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   Abstract—This paper proposes linear and nonlinear filters for a
non-Gaussian dynamic system with an unknown nominal covari-
ance of the output noise. The challenge of designing a suitable fil-
ter in the presence of an unknown covariance matrix is addressed
by focusing on the output data set of the system. Considering that
data  generated  from  a  Gaussian  distribution  exhibit  ellipsoidal
scattering,  we  first  propose  the  weighted  sum  of  norms  (SON)
clustering  method  that  prioritizes  nearby  points,  reduces  distant
point  influence,  and  lowers  computational  cost.  Then,  by  intro-
ducing the weighted maximum likelihood, we propose a semi-def-
inite  program  (SDP)  to  detect  outliers  and  reduce  their  impacts
on each cluster.  Detecting these  weights  paves  the  way to  obtain
an appropriate covariance of the output noise. Next, two filtering
approaches  are  presented:  a  cluster-based  robust  linear  filter
using the maximum a posterior (MAP) estimation and a cluster-
based robust nonlinear filter assuming that output noise distribu-
tion stems from some Gaussian noise  resources  according to  the
ellipsoidal  clusters.  At  last,  simulation  results  demonstrate  the
effectiveness of our proposed filtering approaches.
    Index Terms—Data-based  filter,  maximum  likelihood  estimation,
unknown  covariance,  weighted  maximum  likelihood  estimation,
weighted sum-of-norms clustering.
  

I.  Introduction

DUE to science and technology’s rapid advances, a signifi-
cant number of data are being generated in various engi-

neering  fields,  including  but  not  limited  to  satellite-based
remote  sensors,  time-series  systems,  and  telecommunication
data [1].  This  has  made  it  imperative  to  analyze  and  process
big  data  in  contemporary  engineering  design,  particularly  in
the areas of modeling, control, and estimation.

By appearing complex dynamics in different real-world sys-
tems  such  as  robotics,  aerospace,  transportation,  power  grid,
etc.,  we  face  significant  uncertainties  and  less  knowledge  in
our designs [2]. In this regard, traditional methods and princi-
ples in controller design, system monitoring, and performance
evaluation  are  challenging  or  infeasible.  Most  approaches
depend  on  accurate  physical  and  dynamic  models  and  com-
plete information about design parameters. Obtaining an exact
model  is  hard  or  impossible  for  complex  systems.  Different
methods to model systems can be involved in four main cate-

gories:  analytical,  numerical,  data-driven,  and  hybrid  models
[3].  In  the  era  of  machine  learning,  data-driven  approaches
offer  powerful  tools  for  identifying  dynamical  systems  with-
out  requiring  a  deep  understanding  of  the  model  structure
[4], [5].

Data-based  methods  in  dynamic  systems  have  been  pre-
sented  primarily  in  control  problems  and  rarely  in  state  esti-
mation.  These methods play a crucial  role in system identifi-
cation  and  balancing  the  lack  of  knowledge  about  essential
design  parameters.  During  the  last  decades  since  the  Indus-
trial  Revolution,  system identification has been a critical  ele-
ment  in  most  practical  complex  designs.  Moreover,  in  some
cases, despite access to the system model, many conventional
estimation and control structures may not be applicable due to
a  lack  of  essential  information.  Recently,  advancements  in
computational  capabilities,  iterative  learning,  reinforcement
learning, and deep learning have given rise to new online and
offline approaches to compensate for the problems mentioned
above [6]−[9].

Estimation  in  dynamic  systems  is  performed  to  obtain
approximations  of  the  system  parameters  using  information
from  a  model  and  any  available  measurements.  Among  all
estimation  and  filtering  methods,  the  Kalman  filter  is  perva-
sive.  It  is  a  filter  that  uses  the  Bayesian  rule  to  express  the
posterior  probability  in  terms  of  the  likelihood  and  the  prior
distributions [10].  The  classical  Kalman  filtering  theory  has
two  main  assumptions.  The  first  is  the  accuracy  of  prior
knowledge of the system model and statistical noise features,
and the second is the Gaussianity of noises. In many practical
systems, noises are non-Gaussian due to environmental condi-
tions,  sensor  failure,  manufacturing  activities,  etc.  Heavy-
tailed  noises  are  most  important  among  these  different  kinds
of  noises [11], [12].  Various  filters  have  been  designed  to
work  out  the  filtering  problem  against  heavy-tailed  noises,
e.g., see [13]−[18]. Although these filters have suitable perfor-
mance, they have limitations like knowing the accurate nomi-
nal  relevant  covariance  matrices  or  comparative  threshold.
Since  non-Gaussian  heavy-tailed  noises  increase  the  covari-
ance value of a distribution [19], filters need some considera-
tions to compensate for it. Lack of exact models and essential
knowledge  about  the  system  and  noise  features  degrade  the
performance  of  filters;  therefore,  data-driven  filtering  meth-
ods  are  gaining popularity.  In [20],  a  direct  data-driven filter
has  been  designed  with  no  mathematical  model  for  linear
time-invariant  dynamic  systems  with  bounded  disturbances
and  noises.  The  authors  use  set  membership  to  estimate  the
sets of solutions. Furthermore, using quantized measurements,
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[21] proposes  a  data-driven  filter  to  minimize  the  worst-case
estimation  error  in  the  presence  of  bounded  noises.  Also,  it
introduces  an -  approximately-optimal  worst-case  filter
through linear  programming technique.  Recently,  data-driven
unknown  input  observer  and  state  estimator  for  linear  time-
invariant systems are investigated in [22].

Considering  all  of  the  mentioned  points,  data-driven  tech-
niques  have  not  been  effectively  applied  in  state  estimation
problems.  Moreover,  despite  having  information  about
dynamic  models,  conventional  filtering  methods  are  some-
times inefficient because of severe environmental noise condi-
tions  and  lack  of  statistical  features.  Generally,  covariance
matrix  estimation  methods  can  be  divided  into  four  major
groups including correlation method [23], the maximum-like-
lihood method [24], the covariance matching method [25] and
the Bayesian method [26]. Unfortunately, not only do most of
these  approaches  assume  that  noises  have  Gaussian  distribu-
tion but also they suffer from some problems such as sensitiv-
ity  to  outliers,  reaching  non-invertible  covariance  matrices,
etc.  Therefore,  there  is  a  solid  need  to  design  an  appropriate
filter  for  dynamic  systems  in  the  presence  of  non-Gaussian
noises  with  less  or  no  information  about  noise  covariances.
For  non-Gaussian  systems,  a  finite  set  of  higher-order
moments  of  the  state  and  measurement  noises  is  obtained  in
[27] using  the  correlation  measurement  difference  method,
such  that  the  observable  matrix  is  full  rank.  Moreover,  some
recent works such as [28], [29] present a set of suitable filters
against  inaccurate  covariances  of  the  process  and  measure-
ment noises for non-Gaussian dynamic systems using the vari-
ational  Bayesian  method.  Since  these  filters  are  designed
based on the probability density functions, they are more sen-
sitive  to  initial  values  of  distributions’ parameters.  Consider-
ing  all  stated  problems  for  obtaining  noise  covariance,  using
systems output data can be an effective way to compensate for
deficit  knowledge. This motivates us to propose a data-based
filter  for  time-variant  non-Gaussian  systems  without  depend-
ing  on  the  output  nominal  noise  and  accurate  process  noise
covariances.  In  the  proposed  approach,  we  assume  that  sys-
tem output data are accessible.

