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   Abstract—Solving  constrained  multi-objective  optimization
problems  with  evolutionary  algorithms  has  attracted  consider-
able  attention.  Various  constrained  multi-objective  optimization
evolutionary algorithms (CMOEAs) have been developed with the
use of different algorithmic strategies, evolutionary operators, and
constraint-handling  techniques.  The  performance  of  CMOEAs
may  be  heavily  dependent  on  the  operators  used,  however,  it  is
usually  difficult  to  select  suitable  operators  for  the  problem  at
hand. Hence, improving operator selection is promising and nec-
essary  for  CMOEAs.  This  work  proposes  an  online  operator
selection  framework  assisted  by  Deep  Reinforcement  Learning.
The dynamics of the population, including convergence, diversity,
and feasibility, are regarded as the state; the candidate operators
are considered as actions; and the improvement of the population
state  is  treated  as  the reward.  By  using  a  Q-network  to  learn  a
policy  to  estimate  the  Q-values  of  all  actions,  the  proposed
approach  can  adaptively  select  an  operator  that  maximizes  the
improvement of the population according to the current state and
thereby improve the algorithmic performance. The framework is
embedded into four popular CMOEAs and assessed on 42 bench-
mark  problems.  The  experimental  results  reveal  that  the  pro-
posed  Deep  Reinforcement  Learning-assisted  operator  selection
significantly  improves  the  performance  of  these  CMOEAs  and
the resulting algorithm obtains better versatility compared to nine
state-of-the-art CMOEAs.
    Index Terms— Constrained  multi-objective  optimization,  deep  Q-
learning,  deep  reinforcement  learning  (DRL),  evolutionary  algo-
rithms, evolutionary operator selection.
  

I.  Introduction

CONSTRAINED  multi-objective  optimization  problems
(CMOPs)  contain  multiple  conflicting  objective  func-

tions  and constraints,  which widely  exist  in  real-world  appli-

cations  and  scientific  research [1].  For  example,  web  service
location-allocation  problems [2] and  vehicle  scheduling  of
urban bus lines [3].

The development  of  solving CMOPs by constrained multi-
objective  optimization  evolutionary  algorithms  (CMOEAs)
has  seen  prominent  growth  due  to  the  wide  existence  of  this
kind  of  problem.  Generally,  a  CMOEA  contains  three  key
components that affect its performance: the algorithmic strat-
egy used to assist the selection procedures, the constraint-han-
dling  technique  (CHT)  to  handle  constraints,  and  the  evolu-
tionary operator to generate new solutions. In the past decade,
a  large  number  of  CMOEAs  have  been  proposed,  most  of
which  focus  on  enhancing  algorithmic  strategies [4]–[7] and
CHTs [3], [8].  By contrast,  little  research focused on how to
adaptively  select  the  evolutionary  operator  in  CMOEAs  has
been reported in the literature.

According  to [9],  different  evolutionary  operators1 are
suited  to  different  optimization  problems.  For  example,
crossovers  in  genetic  algorithms  (GAs) [10] are  effective  in
overcoming  multimodal  features;  mutations  in  differential
evolution (DE) [11] can handle complex linkages of variables
because  they  use  the  weighted  difference  between  two  other
solutions.  The  particle  swarm  optimizer  (PSO) [12] shows
good performance on convergence speed and the competitive
swarm  optimizer  (CSO) [13] is  good  at  dealing  with  large-
scale optimization problems because of its competitive mech-
anism,  and  the  multi-objective  PSO  (MOPSO) [14], [15] is
particularly  designed  and  effective  for  multi-objective  situa-
tions.  Given the  fact  that  a  real-world  CMOP is  usually  sub-
ject to unknown features and challenges, using a fixed evolu-
tionary  operator  will  limit  the  applicability  of  a  CMOEA.
Although  ensemble  and  adaptive  selection  of  operators  have
received  increased  attention  in  the  multi-objective  optimiza-
tion  community [16]–[18],  unfortunately,  no  research  efforts
have  been  dedicated  to  constrained  multi-objective  optimiza-
tion.  Hence,  it  is  necessary  to  study  the  effect  of  adaptive
operator selection in dealing with CMOPs.

Among  the  reinforcement  learning  community,  deep  rein-
forcement learning (DRL) is  an emerging topic and has been
applied  in  several  real-world  applications  in  the  multi-objec-
tive  optimization  field [19]–[23].  Also,  its  effectiveness  in
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1 An evolutionary operator means the operations of an evolutionary algorithm
used for generating offspring solution, such as the crossover and mutation of
GA,  the  differential  variation  of  DE,  and  the  particle  swarm  update  of
PSO/CSO.
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dealing  with  multi-objective  optimization  problems  (MOPs)
has  been  studied  recently [17], [24], [25].  Since  DRL uses  a
deep neural network to approximate the action-value function,
it can handle continuous state space and thereby is suitable for
operator  selection  for  CMOPs  because  a  population  could
have  infinite  states  during  the  evolution.  Therefore,  it  is
promising to adopt DRL techniques to fill the research gap of
operator selection in handling CMOPs. However, when apply-
ing  DRL  to  CMOPs,  the  main  challenge  is  to  properly  con-
sider constraint satisfaction and feasibility in a DRL model.

