumulated  attack  energy [70].  The  study  established  both
necessary  and  sufficient  conditions  for  crafting  FDI  attacks
with complete stealthiness and energy stealthiness.

akNote that (6) is a dynamic system purely driven by . The
deterministic  attack  linked  to  (6)  resembles  what  is  com-
monly  known as  a “zero-dynamic  attack”,  typically  executed
on the controller side [71]. This form of attack aims to deceive
the controller by making the compromised control signal and
sensor  output  appear  consistent  with  the  process’s  nominal
state. It is crafted using the zero dynamics of a system, where
the output remains identically zero due to a specific combina-
tion of initial conditions and control inputs. Consequently, the
process  of  synthesizing  integrity  attacks  against  RSE  can  be
linked  to  the  development  of  zero-dynamic  attacks  in  con-
troller channels.

2)  Reachable  Set  Analysis: In  addition  to  the  design  of
stealthy attacks, noticeable research efforts have been devoted
to  analyzing  the  maximum  state  deviations  caused  by  these
attacks [72]–[75]. In [73], Kwon et al. considered three kinds
of  stealthy attacks  according to  the  attackers’ ability  to  com-
promise the system. They presented a method to evaluate the
reachable error region for sensor-only attacks by formulating a
stochastic  optimal  control  problem.  Following  this  study,
many endeavors have been undertaken to investigate security
concerns  within  control  systems  by  analyzing  reachable  sets.
For  instance,  Mo  and  Sinopoli  studied  the  effect  of  stealthy
integrity attacks on CPSs and demonstrated that the attacker’s
strategy  can  be  formulated  as  a  constrained  control  problem;
the  characterization  of  the  maximum  perturbation  can  be
posed as reachable set computation, which is solved by ellip-
soidal  approximation  methods [74].  In [75],  Murguia et  al.
proposed two security metrics to quantify the potential impact
of stealthy attacks: the volume of the attacker’s reachable set
and the minimum distance to  critical  states.  The authors  also
provided  synthesis  tools  to  redesign  controllers  and  monitors
such that  the  impact  of  stealthy attacks  is  minimized and the
desired attack-free performance is guaranteed.

3)  Other  Scenarios: The  deterministic  design  framework
has also been extended to distributed systems. In [76],  Wang
et  al.  studied  a  slightly  different  scenario  that  attackers  can
corrupt both the output measurements and the state estimates
in distributed state  estimation.  The authors  derived necessary
and  sufficient  conditions  for  the  vulnerability  of  the  system
under different attack scenarios.

Based on (6), Chen et al. studied a scenario where attackers
aim  to  regulate  the  estimation  error  to  a  value  arbitrarily
defined by them, which can reduce the likelihood of detection
by  amplitude  detectors [77].  They  used  dynamic  program-
ming  to  derive  an  explicit  expression  for  the  optimal  attack
sequence and also analyzed its convergence and feasibility.

While  most  of  the  relevant  studies  focus  on  the  conditions
whether  there  exists  an attack sequence causing instability  in
estimators,  there  is  also  some  work  investigating  the  maxi-
mum  state  estimation  deviation  in  a  finite  horizon.  In  this
case, the design of attack policies is based on solutions to an
optimization  problem.  A  representative  study  is  presented  in
[78],  where  the  optimal  deterministic  attack  is  derived  by
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maximizing  a  quadratic  objective  function  subject  to  energy
constraints.

Deterministic attacks are typically created by exploiting the
control system’s unstable modes.  These attack signals can be
fully determined without the need for knowledge of the online
transmitted  data,  which  differentiates  it  from  stochastic
attacks.  However,  this “open-loop” design  may  lack  robust-
ness in terms of maintaining stealthiness properties. To deter-
mine the unstable eigenvalues and eigenvectors of the system
matrix,  attackers  have  to  possess  highly  precise  information
about  the  system  parameters.  Otherwise,  self-generated  atta-
cks  may  not  be  able  to  consistently  keep  the  residual  within
bounded limits.

Different attack approaches in the two frameworks are sum-
marized  in Table II,  where  the  classification  is  based  on  the
attack  model,  performance  measure,  stealthiness  metric,  the
existence  of  side  information,  and  the  existence  of  secured
transmission channels.  