Grouping  data  based  on  their  likeness  is  an  approved  con-
cept in various science fields. In statistics, however, it can be
done  based  on  two  different  situations  where  there  is  prior
information  to  gain  more  about  the  group  structure  or  not.
Unavailable  information  necessitates  unsupervised  learning
tools or clustering algorithms. In other words, the problem of
dividing a given set of data points with high uniformity within
the groups and low diversity between groups is called cluster-
ing.  Clustering  is  ubiquitous  in  machine  learning,  pattern
recognition,  statistics,  image  processing,  and  biology.  Some
important  clustering  algorithms  are  hierarchical  clustering,
Gaussian  mixture  models  (GMMs),  and  K-mean  clustering
[30].  Each of these methods bears some disadvantages.  Time
complexity  and  nonexisting  mathematical  objectives  are  pri-
mary  defects  of  hierarchical  clustering [31].  Long  computa-
tion  time,  falling  into  local  optimum,  and  deciding  are  the
dominant  shortages  of  Gaussian  mixture  models [32], [33].
Also,  sensitivity to the initial  condition and considerably dif-
ferent  clustering  results  are  the  focal  paucities  of  K-means
clustering [34], [35].  These  methods  are  generally  beset  by

local  minima,  which  are  sometimes  significantly  suboptimal.
Recently,  sum-of-norms  (SON)  clustering  has  been  intro-
duced  that  ensures  a  unique  global  minimizer [36], [37] and
covers all the problems mentioned earlier.

Clustering the system data plays a vital role in our proposed
filtering scheme. The shape representation of a cluster is also
vital  in  preserving  the  data  features.  Ellipsoidal  clusters  are
common  because  many  data  observations  are  normally  dis-
tributed [38].  We  cluster  the  data  using  the  sum-of-norms
clustering  method  according  to  this  characteristic  and  the
above-discussed  advantages.  In  this  method,  because  of
choosing a threshold value as a meter for Euclidian distances,
each cluster may suffer from some outliers.  This changes the
ellipsoidal shape due to pushing the cluster center closer to the
outliers.  We  propose  a  semi-definite  program  based  on  the
weighted  maximum likelihood  estimation  (MLE)  to  decrease
their bad effects. By reducing the outlier’s effect, we find the
robust  covariance  of  each cluster  as  the  covariance  of  output
noise  for  data  belonging  to  that  cluster.  Finally,  we  propose
cluster-based  linear  and  nonlinear  filters.  To  sum  it  up,  the
goals and contributions of the proposed approach can be listed
as follows.

1)  To design a  data-based filter  against  heavy-tailed noises
with unknown output and inaccurate process noise covariance.

2)  To  present  the  idea  of  ellipsoidal  clustering  to  compen-
sate for less knowledge about noises’ statistical features.

3) To suggest the weighted SON clustering to improve regu-
larization and the performance of the conventional SON.

4)  To  propose  the  weighted  MLE to  decrease  the  effect  of
outliers  in  each  cluster  and  keep  the  clusters’ ellipsoidal
shape.

5)  To  present  two  data-based  filtering  approaches,  includ-
ing cluster-based linear and cluster-based non-linear filters.

The remainder of the paper is organized as follows. Section
II formally reviews some prerequisite and briefly refers to the
main problem. The clustering steps, a new SDP to reduce the
effects  of  outliers,  and  the  proposed  cluster-based  filters  are
discussed  in  Section  III.  The  notable  specifications  and  fea-
tures  of  the  proposed  filtering  approaches  are  presented  in
Section  IV.  The  simulation  results  are  given  in  Section  V
before concluding the paper in Section VI.

Rm Rm×r

m× r N(·)
0 I∏

log(·)

Notations: The paper uses the following standard notations.
 and  signify  the m-dimensional  Euclidean  space  and

the set of all  real matrices, respectively.  designates
the multivariate Gaussian probability density function.  and 
represent  zero  and  identity  matrices  with  appropriate  dimen-
sions, respectively. Furthermore,  shows the product opera-
tion.  The  symbol “*” in  matrices  stands  for  the  symmetric
terms. Also,  indicates the natural logarithm operation.  

II.  Preliminaries and Problem Formulation

The  concepts  listed  below will  be  used  to  achieve  our  key
goals.  

A.  Sum-of-Norms Clustering

{X j}Nj=1 ∈
Rd

We are interested in dividing a set of observations, 
,  into  different  clusters  such  that  the  close  points  to  each

other are assigned to the same cluster based on the Euclidian
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µ j Rd

meter.  We  do  not  know  the  number  of  clusters,  and  it  is
unnecessary  to  be  large.  Assume that  each cluster  has  a  cen-
troid in  and is a subset of . The SON clustering problem
is presented as follows [37]:
 

min
µ1···µN

N∑
j=1

∥x j−µ j∥2+λ
N∑

j=2

∑
i< j

∥µi−µ j∥p (1)

p ≥ 1 λ > 0 ∑N
j=1 ∥x j−µ j∥2

µ j
x j µ

x

p = 2

in which , and  can be regarded as a parameter that
controls  the  trade-off  between  the  first  term  in  (1)  and  the
number  of  clusters.  The  term  of  presents  the
sum-of-squares  error,  where  is  the  centroid  of  the  cluster
containing . If the corresponding ’s are the same, two dif-
ferent ’s belong to the same cluster. This is the result of the
second term in (1), which is a regularization term. In addition,
we choose  in the proposed approach, but other choices
are possible. After finding the center of the clusters using the
optimization  problem  (1),  the  data  are  fitted  to  each  cluster
based on the spatial threshold.  