This  work  proposes  a  DRL-assisted  online  operator  selec-
tion  framework  for  CMOPs.  Specifically,  the  main  contribu-
tions are as follows:

1) We propose a novel DRL model for operator selection in
CMOPs.  The  state  of  the  population,  including  the  conver-
gence, diversity, and feasibility performance, is viewed as the
state, the candidate operators are regarded as actions, and the
improvement  of  the  population  state  is  the  reward.  Then,  we
develop  a  deep  Q-learning  (DQL)-assisted  operator  selection
framework for CMOEAs. A deep Q-network (DQN) is trained
to learn a policy that estimates the Q-value of an action at the
current state.

2)  The proposed model  can contain an arbitrary number of
operators and the proposed framework can be easily employed
in any CMOEA. In  this  work,  we develop an operator  selec-
tion  (OS)  method  and  further  instantiate  it  by  using  GA and
DE as candidate operators in the DRL model. Then, the OS is
embedded into  four  popular  CMOEAs:  CCMO (coevolution-
ary  framework  for  constrained  multiobjective  optimization)
[4],  PPS (push  and  pull  search) [26],  MOEA/D-DAE (multi-
objective evolutionary algorithm with detect-and-escape) [27],
and  EMCMO (evolutionary  multitasking  optimization  frame-
work for constrained multiobjective optimization) [7].

3) Extensive experimental studies on four popular and chal-
lenging  CMOP  benchmark  test  suites  demonstrated  that  the
OS  method  can  significantly  improve  the  performance  of
CMOEAs.  Furthermore,  compared  to  nine  state-of-the-art
CMOEAs,  our  methods  obtained  better  versatility  on  differ-
ent problems.

The  remainder  of  this  article  is  organized  as  follows.  Sec-
tion  II  introduces  the  related  work.  Section  III  elaborates  on
the  proposed  methods.  Then,  experiments  and  analysis  are
presented  in  Section  IV.  Finally,  conclusions  and  future
research directions are given in Section V.  

II.  Related Work and Motivations
  

A.  Preliminaries
Without loss of generality, a CMOP can be formulated as

 

min F(x) = ( f1(x), . . . , fm(x))T

s.t. x ∈ R
gi(x) ≤ 0, i = 1, . . . , p

h j(x) = 0, j = p+1, . . . ,q (1)
x = (x1, . . . ,

xn)T

x ∈ R R ⊆ Rn

where m denotes the number of objective functions; 
 denotes  the  decision  vector  with n dimensions  (i.e.,  the

number  of  decision  variables); ,  and  represents

gi(x) h j(x)the search space.  and  are the i-th inequality and j-
th  equality  constraints,  and q denotes  the  number  of  con-
straints.

In a CMOP, the degree of the j-th constraint violation (CV)
of a solution x is
 

φ j(x) =
{max(0,g j(x)), j = 1, . . . , p

max(0, |h j(x)| −σ), j = p+1, . . . ,q
(2)

where σ is a small enough positive value to relax the equality
constraints into inequality ones. The overall CV of x is
 

ϕ(x) =
q∑

j=1

φ j(x) (3)

ϕ(x) = 0x is feasible if ; otherwise, it is infeasible.  

B.  Adaptive Operator Selection in MOPs
In  recent  years,  adaptive  operator  selection  is  gradually

attracting  research  attention  in  the  design  of  multi-objective
optimization evolutionary algorithms (MOEAs).

Wang et  al. [16] proposed  a  multi-operator  ensemble
method that  uses  multiple  subpopulations  for  multiple  opera-
tors  and  adjusts  their  sizes  according  to  the  effectiveness  of
each  action  to  reward  good  operators  and  punish  bad  ones.
Tian et al. [17] adopted DRL to construct an adaptive opera-
tor selection method for MOEA/D. The proposed DRL model
regards  the  decision  vectors  as  states  and  the  operators  as
actions; then, the fitness improvement of the solution brought
by the operator is taken as the reward. Santiago et al. [28] sug-
gested  a  fuzzy  selection  of  operators  that  chooses  the  most
appropriate operators during evolution to promote both diver-
sity and convergence of solutions. Dong et al. [18] devised a
test-and-apply  structure  to  adaptively  select  the  operator  for
decomposition-based  MOEAs.  The  proposed  structure  con-
tains a test phase that uses all  operators to generate offspring
and test the survival rate as the credit of operators.  Then, the
apply phase uses only the best operator for the remaining evo-
lution.  Yuan et  al. [29] investigated  the  effect  of  different
variation operators (i.e.,  GA and DE) in MOEA. McClymont
and  Keedwell [30] proposed  a  Markov  chain  hyper-heuristic
that  employs  Reinforcement  Learning  and  Markov  chains  to
adaptively select heuristic methods, including different opera-
tors.  Lin et  al. [31] devised  a  one-to-one  ensemble  mecha-
nism  that  measures  the  credits  of  operators  in  both  the  deci-
sion  and  objective  spaces  and  designed  an  adaptive  rule  to
guarantee that suitable operators can generate more solutions.  