IV.  Defensive Countermeasures

While  extensive  research  has  been  dedicated  to  exploring
integrity  attacks,  these  studies  have  significantly  contributed
to our  comprehension of  inherent  vulnerabilities  within RSE.
As a result, many effective techniques have been introduced in
the past decade to enhance the security of RSE. It is seen that
a  unified  design  framework  for  countermeasures  is  lacking,
with scholars from diverse disciplines making significant con-
tributions through different techniques.

For general linear descriptor systems, Pasqualetti et al. pro-
posed a mathematical framework for CPSs, attacks, and moni-
tors, and characterized the fundamental limitations of monitor-
ing  from  system-theoretic  and  graph-theoretic  perspectives
[20]; both centralized and distributed monitors that can detect
and identify attacks were designed. In [82], Fawzi et al. inves-
tigated  the  problem  of  state  estimation  for  linear  systems
when  some  of  the  sensors  are  compromised  by  adversaries.
The authors provided an efficient algorithm inspired by tech-

niques in compressed sensing and error correction to estimate
the  state  of  the  plant  despite  attacks.  Recently,  this  detection
framework has been extended to more general cases where the
compromised sensors can change over time and the attack sig-
nals can be arbitrary and unbounded [83].

Regarding the enhancement of RSE security, notable coun-
termeasures  include  watermarking-based  defense [84]–[90],
encryption-based  defense [91]–[93],  moving-target  defense
(MTD) [94]–[97],  and  a  range  of  other  approaches.  Since
integrity attacks are intentionally synthesized to deceive tradi-
tional passive detectors, most of these countermeasures aim at
creating a proactive defense mechanism. As will be discussed
later,  the  enhancement  of  system  security  using  proactive
methods often comes at the expense of sacrificing some other
aspects  of  performance,  e.g.,  control  and  estimation  quality
loss, or extra resource consumption.  

A.  Watermarking-Based Defense
Watermarking  referring  to  the  technique  of  embedding

secret data into a carrier signal, such as audio, video, or image
data,  is  a  widely  adopted  method  in  information  security  to
prevent  contents  from  unauthorized  modification.  The  pio-
neering work of  adopting this  technique to CPS protection is
[84],  where  Mo et  al.  designed a  watermarking signal  that  is
superimposed on the  optimal  control  input  and has  statistical
properties that maximize the detection performance while sat-
isfying  a  constraint  on  the  control  performance.  An  optimal
Neyman-Pearson detector  that  can  determine  if  the  system is
under attack by comparing the observed and expected outputs
is derived. Similarly, in [85] a secret noisy i.i.d. input is added
to the optimal control signal. If the process is operating under
normal  conditions,  the  system  operator  should  be  able  to
detect  the  presence  of  the  watermark  in  the  sensor  measure-
ments.  In  order  to  defend  against  powerful  adversaries  who
can read a subset  of  control  inputs to design stealthy attacks,
Weerakkody et  al.  proposed  a  robust  physical  watermarking
based  on  the  Neyman–Pearson  criterion;  a  convex  optimiza-

 

TABLE II 

Design of Stealthy Integrity Attacks on RSE

Design framework References
Attack model Performance Stealthiness

Side information Secured channel
M1 M2 M3 M4 P1 P2 P3 S1 S2 S3

Stochastic attacks

[22], [48], [49], [52], [54] √ √ √

[35], [51], [53] √ √ √ √

[55], [79] √ √ √

[56]–[58] √ √ √ √

[32], [59], [60], [63] √ √ √ √

[68] √ √ √

[30] √ √ √

Deterministic attacks

[15], [70] √ √ √

[77], [80] √ √ √

[69] √ √ √ √

[81] √ √ √

M1 M2 M3 M4
P1 P2 P3
S1 S2 S3

: Innovation-based linear attacks; : Dynamic linear attacks; : Self-generated attacks; : Other forms.
: Estimation-error covariance-based performance; : Stability-based performance; : Other performance.
: Probability density function based stealthiness measure; : Norm-based metric; : Other metrics.
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tion  problem  to  obtain  the  watermark  signal  was  formulated
[86].

The  successful  application  of  watermarking-based  defense
has  been  demonstrated  in [88],  where  Ahmed et  al. imple-
mented  the  watermarking  signal  on  a  real  water  distribution
testbed. The technique is shown to achieve a 100% true posi-
tive rate and a low FAR in detecting replay attacks while pre-
serving  the  system  performance  and  meeting  consumer
demand. Recently, this method has been extended to the cases
of  dynamic watermarking to  protect  linear-parameter-varying
systems [89] and simultaneously  online  watermarking design
and system identification [90].