B.  Multivariate Gaussian Distribution

Rp

The Gaussian distribution, also known as the normal distri-
bution,  resembles  a  symmetrical  bell  shape.  Let x be  a  ran-
dom  vector  on .  It  has  the  following  probability  density
function:
 

p(x) =
1

(2π)
p
2

(detΞ)
−1
2 exp{−1

2
(x−µ)TΞ−1(x−µ)} (2)

Ξ ∈ Rp×p

µ
where  is the positive definite covariance matrix, and
 is the mean.

(x−µ)TΞ−1(x−µ)Remark  1: ,  is  a  square  of  Mahalanobis
distance. It corresponds to the actual probability of the occur-
rence of the observation.  

C.  Maximum Likelihood Estimation

Y ∈ Rm×n

µ Ξ

Maximum likelihood estimation is a popular way of obtain-
ing  practical  estimators.  Cramer  Rao  Lower  Bound  (CRLB),
Gaussian  PDF,  and  unbiasedness  are  among  MLE’s  asymp-
totic properties. Consider a set of i.i.d of data points ,
containing n observations, which have a Gaussian distribution
with mean  and covariance . The likelihood function, under
the normality assumption, can be written as
 

f (Y,µ,Ξ) =
( 1
√

(2π)m|Ξ|
)nexp{−1

2
(y1−µ)TΞ−1

× (y1−µ)− · · ·−
1
2

(yn−µ)TΞ−1(yn−µ)}. (3)

When dealing with large data sets, we frequently seek statis-
tical and mathematical models to simplify their presentations.
One  of  the  first  questions  we  ask  is  whether  the  data  can  be
fitted  with  a  normal  distribution.  This  entails  estimating  the
normal  distribution’s  mean  and  covariance.  They  are  usually
computed using the conventional MLE method by the follow-
ing problem:
 

max
µ,Ξ

n∑
i=1

log
(

f (yi,µ,Ξ)
)
. (4)

In this problem, the best estimates of the mean and variance

µ

Ξ

are obtained by taking the partial derivative with respect to 
and  of the log-likelihood function and setting it to zero. As a
result, we get
 

µ =

n∑
i=1

1
n

yi

Ξ =

n∑
i=1

1
n

yiyT
i −µµT . (5)

According  to  the  normality  condition,  the  log-likelihood
function consists of the sum of the squared Mahalanobis dis-
tances.  Consequently,  if  outlier  data  exist,  the  mean  and
covariance are pushed toward the outliers.

Remark 2: Maximizing the logarithm of the likelihood cost
function  is  equivalent  to  minimizing  the  Mahalanobis  dis-
tance. Outliers make the Mahalanobis distance large.  

D.  Kalman Filter
The Kalman filter is the most famous state estimator for lin-

ear  Gaussian  systems,  but  its  performance  is  degraded in  the
presence  of  non-Gaussian  noises.  It  can  be  derived  from
Bayesian recursive relations. In this regard, prediction and fil-
tering steps are achieved as follows:

Prediction:
 

p(xk+1|yk) =N(xk+1 : x̂′k+1,P
′
k+1)

x̂′k+1 = Ak x̂k

P′k+1 = AkPkAT
k +Qk (6)

Filter:
 

p(xk |yk) =N(xk : x̂k,Pk)

x̂k = x̂′k +Kk(yk −Ck x̂′k)

Pk = (I−KkCk)P′k(I−KkCk)T +KkRkKT
k (7)

where the gain matrix is given by
 

Kk = P′kCT
k

(
CkP′kCT

k +Rk
)−1
. (8)

  

E.  System Model
We assume that output measured data are produced from the

following linear state-space dynamic model:
 

xk+1 = Ak xk + vk

yk =Ck xk +wk

yk = [y1,y2, . . . ,yk] (9)
xk ∈ Rnx yk ∈ Rny

Ak ∈ Rnx×nx Ck ∈ Rny×nx

vk

Qk
wk

Rk

k

where  and  are, respectively, the state and the
measurement  signals.  and  are  dyna-
mic  and  output  matrices,  respectively.  Process  noise, ,  is  a
non-Gaussian  noise  vector  with  zero  mean  and  inaccurate
nominal  covariance, .  Also,  measurement  noise  sequence,

,  is  a  non-Gaussian  noise  vector  with  zero  mean  and
unknown nominal covariance matrix, . It is remarkable that
the  process  noise  stems  from  internal  factors  while  output
noise  comes  from  external  sources;  therefore,  the  process
experiences less intense noise than the system’s output. More-
over,  all  measurements  up  to  and  including  time  are  pre-
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yk x0sented by .  We assume that the initial condition  and the
system’s  noises  are  mutually  independent,  satisfying  the  fol-
lowing relation:
 

E



x0− x̄0

vk

wk

 [∗]T
 =

P0 0 0
0 Qk 0
0 0 Rk

 (10)

x̄0 x0where  is the expectation of .

y

εl

This  paper  aims  to  design  data-based  filters  for  the  output
data set, , produced by (9). It is assumed that the output noise
nominal  covariance  is  unknown.  In  the  presence  of  outliers,
conventional  MLE  estimators  are  affected  by  both  good  and
bad observations.  To compensate  for  this  defect,  after  apply-
ing the proposed clustering method, we try to detect outliers in
each cluster to decrease their effects on changing the shape of
clusters  and  the  covariances.  Then,  we  present  a  linear  filter
based  on  the  moving  horizon  estimation  technique  by  restat-
ing the conventional MAP estimation problem for a measure-
ment  data  set.  Moreover,  considering  that  data  in  each  ellip-
soidal  cluster  originated  from  a  Gaussian  distribution,  we
assume  that  there  are  ellipsoidal  clusters  with  Gaussian
specifications for the output noise. By doing so, we propose a
novel data-based nonlinear filter.  

III.  Main Results

We intend to design a suitable filter for non-Gaussian linear
dynamic  systems  with  unknown  output  and  inaccurate  pro-
cess noise covariance. Regarding our idea of output measure-
ments clustering, first, we propose the weighted SON cluster-
ing  method  that  improves  the  conventional  SON’s  perfor-
mance in a large data set.  

A.  Weighted Sum-of-Norms Clustering
We propose the following weighted SON clustering to miti-

gate the influence of distances between cluster centers on the
clustering  performance  and  enhance  the  computational  effi-
ciency of the conventional SON clustering method (1):
 

min
µ1···µN

N∑
j=1

∥x j−µ j∥2+λ
N∑

j=2

∑
i< j

ζi j∥µi−µ j∥p (11)

ζi j ≥ 0where  is a weighting parameter.