C.  DRL and Its Applications in MOPs
As  we  know,  evolutionary  computation  aims  to  find  the

optima  from  a  static  environment.  However,  reinforcement
learning  can  learn  an  optimal  coping  strategy  in  a  dynamic
environment [32].  The policy enables the agent  to adaptively
take actions that gain the largest cumulative reward at the cur-
rent  environmental  state [33].  Different  from  reinforcement
learning, DRL uses a deep neural network to approximate the
action-value  function.  More  specifically,  Q-learning  learns  a
policy  through a  discrete  Q-table  that  records  the  cumulative
reward  of  each  action  at  each  state [34].  In  contrast,  DQL
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trains  a  Q-network  that  approximates  the  action-value  func-
tion to estimate the expected reward of each action [35]. The
action-value  function  is  also  known  as  a  probability  model
that estimates the probability of taking each action. Generally,
DQL has two types of working principles. We assume that the
DQN is trained, where two types are depicted in the left  half
and  right  half  of Fig. 1,  respectively.  For  the  Type-I  DQL
model,  the  input  includes  a  state  and  an  action  (shown  in  a
cube),  and the  output  is  the  Q-value of  this  action under  this
state. For the Type-II DQL model, the input contains only the
state, and the DQN can output the Q-values of all actions.
 

StateState +

Q-value-a1

Q-value-a2

Q-value-an

...

Q-value

Type-I Type-II

 
Fig. 1.     An illustration of  two types  of  working principles  of  the  DQL
technique.
 

Without loss of generality, DQL trains a Q-network through
the loss function
 

L = 1
|T |
∑
t∈T

(Q(st,at)−qt)2 (4)

T

Q(st,at)
(st,at) aT

qt at st

where  is the training data randomly sampled from an expe-
rience  replay  (EP);  the  experience  replay  is  a  data  set  that
records historical data for the training of the Network; 
is the output of the Network with the input  and , and

 is  the  Q-value  of  taking  action  at  the  state ,  which  is
formulated as
 

qt = rt +γmax
a′∈A

Q(st+1,a′) (5)

Q(st+1,a′)
at qt

where  is  the  maximum  reward  of  taking  the  next
action under the state where  is performed. Therefore,  can
not  only calculate  the  current  reward of  performing action a,
but  also  estimate  the  maximum  cumulative  reward  in  the
future.

Recently,  DRL  techniques  are  attracting  more  and  more
attention  in  the  multi-objective  optimization  community.
Researchers  either  employ  DRL  techniques  to  solve  real-
world  MOPs  or  utilize  them  to  enhance  the  performance  of
MOEAs.

1)  Applications  in  Real-world  MOPs: Li et  al. [22] pre-
sented a DRL-assisted multi-objective bacterial foraging opti-
mization  algorithm  for  a  five-objective  renewable  energy
accommodation  problem.  Caviglione et  al. [20] suggested
solving  the  multi-objective  placement  problem  of  virtual
machines  in  cloud  data  centers  by  a  DRL  framework  that
selects  the  best  placement  heuristic  for  each virtual  machine.
Schneide et  al. [19] designed  a  DRL-based  DeepCoord
approach that  trains  an  agent  to  adaptively  learn  how to  best
coordinate  services  without  prior  and  expert  knowledge  in
dealing with a three-objective service coordination problem.

2)  Applications  in  MOEAs: Tian et  al. [17] used  the  DRL
technique  to  adaptively  select  the  evolutionary  operators  in
dealing with MOPs. In their methods, the decision variable of

a solution is regarded as the state, the operator is regarded as
the  action,  and  the  improvement  of  fitness  of  the  solution  is
the reward. Li et al. [24] proposed modeling each subproblem
decomposed by the reference vectors as a neural network and
generating  Pareto-optimal  solutions  directly  through  the
trained  network  models.  They  modeled  the  multi-objective
TSP (MOTSP) as a Pointer Network and solved it using DRL
techniques. Zhang et al. [25] developed a concise meta-learn-
ing-based  DRL  technique  that  first  trains  a  fine-tuned  meta-
model  to  derive  submodels  for  the  subproblems  to  shorten
training time. Then, the authors further used their technique to
solve  MOTSP  and  multi-objective  vehicle  routing  problems
with time windows.  