It  is  worth emphasizing that  the achievability  of  enhancing
security using watermarking is  often at  the expense of  nomi-
nal  system  performance  degradation.  Given  these  tradeoffs,
the decision to use watermarking for security purposes should
be carefully considered in the context of the specific applica-
tion  and  its  requirements.  It  is  important  to  strike  a  balance
between  security  and  performance,  taking  into  account  fac-
tors like the sensitivity of the data, the resources available, and
the control signal saturation.  

B.  Encryption-Based Defense
In  essence,  the  goal  of  data  encryption/decryption-based

defense is to make the intercepted data as difficult to decipher
as possible, thereby enhancing the overall security of the sys-
tem.  Only  those  who possess  the  encryption  key can decrypt
the  ciphertext  back  into  its  original  form.  Regarding  CPS
security,  this  technique  is  similar  to  coding/decoding-based
defense,  while  the  latter  does  not  require  secret  keys  to
recover  the  original  information.  Based  on  this  idea,  Miao
et  al.  proposed  a  low-cost  method  of  coding  the  sensor  out-
puts  to  detect  stealthy  FDI  attacks.  They  showed  the  condi-
tions for a feasible coding matrix that can increase the estima-
tion  residues  under  intelligent  data  injection  attacks  and  pro-
vided an algorithm to compute such a matrix. The paper also
presented  a  time-varying  coding  scheme  to  defend  against
attackers  who  can  estimate  the  coding  matrix  from  inter-
cepted online data [91].

To defend against  the extensively studied innovation-based
linear  attacks,  Shang et  al.  studied  a  linear  encryption
approach to  bolster  the  security  of  RSE,  aiming to  safeguard
transmitted  data  against  unauthorized  alterations [92].  This
linear  encryption  technique,  synthesized  by  minimizing  the
worst-case  estimation  errors,  was  developed  through  the
Stackelberg  game  analysis.  Recently,  this  technique  was
extended to protect data transmission of traditional sensors by
encrypting  a  subset  of  packets,  which  can  strike  a  balance
between resource utilization and security enhancement [93].

It  is important to note that encryption-based defense strate-
gies  involve  the  incorporation  of  additional  modules  dedi-
cated  to  data  encryption  and  decryption.  The  hardware  and
computational  resources  required  for  these  processes  should
be regarded as the overhead incurred in pursuit of heightened
security.  Moreover,  the  delays  induced  by  data  processing
should  also  be  taken  into  account  in  real-time  systems.  In
practical  scenarios,  system  defenders  should  carefully  adjust
their designs to achieve a favorable equilibrium between these

performance metrics.  

C.  Moving-Target Defense
MTD is  a  proactive strategy designed to enhance the secu-

rity  of  computer  systems  and  networks  by  frequently  chang-
ing the attack surface and making it  more difficult  for adver-
saries  to  identify  and  exploit  vulnerabilities.  The  core  idea
behind  MTD  is  to  create  a  dynamic  and  unpredictable  envi-
ronment for potential attackers. Following this idea, Tian et al.
proposed an approach that actively changes the system config-
uration  to  invalidate  attackers’ knowledge  about  the  system
and  detect  Stuxnet-like  attacks [94].  The  paper  showed  that
MTD  can  deal  with  different  types  of  attacks,  such  as  mea-
surement-independent stealthy attacks, control scaling attacks,
and  measurement  replay  attacks.  In [95],  the  authors  pro-
posed  to  introduce  extraneous  states  with  time-varying
dynamics that are unknown to the adversary but known to the
defender and use additional sensors to measure these states.

More recently, Kanellopoulos and Vamvoudakis proposed a
secure control  algorithm for  CPSs facing sensor  and actuator
attacks [97].  The  technique  integrated  proactive  and  reactive
defenses,  with  the  proactive  part  using  stochastic  parameter
adjustments  to  enhance  unpredictability  and  the  reactive  part
detecting  attacks  via  an  integral  Bellman  error  computation.
To  analyze  system  properties  when  implementing  MTD,  the
theory of switched systems is frequently employed. This adap-
tation allows for the examination of stability concerns associ-
ated with changes in system configurations.

MTD  is  an  effective  approach  to  defend  against  cyber-
attacks.  However,  one  of  its  drawbacks  is  that  it  can  poten-
tially  lead  to  suboptimal  system performance  when  there  are
no active cyber-attacks. It also introduces extra challenges, as
frequent  changes  in  system  dynamics  or  configuration  can
complicate the design of defense strategies and the analysis of
the system’s normal behavior.  