ζi j x j xi

ζi j

[0 ∞)

Using a constant weight for each point in the objective func-
tion  of  clustering  can  lead  to  suboptimal  results  because  dis-
tant  points  with  low  similarity  values  would  have  the  same
impact  as  nearby  points  with  high  similarity  values.  To
address  this  issue,  we  introduce  the  concept  that  the  affinity
weight, ,  quantifies  the  similarity  between  and ,  and
assigns higher weights to nearby points and lower weights to
distant  ones.  This  approach  can  also  reduce  the  impact  of
noise  and  outliers  and  consequently,  result  in  more  accurate
and  robust  clustering.  This  requires  that  the  weight  be
obtained from a similarity function based on a statistical simi-
larity measure criterion. The similarity function is typically a
strictly  monotonically  decreasing  continuous  function  in  the

 range with a positive second-order derivative.
Remark  3: The  similarity  measure  criterion  provides  free-

dom  in  selecting  the  similarity  function.  One  of  the  most

widely recognized functions is the Gaussian kernel.

yk

(ϵ1, ϵ2, . . . , εℓ)

We know that the data in the same cluster have similar sta-
tistical  features.  Hence,  to  obtain  output  noise  covariance,
first, we decide to cover a set of n points , by some ellipses

 using the weighted SON clustering. Now, at the
first step, Algorithm 1 is presented for clustering purpose.

Algorithm 1 Clustering Steps

Required:
{X j}Nj=1 ∈ R

d fData point  and similarity function .
Steps:

λ > 01) Set parameter  in (11).
2) Run optimization (11).
3) Find mean and covariance of each cluster based on (5).
4) Detect unsuitable clusters and re-cluster them.
5) Find new mean and covariance of each cluster by (5).

Remark  4: To  have  more  efficiency  in  Algorithm  1,  a  re-
clustering  process  is  welcome  for  unsuitable  clusters.  In  this
regard, clusters with a small number of data are removed and
combined with the other clusters, and clusters with large esti-
mated covariances are divided into some smaller clusters. By
doing  so,  a  balance  is  made  between  the  number  of  clusters
and their number of data.  

B.  Detecting and Reducing the Effect of Outliers

ωi [0 1]

ωi

The  presented  clustering  algorithm  results  in  some  ellip-
soidal clusters for output data of the system. According to the
fact  that  Gaussian  data  have  ellipsoidal  scattering,  we  will
encourage  the  use  of  the  filters  developed  for  Gaussian  sys-
tems for each cluster. Note that the obtained clusters may suf-
fer  from  some  outlier  data.  Outliers  can  change  the  covari-
ance of that cluster and create remarkable bias in the conven-
tional  MLE. For  this  reason,  we are  supposed to  make a  dif-
ference between outliers and good data to improve the perfor-
mance  of  the  MLE.  In  this  regard,  we  need  to  minimize  the
sum of the smallest squared Mahalanobis distances while out-
liers  with  larger  squared  values  are  excluded.  Under  such  a
circumstance, we introduce a variable  in the range of ,
so that if the squared Mahalanobis distance is larger, the cor-
responding  is smaller. This approach is useful in state esti-
mation  to  detect  and  decrease  the  effect  of  outliers.  Accord-
ing to this concept, we consider the following weighted MLE:
 

max
µ,Ξ

n∑
i=1

ωi log
(

f (yi,µ,Ξ)
)

n∑
i=1

wi = 1. (12)

We  can  rewrite  the  cost  function  in  (12)  by  replacing  the
likelihood function (3) and using the features of the logarithm
function as follows:
 

L(µ,Ξ) =
n∑

i=1

−ωi

2
{log(2π)m+ logdetΞ+ ∥yi−µ∥2Ξ−1 }

n∑
i=1

wi = 1. (13)
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One crucial point is that the above log-likelihood function is
not concave or convex.

ωIf we fix the parameter  in the optimization problem (12),
we can easily obtain the mean and covariance variables by the
following lemma.

µ Ξ

Lemma  1: Consider  the  weighted  MLE  problem  (12),  the
mean and covariance,  and , are obtained by
 

µw =

n∑
i=1

wiyi

Ξw =

n∑
i=1

wiyiyT
i −µwµ

T
w. (14)

µ

Ξ

Proof: By taking partial derivations of (12) with respect to 
and  and setting them tos zero, it is straightforward to obtain
(14). ■

Due  to  a  lack  of  knowledge  of  good  and  bad  observations
and  the  problem’s  non-convexity,  we  cannot  determine  the
appropriate  weights  and  utilize  the  weighted  MLE.  Iterative
algorithms,  like  iteratively  reweighted least  squares [39],  can
solve this problem by updating the weights in inverse propor-
tion  to  Mahalanobis  distances.  However,  slow  convergence
and trap into  local  optimal  solutions  are  some of  their  weak-
nesses. In the following, with the help of a suitable objective
function  and  introducing  probability  criterion  on  all  observa-
tions, we will present an optimization problem to set the out-
liers  with  smaller  weights  for  solving  the  above-mentioned
issues. To this end, considering the following relations:
 

di = (yi−µχ)TΞ−1
χ (yi−µχ)

prob(yi) = (2π)
−ny

2 (detΞχ)
−1
2 exp

(−di

2
)

(15)

χ = (χ1, . . . ,χn)
∑n

i=1χi = 1

χ

and using the fact that outliers have low probability and large
Mahalanobis  distances,  we  encourage  using  probability  of
occurrence as weights to decrease the effect of outliers in our
proposed  method.  We  introduce  a  positive  weight  vector

 with .  Therefore,  inspiring  Remark
2,  the  mean  and  covariances  of  the  weighted  MLE (14),  and
the  squared  Mahalanobis  distances  (15),  we  present  the  fol-
lowing  optimization  problem  to  obtain  optimal  values  of 
and d:
 

min
χ,µχ,Ξχ,d

L(χ,d)

s.t. µχ =
n∑

i=1

χiyi

Ξχ =

n∑
i=1

χiyiyT
i −µχµT

χ

di = (yi−µχ)TΞ−1
χ (yi−µχ)

n∑
i=1

χi = 1

χ ≥ 0. (16)

χi di

In  (16),  the  loss  function  must  be  monotonically  non-
decreasing function of  and . This function should be cho-

χi
di

di χi

sen such that  is inversely proportional to the corresponding
Mahalanobis distance, . Doing so allows all outlier observa-
tions  with  large  to  receive  small  weight .  On  the  other
hand, we ought to choose a suitable cost function such that the
sum  of  all  Mahalanobis  distances  is  small.  To  satisfy  all  of
these  conditions,  in  the  optimization  problem  (16),  we  pro-
pose the cost function as
 

L(χ,d) =
n∑

i=1

χ2
i (di+1). (17)

χi

In what follows, we present a theorem to obtain the best val-
ues  of  weights, ,  which  have  an  essential  role  in  outliers
detection and decreasing their effects.