D.  Motivations
In  the  evolutionary  computation  community,  evolutionary

operators  (also  known  as  variation  operators)  that  generate
new candidate solutions for selection are an important part [9].
A fixed operator can not be suitable for all  problems accord-
ing to the no free lunch theorem. Therefore, adaptive operator
selection is widely recognized as an interesting and key issue
for  evolutionary  computation [36].  Although  adaptive  opera-
tor  selection  has  attracted  some  attention  in  the  multi-objec-
tive  optimization  community,  unfortunately,  there  are  cur-
rently no research efforts dedicated to the design of CMOEAs.
Given  that  a  CMOP  inherits  the  features  and  challenges  of
MOPs other  than its  constraints,  it  is  valuable  and promising
to  develop  adaptive  operator  selection  methods  for  solving
CMOPs.

During  the  evolution  of  solving  a  CMOP,  the  whole  envi-
ronment  is  dynamic  because  the  population  is  different  and
unknown  in  advance  at  each  iteration.  Therefore,  adopting
reinforcement learning techniques to solve the adaptive opera-
tor  selection  issue  is  intuitively  effective.  However,  tradi-
tional  reinforcement  learning  techniques  such  as  Q-learning
may be  less  effective  in  dealing  with  such  problems because
the environment can include an infinite number of states, that
is, the search space is continuous but Q-table can only handle
discrete  state  space.  In  contrast,  DRL  techniques  that  train  a
deep neural network as the policy are suitable for the continu-
ous and infinite state space.

qt
rt

qt

Another advantage of DRL techniques is  that  the output 
of (5) contains not only the current reward  but also the max-
imum expected reward after taking this action. Consequently,

 can represent the maximum cumulative reward in the future
due  to  the  recursive  nature  of  this  formula [17].  As  a  result,
DRL techniques such as DQL are more suitable for the evolu-
tionary  process  of  CMOEAs  since  both  historical  and  future
performance should be considered in the heuristic  algorithms
[37].  Thus,  DQL  is  very  promising  for  adaptive  operator
selection.

Meanwhile,  there are some challenging issues that  must  be
resolved  to  successfully  apply  DRL  to  CMOPs.  Since  a
CMOP contains  constraints,  it  is  necessary for  a  DRL model
to consider constraint satisfaction and feasibility in the design
of  the  state  and  reward.  In  addition,  the  effectiveness  of  an
action  (i.e.,  operator)  on  both  handling  constraints  and  opti-
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mizing  objectives  should  be  evaluated  in  training  the  DRL
model.

To  adopt  DQL  in  CMOEAs,  we  need  to  develop  a  model
that  determines  the  state,  action,  reward,  and  learning  proce-
dure.  Our  proposed  DQL  model  and  the  DQL-assisted
CMOEA framework are elaborated on in the next section.  

III.  Proposed Methods
  

A.  Proposed DRL Model
In  this  work,  the  evolutionary  operators  are  regarded  as

actions, thus the actions include
 

A = {op1,op2, . . . ,opi, . . . ,opk} (6)
opiwhere  is  the ith  evolutionary  operator  such  as  GA,  DE,

PSO, and CSO, and k is the number of candidate operators. It
should  be  noted  that  in  our  proposed  model,  any  number  of
operators can be used as candidates.

Then, we define the state of a population by considering its
performance in  terms of  convergence,  diversity,  and feasibil-
ity. The average sum of objective functions of solutions in the
population is used to evaluate the convergence of the popula-
tion in the objective space, i.e., the approximation to the CPF
(constrained Pareto front). Specifically, it is formulated as
 

con =

∑
x∈P

m∑
j=1

f j(x)

N
(7)

f j(x)

[0,1]

where  is the j-th objective function value. When the pop-
ulation  approximates  the  CPF, con will  become smaller.  The
objective  functions  are  not  normalized  due  to  the  following
underlying  considerations.  After  normalization,  all  objectives
will belong to . Although the influence of different scales
can be eliminated, the con fails to represent the real distribu-
tion of the population.

The average CV value of solutions in the population is used
to estimate feasibility, i.e., the distribution of the population in
the feasible/infeasible regions. Specifically, it is formulated as
 

f ea =

∑
x∈P
ϕ(x)

N
(8)

ϕ(x)where  is  the  CV of x.  If  all  solutions  of  the  population
are in feasible regions, fea is zero. Otherwise, it will be a large
value if the population is located outside the feasible regions.

The sum of scales, in all objective dimensions that the popu-
lation covers,  is  used to  estimate  the  diversity  of  the  popula-
tion. Specifically, it is formulated as
 

div =
1

m∑
j=1

( f max
j − f min

j )
(9)

f max
j f min

j

f max
j f min

j

f max
j f min

j

where  and  represent  the  maximum  and  minimum
objective  function  value  on  the jth  objective  function.  If  the
population is stuck in a local feasible region, div is very large
because  is close to . On the contrary, if the popula-
tion  is  well-distributed  among  every  objective, div will  be
small because  is larger than .