D.  Other Defense Methods

χ2

χ2

It  is  seen  that  a  unified  framework  to  design  countermea-
sures  against  cyber-attacks  does  not  exist.  Researchers  from
diverse  disciplines  contribute  through  different  techniques
[29], [31], [83], [98]–[104].  Among  the  work  beyond  the
scope  of  proactive  detection  mechanism,  some  approaches
aim  to  enhance  the  performance  of  traditional  detectors
through  appropriate  modifications [98]–[100].  A  representa-
tive work is presented by Ye and Zhang to detect determinis-
tic FDI attacks [100]. They introduced a SUM detector, which
uses both the current and historical information and has a sta-
tistical  property that  its  evaluation value satisfies  distribu-
tion when the system is normal and increases to infinity when
the  system  is  under  attack.  The  superiority  of  the  proposed
method  is  demonstrated  by  the  fact  that  two  types  of  FDI
attacks  can  be  detected  by  the  SUM  detector  but  not  the 
one.

Detecting  stealthy  attacks  becomes  relatively  easier  when
secured  transmission  channels  are  in  place.  Correlations
between data packets in both safe and unsafe channels can be
leveraged to design a detection mechanism [31], [101], [105].
Based  on  this  idea,  Li et  al.  proposed  three  sequential  data
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verification and fusion procedures for different detection sce-
narios [31].  This  important  work  serves  as  a  benchmark  for
many  follow-up  studies  on  defense  against  innovation-based
linear attacks. For instance, Guo et al. introduced a Gaussian-
mixture-model based detection mechanism [101].  The expec-
tation–maximization algorithms are applied to cluster the local
estimates  from  different  sensors  and  assign  a  belief  for  each
sensor,  which  is  used  to  fuse  the  measurements  accordingly.
More recently, Chattopadhyay and Mitra introduced an online
learning-based  algorithm  for  secure  state  estimation [106].
The  proposed  method  can  accommodate  the  case  where  no
safe sensors are in place and offers up to 3-dB improvement in
MSE compared  with [31].  However,  it  is  worth  pointing  out
that  all  these  methods  assume  adversaries  adopt  the  innova-
tion-based linear model. The effectiveness of the countermea-
sures  against  broader  attack  types,  such  as  dynamic  linear
attacks, should be re-examined in future studies.

In  distributed state  estimation,  the  information from neigh-
boring sensors can be utilized to build a detection mechanism
[29], [107]. In [29], Yang et al. designed a protector for each
sensor  based  on  the  online  innovation  from  its  neighboring
sensors.  A sufficient condition for the stability of the estima-
tor equipped with the proposed protector under hostile attacks
was  provided,  and  a  critical  attack  probability  that  corre-
sponds to a given steady-state estimation error covariance was
derived.

The  detection  of  integrity  attacks  has  been  studied  using
data-based  methods [108], [109].  In  situations  where  suffi-
cient  online  data  is  collected,  Shi et  al.  proposed  transfer
entropy countermeasures for anomaly detection under various
attacks [109].  The  transfer  entropy  is  utilized  to  measure
causality  or  information  flow  between  sensor  measurements
or innovation sequences. The results showed how attacks can
disturb the causality and change the transfer entropy values.

Finally,  there  are  also  a  few  studies  investigating  attack
defense in a game-theoretic framework. A representative work
is presented in [110],  where Li et al.  modeled the interaction
between the defender and the attacker as a Stackelberg game,
where the defender allocates defense resources to secure sen-
sors  and  the  attacker  chooses  target  sensors  to  attack.  They
analyzed  the  optimal  solutions  for  both  sides  under  different
types of budget constraints and transformed the game into lin-
ear programming problems.

The  effectiveness  of  defensive  measures  varies  depending
on  specific  attack  scenarios.  Some  techniques  are  developed

to  ensure  that  adversaries  cannot  satisfy  the  corresponding
stealthiness  condition  easily.  Therefore,  the  method  may  fail
to  defend  against  more  sophisticated  attackers  that  employ  a
stricter  stealthiness  measure.  In  practical  cases,  the  continu-
ous  interplay  between  attackers  and  defenders  makes  the
design of defensive measures a topic of enduring significance
in the control community.

Different countermeasures against cyber-attacks are summa-
rized  in Table III,  where  the  relevant  references,  the  type  of
attacks  to  be  defended,  the  main  techniques  adopted,  and  a
few comments on their limitations are listed.  