Theorem  1: The  optimization  problem  (16)  with  the  cost
function (17) can be reformulated as the following SDP prob-
lem:
 

min
χ,δ

n∑
i=1

δi

s.t.



1 χi

n∑
i=1

χiyT
i

χi δi χiyT
i

∗ ∗
n∑

i=1

χiyiyT
i


≥ 0, ∀i

n∑
i=1

χi = 1

χ ≥ 0. (18)

δi χ2
i (di+1) ≤ δi

Proof: For  the  cost  function  (17),  assume an  upper  bound,
,  such  that .  Thus,  minimization  of  this  cost

can be formulated as follows:
 

min
χ,δ

n∑
i=1

δi

s.t. χ2
i (di+1) ≤ δi, ∀i
n∑

i=1

χi = 1

χ ≥ 0. (19)
The first constraint can be reformulated as

 

δi−χ2
i ≥ χ2

i (yi−µχ)TΞ−1
χ (yi−µχ)

⇒
δi−χ2

i χi(yi−µχ)T

∗ Ξχ

 ≥ 0. (20)

Now,  by  substituting  the  weighted  mean  and  covariance
from the constraints of (16), the above equation can be simpli-
fied as
 

δi−χ2
i χiyT

i −χiµ
T
χ

χiyi−χiµχ

n∑
i=1

χiyiyT
i −µχµT

χ

 ≥ 0
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⇒


δi χiyT

i

∗
n∑

i=1

χiyiyT
i

−

χi

n∑
i=1

χiyi


×
χi

n∑
i=1

χiyT
i

 ≥ 0.

Finally,  applying  the  Schur  complement  equivalence,  the
SDP problem in (18) is obtained. ■

Remark  5: Since  outliers  are  destructive  in  different
domains and applications and cause some limitations, the pro-
posed SDP problem in (18) can detect  outliers in each Gaus-
sian data set without needing extra designs.

Until  now,  we have  presented  a  method to  cluster  the  data
set and an optimization problem to compute the weights in the
MLE  for  reducing  the  effect  of  outliers.  Note  that  we  can
obtain  the  covariance  of  each cluster  using  two methods,  the
conventional  MLE  and  the  weighted  MLE.  The  second
method  is  robust  against  outliers  thanks  to  obtaining  the
covariance  according  to  reducing  their  impact.  Now,  we  are
ready to introduce our proposed filtering approaches.  

C.  Cluster-Based Linear Filter
Since the proposed approach incorporates the new weighted

SON  clustering  and  the  new  weighted  MLE,  we  deal  with  a
data set belonging to Gaussian distributions with different sta-
tistical  features  in  each  cluster.  Given  this  circumstance,  in
this section, instead of using the existing recursive filters, such
as  the  Kalman filter,  to  estimate  or  predict  the  states  accord-
ing  to  the  available  information  at  each  instant,  we  intend  to
estimate the entire states at once using the whole data set.

y1:N

Theorem  2: The  state  estimations  for  the  output  data  set,
, belonging to the system (9), can be obtained as

 

X̂ = −(ÕT Õ)−1ÕT F̃ Ỹ (21)
where
 

Ỹ =


x̂0

y0

...

yN


, X =


x0

...

xN

 , F̃ =


P
− 1

2
0 0
0 0
0 Ry


 

Õ =


P
− 1

2
0 0
Qx

Rx

Ry =


R
− 1

2
0 · · · 0
...

. . .
...

0 · · · R
− 1

2
N



Qx =


−Q
− 1

2
0 A0 Q

− 1
2

0 · · · 0
...

. . .
. . .

...

0 · · · −Q
− 1

2
N−1AN−1 Q

− 1
2

N−1



Rx =


−R
− 1

2
0 C0 · · · 0
...

. . .
...

0 · · · −R
− 1

2
N CN

 .

Proof: Based  on  the  Bayesian  method  and  using  the  fact
that  process  and  measurement  noises  are  independent,  we
have
 

p(x0:N) =
N−1∏
i=0

p(xi+1|xi)p(x0)

p(y0:N |x0:N) =
N∏

i=0

p(yi|xi).

Thus, the posterior is given by
 

X̂ = argmin
x0:N

∥x0− x̂0∥2P−1
0
+

N−1∑
i=0

∥xi+1−Aixi∥2Q−1
i

+

N∑
i=0

∥yi−Cixi∥2R−1
i
. (22)

∥x∥w−1 = (w
−1
2 x)T (w

−1
2 x)According to the fact that , the cost

function in (22) can be rewritten as
 

{P−
1
2

0 (x0− x̂0)}T {P−
1
2

0 (x0− x̂0)}+ {Q−
1
2

0 (x1−A0x0)}T

×{Q−
1
2

0 (x1−A0x0)}+ · · ·+ {Q−
1
2

N−1(xN −AN−1xN−1)}T

×{Q−
1
2

N−1(xN −AN−1xN−1)}+ {R−
1
2

0 (y0−C0x0)}T

×{R−
1
2

0 (y0−C0x0)}+ · · ·+ {R−
1
2

N (yN −CN xN)}T

×{R−
1
2

N (yN −CN xN)}. (23)

By  rearranging  the  terms  in  (23)  and  using  the  defined
matrices in (21), the optimization problem (22) can be written
as
 

X̂ = argmin
X

(F̃ Ỹ+ ÕX)T (F̃ Ỹ+ ÕX). (24)

X
X̂

Consequently,  taking  partial  derivation  with  respect  to ,
the estimation, , in (21) is obtained. ■

(ÕT Õ)

Nw

Since  (21)  involves  the  inverse  of  the  matrix ,  this
matrix  grows  in  size  as  the  number  of  data  or  dimension
increases. To solve this unfavorable issue, we propose the fol-
lowing  optimization  problem  to  obtain  the  moving  horizon
estimation (MHE) with a window length of :
 

min
xt−Nw:t

∥xt−Nw − x̂t−Nw∥2P−1
t−Nw
+

t−1∑
i=t−Nw

∥xi+1−Aixi∥2Q−1
i

+

t∑
i=t−Nw

∥yi−Cixi∥2R−1
i
. (25)

Consequently, the steps of the proposed cluster-based robust
moving horizon estimation are presented in Algorithm 2.

Remark  6: In  Algorithm 2,  Theorem 1  determines  the  best
weights  and detects  outliers;  subsequently,  the elimination of
outliers  when  computing  the  robust  covariance  matrices  of
each  cluster  results  in  a  filter  that  is  robust  against  outliers.
Therefore, we call  it  a cluster-based robust MHE. We have a
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simple (non-robust) cluster-based MHE if we omit step 2 and
determine the covariance matrix by the conventional MLE.