Then, we use three components to form a state. The state set
is
 

S = {s|s = (con, f ea,div)} . (10)
It  uses con, fea,  and div to  reflect  the  current  state  of  the

population.  In  this  case,  whether  an  operator  should  be
selected  depends  on  a  comprehensive  evaluation  of  the  cur-
rent  population  state  and  its  effectiveness  in  enhancing  these
performances.

The reward is calculated by
 

r = (con+ f ea+div)− (con′+ f ea′+div′) (11)
con′ f ea′ div′where , , and  are the new state of the population

for  the  next  generation.  The  reward  we  define  in  this  work
represents the improvement of the population state, including
the performance in terms of convergence, diversity, and feasi-
bility.  Therefore,  the  effectiveness  of  a  selected  operator  can
be  comprehensively  evaluated.  It  is  necessary  to  note  that
these  three  terms  are  normalized  when  they  are  input  to  the
network as training/predicting data.

A record is formed as
 

t = (s,op,r, s′) = (con, f ea,div,op,r,con′, f ea′,div′) (12)
and the EP is formed as
 

EP =
{
t1, t2, . . . , tmsep

}
. (13)

Such a data structure enables the EP to record the state, the
selected operator, the reward, and the new state at each itera-
tion.  Thus,  when  training  the  network,  the  training  data
include  all  necessary  items  to  approximate  the  action-value
function in handling the operator selection issue.

Based on the above definitions and proposals, we develop a
DQL  model  for  operator  selection  for  CMOEAs.  The  pro-
posed model is shown in Fig. 2. This model contains four pro-
cedures, they are:

1)  Evolution  Procedure: In  the  evolution  procedure,  the
CMOEA  generates  offspring  by  the  selected  operator  (deter-
mined by the DQN) and determines solutions that can survive
to the next generation.

2)  Interaction  Procedure: In  the  interaction  procedure,  the
agent and the environment exchange information and interact
with  each  other.  The  agent  gives  the  environment  an  action
(i.e.,  operator)  and  the  environment  generates  feedback  (i.e.,
reward) from the evolution of the CMOEA for the agent.

3)  Learning  Procedure: After  the  agent  receives  the  feed-

 

Q-values

Evolution

Agent

CMOEA
evolution

Action

Reward

Interaction

State, action, reward

Experience replay

Learning
State

&
action

Q-value
Decision

 
Fig. 2.     The illustration of the proposed DQL model.
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back, it  learns and improves the policy in the learning proce-
dure.  First,  the  record  of  the  current  iteration  is  added  to  the
EP.  Second,  the  DQN  is  trained  based  on  the  training  data
sampled from the EP. The input of the DQN is state & action,
which is to say, the population state and the adopted operator
at  one  iteration.  The  output  of  the  DQN  is  the  Q-value  of
adopting that operator at that population state.

4) Decision Procedure: After the DQN is trained, the agent
can use it to decide which action to take in the face of a popu-
lation  state.  The  decision  procedure  first  estimates  all  Q-val-
ues of all actions. Then the action with the largest Q-value is
selected.

The  above  four  procedures  execute  in  order  at  each  itera-
tion  to  achieve  the  DQL-assisted  operator  selection  for
CMOEA.  

B.  Proposed DQL-Assisted Framework
Based on the DQL model, we develop a DQL-assisted adap-

tive  operator  selection  framework  for  CMOEAs.  We  present
the  flowchart  of  the  proposed  DQL-assisted  CMOEA frame-
work in Fig. 3. The main steps are as those in a CMOEA (ini-
tialization,  mating,  and  selection),  except  that  the  DQL-
assisted framework contains two additional parts.

The blue part contains the operator selection process. In this
process,  the  size  of  the  EP  needs  to  meet  the  requirement
before  the  DQN  is  trained  because  we  need  enough  data  to
train the Network. If the size of the EP is not enough, we ran-
domly select an operator at the iteration to give equal weight
to  each  operator  so  that  the  exploration  can  be  guaranteed.
Otherwise, if the size of the EP meets the requirement and the
DQN is not built, the DQN is first built. If the DQN has been
trained, it  is directly used to adaptively select an operator for
the following steps.

After  we  get  an  adaptively  selected  operator,  the  offspring
are  generated  based  on  the  mating  selection  of  the  CMOEA,
and the environmental selection of the CMOEA is conducted
to determine the population for the next generation.

Then, the network update process (in yellow) is conducted.
It  mainly  contains  two  specific  parts.  At  each  iteration,  the
population state is detected and the record is calculated. After-
ward, the EP is updated by adding the record of this iteration.
After  every  50  iterations,  the  QDN  is  updated.  The  above
steps continue until the termination condition is met.