V.  Beyond Integrity Attacks

In  this  section,  we  briefly  review  the  design  of  DoS  and
eavesdropping  attacks  and  the  corresponding  countermea-
sures in the basic problem setup. Interested readers may refer
to [25], [119] for  event-based  estimators  and [28], [64],
[120]–[123] for hybrid DoS and FDI attacks against RSE.  

A.  Denial-of-Service Attacks
1)  Design  of  DoS  Attacks: Synthesizing  DoS  attacks  from

an adversary’s perspective can be formulated as a constrained
optimization  problem,  where  the  attacker  aims  to  maximize
the  impact  on  the  target  system under  various  constraints,  as
illustrated by
 

max JAttack

s.t. PAttack ≤ ∆, and/or PRR ≥ R0

PRR

PRR

where ∆ represents the total  power budget.  The constraint on
the  packet-reception  rate  ( )  is  imposed  with  the  aware-
ness  that,  in  real-world  systems,  a  DoS  attack  causing  an
excessively  low  at  the  terminal  can  be  readily  detected
by alarm systems.

PRR

In [124], [125],  Zhang et  al.  derived  the  optimal  attack
schedule under a limited energy budget; they also studied the
case  where  the  estimator  has  an  intrusion  detector  that  trig-
gers  an  alarm when  the  falls  below a  threshold.  In  this
context,  the  attacker’s  behavior  is  symbolized  through  a
binary sequence. At each step, adversaries make a straightfor-
ward  choice  between “attack” or “not  attack” to  determine
whether  to  completely  obstruct  the  transmission  channels.
Consequently, the optimal attack schedule design becomes an
integer programming problem, which is in general difficult to
solve.  However,  in [125] the  authors  presented  some  struc-
tural  results,  showing  that  grouping  the  attacks  leads  to  the
maximal  effect,  while  separating  the  attacks  as  uniformly  as

 

TABLE III 

Representative Countermeasures Against Cyber-Attacks

Methods References Attacks Techniques Limitations

Watermarking [84]–[86], [88]–[90] Integrity Optimization Nominal performance loss

MTD [94]–[97] Integrity Switched system, optimization Nominal performance loss, complex design

Encryption
[91]–[93] Integrity

Optimization Extra computation modules, delays
[111]–[114] Eavesdropping

Game theory
[110] Integrity

Optimization, MDP, Q-learning Open strategies for players required
[36], [37], [115]–[118] DoS

Data-driven [108], [109] Integrity Causality inference, subspace approach Large amounts of high-quality data required
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possible  leads  to  minimal  degradation.  In [126],  the  authors
explored  optimal  strategies  for  an  invader  launching  DoS
attacks on a centralized sensor network to degrade system per-
formance. They provided an analytical solution for single-sen-
sor  systems  and  numerical  methods  for  multiple-sensor  sys-
tems, both with attack energy constraints.

PRR

One property  of  wireless  communication  is  that  the  packet
can  experience  random  loss  due  to  channel  fading,  interfer-
ence, scattering, and other factors [127]. To explore more real-
istic  scenarios,  some  researchers  adopt  the  assumption  that
adversaries can manipulate the interference or noise power in
signal-to-interference-plus-noise ratio (SINR) channels, where
the packet  dropout  rate  is  determined by both the strength of
desired signals and the level of interference power [128]. For
such channels, Zhang et al. analyzed the impact of DoS attack
power on the estimation accuracy and energy efficiency of the
sensor,  and  found a  critical  value  of  attack  power  that  deter-
mines the stability of the RSE [129]. The result is based on a
well-known  conclusion  that  an  excessively  low  for  the
Kalman  filter  with  intermittent  observations  will  lead  to
unbounded estimation errors [130].

To  compromise  SINR-based  channels  with  limited  energy,
Peng et  al.  formulated  the  problem  of  finding  the  optimal
attack power schedule subject to average energy constraints as
an MDP [131].  They proved the existence and uniqueness of
an  optimal  deterministic  and  stationary  policy  for  attackers
and showed that  the optimal policy has a threshold structure.
Liu et  al.  also  formulated  the  problem  of  designing  optimal
DoS attacks as an MDP with a discount factor to balance the
current  and  future  rewards [132].  The  optimal  solution  is
obtained based on the Bellman’s optimality principle.