Algorithm 2 Cluster-Based Robust Moving Horizon Estimation

Required:
{X j}Nj=1 ∈ R

d NwData Point  and window length .
Steps:
1) Run Algorithm 1.
2) Detect outliers of each cluster using Theorem 1.
3) Calculate robust covariance matrix of each cluster.

yk4) Determine cluster of each .
5) Obtain the state estimation from (25).

Nw = N
Remark 7: Equation (21)  is  the closed-form solution of  the

optimization problem (25) in a complete interval .  

D.  Cluster-Based Non-Linear Filter

εl

εl

As we discussed, each ellipsoidal set’s data originates from
a Gaussian distribution in the SON clustering. Since we clus-
ter the output data with  independent ellipsoidal set and con-
sidering this assumption that the intensity of the process noise
is  less  than  output  noise,  we  can  assume  that  there  exist 
Gaussian resources for the output noise distribution. Consider-
ing all  clusters,  the  total  occurrence probability  of  the  output
noise is equal to the sum of the occurrence probability of each
Gaussian resource. This is another idea to design a new filter.
We show that this filter would be non-linear. To this end, we
introduce  the  following  probability  density  function  for  each
noise resource:
 

p(wik) = βkiN(wk : 0,Rki), i = 1 : εl
εl∑

i=1

βki = 1, βki =
ni

n
(26)

ni

i = 1 : εl

εl

´̂x01 : ´̂x0εl

p(xk |yk) k = 0
p(x0|y0) y0

p(y0|x0i)

where i is  the number of clusters,  is  the number of data in
each cluster, and n is the number of data in a data set. Due to
the data  clustering,  it  is  impossible  to  determine which noise
distributions  ( )  occur  at  each  specific  time.  In  this
condition, to solve the estimation problem using the Bayesian
method,  it  is  necessary  to  consider  possibilities  and  the
potential influence of each noise distribution on the measure-
ments  by incorporating separate  prior  states  ( )  corre-
sponding to each noise distribution. To this end, we obtain the
conditional PDF of . Let us start with  and deter-
mine  using the measurement ; then, we can gener-
alize  it  to  other  times.  First,  the  probability  density  function

 can easily be obtained as
 

p(y0|x0i) = βkiN(y0 : C0x0i,R0i). (27)

Using  above  explanations  and  substituting  (27)  into  the
Bayesian rule result in
 

p(x0|y0) =

εl∑
i=1

N(x0 : ´̂x0i, Ṕ0i)βkiN(y0 : C0x0i,R0i)

εl∑
i=1

pi(y0|y−1)

. (28)

The denominator in (28) involves the integration of the sum

x0 y0

of  likelihoods  and  priors  for  each  noise  distribution.  This
ensures  that  the  total  probability  of  all  states  of  given 
equals one. In this vein, the density function (28) can be writ-
ten as (29).

 

p(x0|y0) =

εl∑
i=1

N(x0 : ´̂x0i, Ṕ0i)βkiN(y0 : C0x0i,R0i)

w
(
εl∑

i=1

N(x0 : ´̂x0i, Ṕ0i)βkiN(y0 : C0x0i,R0i))dx0

.

(29)

N(x0 : x̂′0, P′0)N(y0 : C0x0, R0) = N(x0 : x̂0, P0)N(y0 : C0 x̂0,

C0Ṕ0CT
0 +R0)

p(x0|y0)

Considering  the  Bayesian  rule  for  obtaining  the  conven-
tional  Kalman filter  and relations in (6)  and (7),  it  holds that

.  To  achieve  our  proposed  filter  structure  and
using this relation among density functions, the density func-
tion  is given by (30).

 

p(x0|y0)

=

εl∑
i=1

β0iN(x0 : x̂0i,P0i)N(y0 : C0 x̂′0i,C0Ṕ0iCT
0 +R0i)

εl∑
i=1

β0iN(y0 : C0 x̂′0i,C0Ṕ0iCT
0 +R0i)

,

=

εl∑
i=1

α0iN(x0 : x̂0i,P0i). (30)

For simplicity, we assume
 

ζ0i =N(y0 : C0 x̂′0i,C0P′0iC
T
0 +R0i). (31)

Using  the  Bayesian  rule  to  inspire  the  strides  of  obtaining
the  Kalman  filter,  and  after  setting  out  the  results,  the  pro-
posed  filter  structure  consists  of  the  prediction  and  filtering
steps as follows:

Prediction:
 

x̂′(k+1)i = Ak x̂ik

P′(k+1)i = AkPkiAT
k +Qk

α′(k+1)i = αki

έl(k+1) = εlk (32)
Filter:

 

x̂ki = x̂′ki+Kki(yk −Ck x̂′ki)

Pki = (I−KkiCk)P′ki(I−KkiCk)T +KkiRkiKT
ik

ζki =N(yk : Ck x̂′ki,CkP′kiC
T
k +Rki)

αki =
βkiζki∑εl

i=1 βkiζki

εlk = έlk. (33)
Moreover, the filter gain can be obtained as

 

Kik = P′kiC
T
k

(
CkP′kiC

T
k +Rki

)−1
. (34)

x̂k

Now,  after  computing  the  estimation  of  each  cluster,  to
obtain the unique estimation for the state, , we have 
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x̂k = E[xk |yk] =
w

xk

εl∑
i=1

αkiN(xk : x̂ki,Pki)dxk

=

εl∑
i=1

αki x̂ki. (35)

x̂′k+1Subsequently,  can be achieved as
 

x̂′k+1 = E[xk+1|yk]

=
w

xk+1

έl(k+1)∑
i=1

α(k+1)iN(xk+1 : x̂′(k+1)i,P
′
(k+1)i)dxk+1

=

έl(k+1)∑
i=1

α(k+1)i x̂′(k+1)i. (36)

Pk P′k+1

Moreover,  using  (35)  and  (36),  covariances  of  estimation
error,  and , are given by
 

Pk = E[(xk − x̂k)(xk − x̂k)T |yk] =
w

(xk − x̂k)(xk − x̂k)T

εl∑
i=1

αkiN(xk : x̂ki,Pki)dxk

=
w

(xk −
εl∑

i=1

αki x̂ki)(xk −
εl∑

i=1

αki x̂ki)T
εl∑

i=1

αki

N(xk : x̂ki,Pki)dxk

=

εl∑
i=1

αki[
w

xk xT
kN(xk : x̂ki,Pki)dxk −

εl∑
i=1

αki x̂ki

w
xT

kN(xk :, x̂ki,Pki)dxk

−
w

xkN(xk : x̂ki,Pki)dxk(
εl∑

i=1

αki x̂ki)T + x̂k x̂T
k ]