Algorithm 1 The DQL-Assisted Framework for CMOEAs

Gmax

msep rsep

Require: N (population size),  (termination condition), i (num-
ber of operators),  (maximum size of EP),  (required size of EP)

POutput:  (the output solution set of the CMOEA)
1: Initialization of the CMOEA;
2: Determine the state of the population;
EP←3:  initialize the EP;
g← 04: ;

g <Gmax5: while  do
|EP| < rsep6: 　if  then
i←7: 　　  randomly select an operator;
O←8: 　　  generate  offspring  set  by  the  CMOEA  using  the i-th
operator;
P←9: 　　  select  the  population  for  the  next  generation  by  the
CMOEA;

t←10: 　　  determine the reward and new state,  and form a new
record;
EP←11: 　　  update the EP with t;

12: 　else
13: 　　if network is not built then

Q← EP14: 　　　  build the DQN using  by Algorithm 2;
15: 　　else

i←16: 　　　  adaptively select  an operator  according to the state
of the population and Q using Algorithm 3;
O←17: 　　　  generate offspring set by the CMOEA using the ith
operator;
P←18: 　　　  select the population for the next generation by the
CMOEA;
t←19: 　　　  determine  the  reward  and  new  state,  and  form  a
new record;
EP←20: 　　　  update the EP with t;

21: 　　end if
22: 　end if

g← g+123: 　 ;
g%50 = 024: 　if  then
Q← EP25: 　　  update the DQN using  by Algorithm 2;

26: 　end if
27: end while

P28: return 

The  pseudocode  of  the  proposed  DQL-assisted  framework
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Fig. 3.     The flowchart of the proposed DQL-assisted CMOEA framework.
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EP

for CMOEAs is presented in Algorithm 1. The inputs include
the  population  size,  the  termination  condition  (maximum
function  evaluations),  the  maximum  size  of  EP,  and  the
required  size  of  EP  for  training  the  DQN.  The  output  is  the
same as the output solution set  of  the selected CMOEA. The
main  steps  are  consistent  with  the  process  in  the  flowchart.
First,  the initialization of the CMOEA is conducted to gener-
ate  the  initial  population(s)  for  evolution  (line  1).  Then,  the
state of the initial population is determined (line 2) to prepare
the  first  record.  The  EP  set  is  initialized  as  empty  then
(line 3) and the index of the current generation g is initialized
as zero (line 4). In the main loop, the following steps are per-
formed:

EP rsep

O

P

EP
EP

1) If the  has not meet the required size , lines 7−11
are  performed.  First,  an  operator  (denoted  as ith  operator)  is
randomly selected (line 7). Then, the offspring set  is gener-
ated  based  on  the  operator  and  the  mating  selection  of  the
CMOEA  (line  8).  Afterward,  the  environmental  selection  of
the  CMOEA is  performed  to  select  the  population  for  the
next  generation  (line  9).  According  to  this  iteration,  the
reward  and  the  new state  are  determined  and  used  to  form a
new record t (line 10). Then  is updated using the record t
(line  11).  It  should  be  noted  that  is  a  queue  that  follows
the first in, first out rule.

EP rsep

EP

2) Otherwise if the  has met the required size , then
lines  13−20  are  performed.  In  the  beginning,  the  DQN Q is
not built, so it is initialized using data from  by Algorithm
2 (line 14).

O

EP

3) In the later iterations where the DQN has been built, lines
16−20 are performed. First, an operator is adaptively selected
according  to  the  current  state  and  the  DQL-assisted  method
presented in Algorithm 3 (line 16). Then the offspring set  is
generated  by  the  CMOEA  using  the  selected  operator  (line
17).  Afterward,  the  population  for  the  next  generation  is
selected based on the environmental selection of the CMOEA
(line 18).  Finally,  the new record is  formed (line 19) and the

 is updated (line 20).
EP4) Once every 50 iterations, the DQN is updated using 

by Algorithm 3 (line 25).  This  step guarantees  that  the DQN
can approximate the recent environment.

Finally, the output solution set of the CMOEA is output as
the final solution set (line 25).  

C.  Train/Update the DQN
In  this  work,  we  adopt  a  simple  Back-propagation  neural

network  as  the  DQN.  The  detailed  parameter  settings  of  the
adopted  DQN  architecture  are  listed  in Table I.  When  the
DQN  is  trained  or  updated,  the  procedure  of  Algorithm  2  is
conducted.

EP
str

str EP T

st at
rt

st+1

The  inputs  include  the  experience  replay  and  the
required  size  of  training  data .  The  output  is  a  DQN Q.
First,  records are sampled from  and form a set  as the
training  data  (line  1).  Then,  the  former  four  items  (i.e.,  the
state  and  the  action )  are  used  as  the  input  of  the  DQN
(lines 2 and 3), while the fifth item (i.e., the reward ) is used
as  the  output  of  the  DQN  (line  4).  The  last  three  items  are
used to train DQN as the  in (5) (line 5). An important step
is  that  we  need  to  normalize  the  inputs  and  output  to  elimi-

nate the influence of different scales so that  the DQN can be
accurately  estimated  (line  6).  Then,  the  normalized  training
data  is  used  to  train  the  DQN  using  (4)  as  the  loss  function
(line 7).
 