2) Defensive Countermeasures: Unlike FDI attacks that can
deceive anomaly detectors, maintaining stealthy is usually not
a primary concern in the design of DoS attacks. Consequently,
the  majority  of  research  on  defense  countermeasures  primar-
ily addresses the challenge of ensuring reliable estimation per-
formance in the presence of attacks.

When  CPSs  are  subjected  to  DoS  attacks,  changes  in  the
measurement  or  control  input  matrices  lead  to  deviations  of
system dynamics from their normal conditions. Therefore, the
switched  system  theory  is  often  applied  for  attack-resilient
estimation [133], [134].  This  approach  models  the  system as
one that  alternates  between normal  and attacked states,  espe-
cially  during intermittent  DoS attacks.  The primary objective
is to analyze the stability of a dynamic system operating under
these conditions. A representative work is [133], where Chen
et al. proposed a switched system method for the fusion esti-
mation  of  phaser  measurement  units  in  power  systems.  The
switching  rule  is  based  on  the  innovations  of  an  extended
Kalman  filter,  with  the  goal  of  achieving  a  balance  between
metrics  concerning  the  estimation  accuracy,  convergence
speed, and computation time.

3) Game Theoretic Analysis: Notably, it  is found that mas-
sive  publications  studied  the  interactive  actions  of  attackers
and  defenders  in  a  game-theoretic  framework [36], [37],
[115]–[118].  The  pioneering  work  is [36],  where  Li et  al.
regarded the attack and defense problem as a zero-sum game
and  proved  the  existence  of  a  Nash  equilibrium.  They  used

Markov chain theory to solve a relaxed problem. This frame-
work  was  further  extended  to  the  case  of  SINR transmission
channels [37],  where  a  modified  Nash  Q-learning  algorithm
was  applied  to  solve  the  Markov  game  over  an  infinite  time
horizon.

In  multiple-channel  transmission  scheduling,  Ding et  al.
also  modeled  the  interaction  between  the  sensor  and  the
attacker as a two-player stochastic game and used a Nash Q-
learning  algorithm  to  find  the  optimal  strategies [116].  To
study  the  asymmetric  information  scenario,  the  stochastic
Bayesian  game has  been  utilized  to  characterize  the  strategic
interaction between two players in RSE [117]. In this case, the
sensor  possesses  acknowledgment  information  from  the  esti-
mator, while the attacker does not. Recently, Yuan et al. con-
sidered  a  more  practical  case  in  which  communication  net-
works are time-varying; the long-term interaction of players is
modeled  with  a  Markov  game [115].  An  online  minimax  Q-
learning is applied to solve the problem.  

B.  Eavesdropping Attacks
It is commonly held that the states of the system are treated

as  sensitive  information,  which  should  not  be  accessible  to
adversaries.  Nevertheless,  an  attacker  who  can  eavesdrop  on
the sensor measurements can execute estimation algorithms to
gain such confidential information.

1)  Design  of  Eavesdropping  Attacks: There  are  relatively
few studies on the synthesis of optimal eavesdropping attacks.
One  reason  is  that  stealthiness  is  usually  not  a  primary  con-
cern;  thus  the  attack  design  often  boils  down  to  a  standard
state estimation problem. In practical cases with secured data
transmission,  considering  that  deciphering  encrypted  data  is
often  resource-consuming,  Zhou et  al.  studied  the  optimiza-
tion problem from adversaries’ perspective under energy con-
straints [23].  The  authors  analyzed  the  impact  of  different
decryption strategies on eavesdropping performance and pro-
posed  a  deciphering  schedule  that  minimizes  the  expected
estimation error without exceeding the energy budget.

PRR

In [135], Ding et al. studied an intelligent attacker who can
switch  between  passive  and  active  modes  to  enhance  eaves-
dropping  while  evading -based  detection.  They  modeled
this trade-off as a constrained MDP and derived conditions for
a  policy  that  meets  stealthiness  requirements  and  maximizes
eavesdropping  efficiency.  Other  relevant  studies  on  the  syn-
thesis  of  eavesdropping  attacks  in  different  scenarios  can  be
found in [136], [137].

2) Optimal Scheduling Based Defense: The majority of cur-
rent  research on eavesdropping attacks on RSE is formulated
from the defender’s standpoint, and a typical problem is stated
as follows:
 

max EAttack

s.t. ERSE ≤ E0, and/or PRSE ≤ ∆

EAttack

ERSE

where an optimal sensor schedule within the power budget ∆
is one in which the estimation error for adversaries ( ) is
maximized  while  ensuring  that  the  estimation  error  for  RSE
( ) does not surpass a specified threshold. In essence, The
optimal  scheduling-based  defense  boosts  RSE confidentiality
by  reshaping  sensor  transmission  decisions,  which  can  bal-
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ance  various  indices  for  optimal  overall  performance [138]–
[141].