=

εl∑
i=1

αki(Pki+ x̂ki x̂T
ki− x̂k x̂T

ki− x̂kixT
k + x̂k x̂T

k )

=

εl∑
i=1

αki[Pki+ (x̂k − x̂ki)(x̂k − x̂ki)T ] (37)

and
 

P′k+1 = E[(xk+1− x̂′k+1)(xk+1− x̂′k+1)T |yk]

=

έl(k+1)∑
i=1

α(k+1)i[P′(k+1)i+ (x̂′k+1− x̂′(k+1)i)

× (x̂′k+1− x̂′(k+1)i)
T ]. (38)

εl

ζki αki
x̂k

According  to  the  main  filter’s  relation  (35),  this  filtering
approach consists of a bank of  Kalman filters. Although the
prediction and filtering relations in (31), (32) and (33) are lin-
ear  similar  to  the Kalman filter,  because of  using the nonlin-
ear  parameters  and  in  (33)  for  obtaining  state  estima-
tion  in (35), the proposed filter in this part is nonlinear.

As the last  step,  Algorithm 3 is  presented for  the proposed
cluster-based  robust  nonlinear  filter.  We  have  a  simple  clus-

ter-based  nonlinear  filter  by  removing  the  second  step  in
Algorithm 3 and using the conventional MLE.

Algorithm 3 Cluster-Based Robust Non-Linear Filter

Required:
{X j}Nj=1 ∈ R

d εlData Point  and .
Steps:
1) Run Algorithm 1.
2) Detect outliers of each cluster using Theorem 1.
3) Calculate robust covariance matrix of each cluster.

k← 1for  to N do
ℓ← 1 εlfor  to  do

5)  Compute  the  parameters  in  the  prediction  and  filtering  steps
from (32) and (33).

end for
6) Obtain the state estimation by (35).
end for

  

IV.  Discussion on the Results

F̃

In the development of filters, a bias in the estimate can arise
due  to  heavy-tailed  noises.  To  compensate  for  this  bias,  the
effects of outliers should be reduced. Based on the above con-
cepts,  our  proposed  cluster-based  robust  filters  have  a  better
performance  than  the  proposed  cluster-based  filters,  due  to
decreasing the filter gain (34) and the matrix  in (21) which
consequently improves the filter performance. However, vari-
ous factors can affect the performance of moving horizon esti-
mators such as window length, initial state, covariance values
in  the  beginning  of  window,  time-variant  or  time-invariant
characteristics  of  the  systems’ dynamic,  etc.  In  light  of  the
points mentioned above, we cannot explicitly claim which of
the proposed filters is the best.

The impact of removing outliers (from a cluster or data set)
on  statistical  covariance  can  vary  depending  on  the  distribu-
tion  of  the  remaining  data.  The  covariance  decreases  signifi-
cantly when the outliers are large and far from the other data.
These outliers can lead to significant variability and distortion
in the covariance estimate. On the other hand, outliers consis-
tent  with the general  trend of  the data have different  impacts
on covariance if removed. It should be noted that the number
of data in each cluster can also affect this phenomenon.

The number of measurement data in this process depends on
the  system complexity,  dispersion,  and  constraints.  Although
clustering  is  possible  for  small  number  of  data,  the  accuracy
of  covariance  estimation  and  consequently,  the  precision  of
filtering decreases. Besides, highly dispersed data set are unre-
liable  for  clustering,  while  excessive  data  leads  to  a  single
ellipsoidal cluster due to the central limit theorem. Therefore,
we suggest to check the data scatter and collect the measure-
ment  data  such  that  the  dispersion  and  empty  positions  are
minimized in the whole data set.

ζi j

In the proposed methods, different parameters appear in the
optimization  problem,  filtering,  and  clustering.  The  parame-
ters  in  the  first  and  second  groups  are  computed  precisely.
However,  in  the  weighted  SON  clustering  problem,  the
weights  are  obtained  using  the  similarity  functions.  In
Remark 3, the Gaussian kernel has been introduced as one of
the  most  famous  functions.  Also, p is  another  parameter  and
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(p = 2)

determines  which  norm  is  used  in  the  clustering.  We  know
that  different  norms  emphasize  different  aspects  of  the  data,
leading to variations in the clustering outcome. The proposed
approach  optimally  uses  the  Euclidean  norm  to  cap-
ture the overall distance between data points without any bias
or focusing on specific characteristic of data.

The proposed filtering algorithms are offline; therefore, they
do not depend on the time properties of dynamic systems, i.e.,
our  proposed  data-based  filters  can  be  applied  to  both  time-
variant and time-invariant systems.  

V.  Simulation Study

In this section, we want to study the performance and effec-
tiveness of the proposed filters, including cluster-based MHE
(C-B MHE), cluster-based robust MHE (C-B RMHE), cluster-
based  non-linear  filter  (C-B  NF),  and  cluster-based  robust
non-linear filter  (C-B RNF).  For this purpose,  we exert  these
filters  on  the  time-varying  and  practical  system  subject  to
heavy-tailed noises. Since no completely related filters exist in
the  literature,  we  compare  our  proposed  filters  with  those
designed for non-Gaussian systems with known parameters.  

A.  Example 1: Three-Tank System
We consider a three-tank system with the schematic shown

in Fig. 1. The dynamics of this system can be described as fol-
lows:
 

dh1

dt
=

1
Ab

(Q1−α13Ac
√

2g(h1−h3)−qL1)

dh2

dt
=

1
Ab

(Q2+α32Ac
√

2g(h3−h2)−α2OAc
√

2gh2−qL2)

dh3

dt
=

1
Ab

(α13Ac
√

2g(h1−h3)−α32Ac
√

2g(h3−h2)−qL3)

(39)
Q1 Q2 qLi

i (i = 1,2,3) hi
Ac

qmn(m , n)

where  and  are the flow rates of pumps 1 and 2,  is
the leakage flow rate of the tank ,  is the level of
the tank i,  denotes the cross-sectional area of the connect-
ing pipe, and  is the flow rate from tank m to tank
n.  Parameters  of  the  system  and  their  numerical  values  are
tabulated in Table I.