TABLE I 

Detailed Parameter Setting of the Adopted
DQN Architecture

Parameter Value

Number of hidden layers 2

Number of neurons in hidden layers 40

Number of nodes in input layer 4

Number of nodes in output layer 1

Batch size |T |
Maximum number of iterations 80 000

Decay of learning rate 1.00×10−4

Learning rate 0.01

Bias from input to hidden layer 0.1

Bias from hidden layer to output layer 0

Activation function ReLU
 
 

Algorithm 2 Train/Update Network

EP strRequire:  (experience replay),  (required size of training data)
Output: Q (DQN)
T ← str1:  randomly sample  records as the training data;
st ← {t1, t2, t3} , t ∈ T2: ;
at ← t4, t ∈ T3: ;
rt ← t5, t ∈ T4: ;
st+1← {t6, t7, t8} , t ∈ T5: ;

T6: Normalize all items of ;
Q←7:  train the DQN using (4) as loss function;

8: return Q

Algorithm 3 Select Operator

ARequire: ε (possibility  of  greedy), s (current  population  state), 
(operator set), Q (DQN)

Output: a (the selected operator)
k← [0,1]1:  generate a random number in ;

k ≤ ε2: if  then
s←3: 　　  normalize all items of the state data s;
i = argmaxa∈AQ(s,a)4: 　　 ;

5: else
i← {1,2, . . . ,k}6: 　　  generate a random number in ;

7: end if
A8: return the i-th operator a in 

  

D.  Proposed OS Method

A
[0,1]

The  OS  method  in  this  work  is  similar  to  the  common
method  of  selecting  the  action  in  Reinforcement  Learning.
The  detailed  Pseudocode  is  presented  in  Algorithm  3.  The
inputs include the possibility of a greedy ε to control the pos-
sibility  of  selecting  the  operator  by  DQN  or  in  a  random
method.  They  also  include  the  current  population  state s,  the
operator  set ,  and  the  DQN Q.  The  output  is  the  selected
operator a.  First,  a random number k between  is  gener-
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ated  (line  1).  If k is  less  than  the  possibility  of  greedy,  the
DQN is used to select an operator (lines 3 and 4). When DQN
is used, all operators are tested through the DQN, and the one
with the maximum reward is adopted. If k is greater than ε, the
index  of  the  selected  operator  is  randomly  generated  (line  6)
to  guarantee  exploration.  In  this  work,  we  use  GA  and  DE
operators  (i.e.,  their  crossover and mutation strategies)  as  the
candidate  actions  to  instantiate  the  framework.  The  reasons
for selecting these two operators are two-fold:

1) First, GA and DE are the two most commonly used oper-
ators in existing CMOEAs;

2)  Second,  GA  can  handle  multimodality  well  and  has  a
strong capability for convergence, while DE can handle link-
ages well and is good at exploring the decision space [9].

EPIt is worth noting that before the  meets the required size
(i.e., line 6 in Algorithm 1), the operator is randomly selected
to  enhance  exploration.  Also,  parameter ε enables  some  ran-
dom selection to enhance the exploration.  

E.  Computational Complexity

O(4u2)

O(mnN)
O(mN2) O(N3)

According  to  Algorithms  1−3,  the  computational  complex-
ity of our methods is determined by three components, i.e., the
selected  CMOEA,  the  training  of  DQN,  and  the  calculations
of  population  state.  The  complexity  of  training  the  DQN  (a
Backpropagation neural network) is  if we use u to rep-
resent the number of neurons. The time consumption of calcu-
lating the state is . The time complexity of a CMOEA
is usually  to  (e.g., CCMO [4]). Therefore, the
overall  computational  complexity  is  determined  by  the
selected CMOEA.  

F.  Remarks
The  differences  between  our  proposed  operator  selection

method  and  existing  adaptive  operator  selection  methods  are
two-fold:

1) Our method can apply to CMOPs because the design of
the DQL model and the algorithmic framework both consider
constraints and the feasibility of solutions, but existing meth-
ods are not applicable to CMOPs.

2)  Our  method  is  based  on  DQL,  which  can  evaluate  the
improvement of the population brought by the selected opera-
tor in the future, while existing methods can only evaluate the
improvement according to historical evolution.

Although  Tian et  al. [17] also  proposed  a  DQL-assisted
operator  selection  method,  our  methods  are  different  from
theirs in three aspects:

1)  This  work  handles  CMOPs,  while  the  topic  of [17] is
unconstrained MOPs. Handling CMOPs is more difficult than
MOPs due to the existence of constraints.

2) Our proposed DQL model is different from the model in
[17]. In [17], the decision variable is regarded as the state, and
the improvement of a single solution (offspring vs parent solu-
tion) is regarded as the reward.