PRR
PRR

Using the above framework without power constraints, Tsi-
amis et al. introduced a control-theoretic definition of secrecy
for  RSE,  which  requires  that  the  user’s  estimation  error  is
bounded  while  the  eavesdropper’s  estimation  error  is
unbounded [138]. The paper studied a simple secrecy mecha-
nism  that  randomly  withholds  measurements  from  being
transmitted.  It  was  proved  that  the  proposed  mechanism  can
achieve  perfect  expected  secrecy  if  the  user’s  is  higher
than the eavesdropper’s .

ERSE EAttack

ERSE
EAttack

Using a  linear  combination of  and  as  the  per-
formance metric, Leong et al. derived structural results on the
optimal  transmission  policy,  which  shows  a  thresholding
behavior in the estimation error covariances [139]. The paper
also proved that in the situation of infinite horizon, there exist
transmission  policies  that  can  keep  the  expected 
bounded while the expected  becomes unbounded.

Taking  the  transmission  power  into  consideration,  Wang
et al.  proposed a problem formulation that considers the esti-
mation errors of both parties and the cost of the sensor’s trans-
mission  energy [140].  The  authors  proved  that  there  exist
some structural properties for the optimal transmission sched-
ule,  such  as  threshold  and  switching  behaviors,  for  both  the
known and the unknown eavesdropper’s estimation errors.

3)  Encryption-Based Defense: The above scheduling-based
defense  usually  enhances  the  confidentiality  of  RSE  at  the
cost of a slight reduction in nominal estimation performance.
To ensure an optimal state estimation for defenders, there are
also plenty of studies considering encrypting the transmission
data  to  defend  against  eavesdropping  attacks [111]–[114].  A
representative  method  is  presented  in [112],  where  Tao  and
Ye  proposed  to  protect  the  RSE  from  eavesdropping  attacks
by  using  time-varying  coding  and  noise-adding  techniques.
They  also  derived  the  minimum  encoded  dimension  and  the
upper bound of the update period for the time-varying coding
scheme.

Note that the above method requires that the coding matrix
not  be  accessible  to  adversaries.  In  order  to  defend  against
more  powerful  attackers,  encryption-based  methods  are
adopted  in [113], [114].  Zou et  al.  proposed  a  novel  encryp-
tion-decryption scheme (EDS) to  protect  the  transmitted data
from eavesdropping, using artificial noise injection and secret
keys; they designed a finite-horizon energy-to-peak state esti-
mator  for  LTI  systems  under  EDS.  Sufficient  conditions  for
the existence of the EDS and the state estimator are obtained
[113].  Recently  in [114],  Shang  and  Chen  proposed  linear
encryption  strategies  to  protect  the  transmitted  data  from
eavesdropping. For two types of data transmission, the authors
obtained  the  optimal  filtering  for  the  eavesdropper  and
designed the encryption coefficients by maximizing the eaves-
dropper’s estimation error covariance.

The  application  of  privacy-preserving  techniques  in  real-
world systems can be found in [142],  where Sun et  al.  intro-
duced  a  novel  privacy-preserving  algorithm  for  distributed
economic  dispatch  in  microgrids.  The  authors  provided  con-
vergence  proof,  analyzed  privacy  levels  within  a  differential
privacy  framework,  and  demonstrated  effectiveness  using  an

IEEE 39-bus system.  

VI.  Conclusions and Future Works

The security  issue in  CPSs is  a  multidisciplinary topic  that
requires  collaboration  of  experts  from  diverse  fields,  includ-
ing computer engineering, cryptography, communication, and
others.  Moreover,  domain-specific  knowledge  from  vulnera-
ble  industrial  sectors,  such  as  energy  pipelines  and  smart
grids,  is  also  essential  for  us  to  comprehensively  understand
the  execution  of  these  attacks  and  the  mechanisms  required
for  effective  protection.  This  paper  discussed  the  current
research status on the design of cyber-attacks against RSE and
the  corresponding  defensive  countermeasures.  The  relevant
problems  with  single-sensor  scenarios  as  well  as  different
variants have been reviewed from both attackers’ and defend-
ers’ perspectives. It is observed that optimization-related tools
and algorithms play  a  central  role  in  the  majority  of  existing
studies.