Q1 = 5.5×10−5,Q2 = 3.4×10−5 h1 = 0.4,
h2 = 0.23, h3 = 0.31

Using  the  system  parameters  in Table I with  operating
points  (  m3/s),  and  (

 m), and after linearization and discretiza-
tion of the model (39), we reach the state space model of the
system with the following matrices:
 

A =


0.9799 2.04×10−4 0.0199

2.04×10−4 0.9676 0.0198
0.0199 0.0198 0.9602


B =


64.279 0.0044
0.0044 63.783
0.6515 0.6506


C =


1 0 0
0 1 0
0 0 1

 . (40)

Process and measurement noises are non-Gaussian with the
following distributions:
 

vi,k = 0.9N(0,Q)+0.1N(0,10Q), i = 1,2,3

w j,k = 0.9N(0,R)+0.1N(0,1000R), j = 1,2,3 (41)
Q = R = 0.035where .

Nw = 10
Õ

The performance of the proposed filters is compared to the
maximum  correntropy  Kalman  filter  (MCKF) [13] as  a
famous  filter  in  the  presence  of  heavy-tailed  noises,  the  con-
ventional MHE with window length , and the conven-
tional  Kalman  filter.  Since  the  dimension  of  the  matrix  in
(21) is extensive, to have more analysis, we introduce cluster-
based  and  cluster-based  robust  Kalman  filters  using  the  con-
ventional  Kalman  filter  with  estimated  covariance  matrix
using MLE and weighted MLE, respectively. Fig. 2 shows dif-
ferent  filters’ state  estimation  and  MSE.  Our  proposed  data-
based filters perform better than the Kalman filter, the MCKF,
and  the  conventional  MHE  designed  with  known  and  true
parameters.  The  main  reason  for  this  deficiency  is  that  the
Kalman  filter  is  a  minimum  mean  square  filter  and  is  sensi-
tive  to  non-Gaussian  noises;  therefore,  its  performance
degrades  against  these  noises.  Also,  as  a  prior  filter  against
non-Gaussian noises, the maximum correntropy Kalman filter
cannot  guarantee  a  compelling  performance  against  these
noises.  Moreover,  although  the  conventional  MHE  uses  data
in  a  window  to  obtain  estimations  and  has  a  weak  perfor-
mance  against  non-Gaussian  noises,  it  outperforms  the  con-
ventional Kalman filter and MCKF. This fact brings about the
proposed  cluster-based  MHE  and  the  proposed  cluster-based
robust  MHE  has  a  better  response  than  the  cluster-based
Kalman filter  and cluster-based robust  Kalman filter.  In  con-
trast,  data  clustering,  outlier  detection,  and  data-based  filter-

 

TABLE I 

Three-Tank System Parameters

Descriptions and parameters Numerical value

AbCross-sectional area of the tank ( ) 0.0154 m2 

AcCross-sectional area of the pipes ( ) 5×10−5 m2 
αi jValve opening position ( ) 0.84

 

 

Pump 1 Pump 2
Q1 Q2

h1

V13

VL1 VL3 VL2

V32 V30

h3
h2

Ab

 
Fig. 1.     Three-tank system.
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ing  equip  the  proposed  approaches  to  perform  well  against
non-Gaussian noises.  

B.  Example 2: Time-Variant System
To show the usefulness of our proposed filters for time-vari-

ant  systems,  we  assume that  output  data  set  of  the  following
non-Gaussian time-variant system (taken from [40] with some
modification) are available:
 

xk+1 =

−0.9 0 −0.3+0.2sin(0.3k)
0 0.7 0.2
−0.5 0 0.7+0.1cos(0.1k)

 xk + vk

yk =

[
0.5+0.3sin(0.1) 1 0

0.5 1+0.1cos(0.3) 0.1

]
xk +wk. (42)

Process and measurement noises are non-Gaussian with the

following distributions:
 

vi,k = 0.9N(0,Q)+0.1N(0,10Q), i = 1,2,3

w j,k = 0.9N(0,R)+0.1N(0,700R), j = 1,2 (43)
Q = R = 0.15where .

We have six ellipsoidal  clusters after  running Algorithm 1.
Fig. 3 shows  the  iso-contour  of  these  six  ellipsoidal  clusters
along with the outliers of each cluster. Clusters’ shapes with-
out  outliers  emphasize  the  proposed  optimization’s  proper
performance.  It  is  worth  noting that  if  the  axes  of  ellipsoidal
are  parallel  to  coordinate  axes,  the  obtained  covariances  are
diagonal. Moreover, the results of mean square error of states
for  the  proposed  data-based  filters  are  compared  in Table II.
Likewise,  our  proposed  filters  have  better  performance  than
the others.
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Fig. 2.     State estimations and MSEs in Example 1 (C-B, R, and N are abbreviation of cluster-based, robust, and non-linear).
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Fig. 3.     Error ellipse (Iso-Contour) of the each cluster with outliers in Example 2.
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Based on the results in Table II, the robust moving horizon
estimation  with  a  whole  window  performs  better  than  other
methods. This phenomenon is because MHE with a large win-
dow  length  in  slow  varying  dynamic  systems  can  capture
more  relevant  information  for  estimation,  and  consequently,
has a more reliable performance.  

VI.  Conclusion

εl
εl

In this paper, we aimed to develop data-based filters for lin-
ear dynamic systems against non-Gaussian heavy-tailed noises
under the unknown output noise covariance condition. Inspir-
ing  that  Gaussian  data  sets  have  ellipsoidal  scattering,  we
clustered the output  data  set  of  a  non-Gaussian dynamic sys-
tem using the proposed weighted SON clustering method. The
proposed approach can improve the performance of the SON
clustering  method  by  focusing  on  closely  spaced  points  and
reducing  the  computational  cost.  Outliers  in  each  cluster  can
change  the  clusters’ ellipsoidal  shape  and  affect  the  filter’s
performance.  To  address  this  issue,  we  proposed  an  SDP
problem based on the weighted maximum likelihood to detect
outliers in each cluster and obtain a robust covariance matrix.
We then developed four different filters using two approaches.
In the first method, we presented the cluster-based MHE. Pro-
vided that output noise covariance is computed by the conven-
tional MLE and the proposed SDP problem, we have a simple
cluster-based  filter  and  a  robust  cluster-based  filter,  respec-
tively. In the second approach, given  clusters, we assumed
that there are  Gaussian resources for the output noise distri-
bution with their specific statistician features. This idea led us
to  extract  a  non-linear  filter  structure,  presenting  a  cluster-
based  non-linear  filter  and  a  cluster-based  robust  non-linear
filter,  depending  on  how  the  covariance  matrix  is  computed.
Finally,  we  verified  the  performance  of  our  proposed  filters
through  simulation  results  on  a  practical  system  and  a  time-
variant system.
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