Though many elegant  results  have  been derived,  the  appli-
cability  of  these  methods  in  enhancing  the  security  of  real-
world  systems  has  not  been  adequately  verified.  Almost  all
existing  studies  validate  the  effectiveness  of  proposed  meth-
ods  using  a  simplified  process  model.  The  design  of  cyber-
attacks  against  state  estimators  are  discussed  in  smart  grids
[1], remotely piloted vehicles [77], and IEEE 6 bus power sys-
tems [70];  the  defensive  countermeasures  can  be  found  in
unmanned  aerial  vehicles [83],  the  Tennessee  Eastman  chal-
lenge  problem [85], [109],  water  distribution  systems [44],
[88],  IEEE  39-bus  systems [94], [142],  aircraft [97], [108],
smart  grids [98], [102],  and  artificial  neural  networks [121].
Specifically,  Ding et  al.  outlined  a  secure  state  estimation
framework  for  water  distribution  systems  in  the  presence  of
unknown  disturbance  inputs,  measurement  noises,  and  mali-
cious attacks [44]. The process was modeled by an LTV sys-
tem and the secure state estimation problem was cast into the
feasibility of a recursive convex optimization problem subject
to a series of  LMIs.  In the future,  more efforts  are needed to
verify  the  effectiveness  of  these  techniques  in  practical  sys-
tems.

In  the  following,  a  few  topics  that  have  not  been  suffi-
ciently investigated in existing work are presented.  

A.  Data-Driven Design
Most of the existing studies, whether focusing on the design

of  optimal  attacks  or  defensive  measures,  presume  that  a
dynamic model is available to both adversaries and defenders.
Nonetheless in practical systems, an accurate system model is
difficult or even impossible to obtain, especially for large and
complex industrial  processes.  This is  particularly difficult  for
attackers  who  usually  have  only  limited  access  to  system
knowledge.  Therefore,  studying  cyber-security  with  partial
knowledge of system parameters or pure data-driven methods
is a meaningful topic [143]–[147].  

B.  Robust Design
In the model-based approaches to cybersecurity,  a majority

of them consider the cases that the model possessed by attack-
ers  and  defenders  to  be  accurate.  Based  on  this  assumption,
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one  can  design  strictly  stealthy  attacks  and  countermeasures.
However, in practical cases, uncertainties in the model param-
eters  have  a  great  impact  on  the  stealthiness  property.  In  the
deterministic  framework  for  designing  integrity  attacks,  the
boundness of residuals is achieved by the cancellation of two
unbounded  attack  signals  in  the  direction  of  unstable  eigen-
vectors.  Therefore,  even a  minor  inconsistency in  calculating
these  eigenvectors  can  prevent  the  attacks  from  maintaining
residuals  within  bounded  limits  consistently.  Future  research
should  explore  robust  stealthiness  and  defensive  measures  in
the context of model uncertainties [148], [149]. A representa-
tive  study  is  presented  in [149],  where  a  novel  class  of
resilient  estimation  algorithms  is  designed  when  there  exist
uncertainties in system matrices.  

C.  Imperfect Transmission Channels
The majority of existing results assume that, under nominal

conditions, the transmission channel is perfect without delays
and  packet  dropouts.  However,  the  influence  of  such  imper-
fections  on the  design of  optimal  attacks  and defensive  mea-
sures  has  not  been  thoroughly  studied  yet.  Future  endeavors
could be dedicated to analyzing the effects of cyber-attacks in
imperfect  wireless  links.  This  investigation  will  enhance  the
applicability  of  the  related  theoretical  research  to  real-world
systems.  

D.  Modern Industrial Alarm Systems
Industrial  alarm  systems  are  commonly  used  to  provide

timely alerts when faults occur in industrial processes. Nowa-
days, most alarm systems are designed to minimize the impact
of faults and improve the effectiveness of corrective responses
for  field  workers [150].  As  has  been  pointed  out  by  many
industrial experts, there is an urgent requirement to safeguard
industrial  facilities  from  cyber-attacks.  In  future  work,  it
would  be  valuable  to  create  an  integrated platform that  com-
bines alarm management tools and fault/attack detection algo-
rithms.  This  integration aims to  prompt  the delivery of  alerts
in  case  of  any  abnormal  events  by  making  full  utilization  of
available  information  from  different  sources  and  leveraging
techniques in different disciplines.
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