3)  The  method  in [17] is  a  specific  algorithm  for  MOPs,
while  our  proposed  framework  can  be  embedded  into  any
CMOEAs.

The  differences  between  our  methodology  and  existing
applications of DRL in solving MOPs are as follows:

1)  First,  this  work  proposes  a  universal  adaptive  operator
selection  framework  that  can  be  used  in  any  algorithm  for
CMOPs.  By  contrast,  most  existing  applications  focus  on
using DRL to solve a specific real-world application problem.

2)  Second,  most  existing  applications  of  DRL  in  solving
MOPs  can  only  solve  discrete  MOPs,  while  our  method  can
solve any form of CMOP as long as the embedded operators
and  the  adopted  CMOEA  can  handle  discrete  or  continuous
decision variables.  

IV.  Experimental Studies

This section presents the experimental studies. Section IV-A
presents the detailed experimental settings. Section IV-B com-
pares  the  DQL-assisted  operator  selection  with  the  original
CMOEA  and  random  operator  selection.  Section  IV-C  gives
the comparison studies  between our  method and state-of-the-
art  CMOEAs. Section IV-D shows the parameter  analyses of
the DRL-assisted operator selection technique and the adopted
neural  network.  Section  IV-E  studies  the  effectiveness  of
using  two  performance  indicators,  instead  of  the  proposed
simplistic assessments in (7) and (9), to assess the population
state.  

A.  Experimental Settings
1)  Benchmark  Problems: In  the  experimental  studies,  we

selected four challenging CMOP benchmark test suites to test
our  methods.  The  benchmarks  include  CF [38],  DAS-CMOP
[39],  DOC [40],  and  LIR-CMOP [41].  The  main  difficulties
and challenges of these benchmarks are summarized in Table
S-II in the Supplementary File.

2)  Algorithms in  Comparison: In  this  work,  we embed our
proposed  DQL-assisted  operator  selection  framework  into
four existing CMOEAs; they are CCMO [4],  MOEA/D-DAE
[27],  EMCMO [7],  and  PPS [26].  In  the  comparison  studies,
we  selected  nine  state-of-the-art  CMOEAs  for  comparison,
including  methods  using  different  operators.  They  are  c-
DPEA [42],  ToP [40],  CMOEA-MS [5],  BiCo [43],  MFOS-
PEA2 [6],  ShiP-A [44],  DSPCMDE [45],  NSGA-II-ToR [8],
and CCEA [46].

3)  Parameter  Settings  and  Genetic  Operators: For  algo-
rithms  that  use  GA  as  the  operator,  the  simulated  binary
crossover  (SBX)  and  polynomial  mutation  (PM) [47] were
used with the following parameter settings:

pc = 1
ηc = 20

a) Crossover probability was ; distribution index was
;

pm = 1/n
ηm = 20

b)  Mutation  probability  was ;  distribution  index
was .

CR
For  algorithms that  use  DE as  the  operator,  the  parameters
 and F in  the  DE  operator  were  set  to  1  and  0.5,  respec-

tively.
The  evolutionary  settings  and  parameters  of  our  methods

are  presented  in  Table  S-III  in  the  Supplementary  File.  The
explanations for  the settings are also presented in Section IV
in the Supplementary File. All other parameter settings of the
comparison methods were the same as in their original litera-
ture (i.e., the default settings in PlatEMO).

4)  Performance  Indicators: Inverted  generational  distance
based  on  modified  distance  calculation  (IGD+) [48] and
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NaN

hypervolume (HV) [48] were  adopted  as  indicators  to  evalu-
ate  the  performance  of  different  algorithms.  We  used  two
Pareto-compliant  indicators to achieve a sound and fair  com-
parison [49].  Detailed  information  on  these  three  indicators
could  be  found  in  the  Supplementary  File.  The  value 
means an algorithm cannot find a feasible solution or the final
solution set is far from the CPF.

30

0.05

NaN

5) Statistical Analysis: Each algorithm is executed  inde-
pendent  runs  on  each  test  instance.  The  mean  and  standard
deviation  values  of  IGD+  and  HV  were  recorded.  The
Wilcoxon rank-sum test with a significance level of  was
used  to  perform the  statistical  analysis  using  the  KEEL soft-
ware [50]. “+”, “−”, and “=” were used to show that the result
of other algorithms was significantly better than, significantly
worse  than,  and  statistically  similar  to  those  obtained  by  our
methods to the Wilcoxon test, respectively. All  values of
HV and IGD+ are replaced by zero and 100, respectively.  

B.  On the Effectiveness of DQL-Assisted OS
In  the  first  part  of  the  experiments,  we  compare  the

CMOEAs  embedded  using  the  DQL-assisted  operator  selec-
tion  method with  the  original  CMOEAs using  a  fixed  opera-
tor and the CMOEAs using random operator selection to ver-
ify  the  effectiveness  of  the  DQL-assisted  operator  selection
method.  The  results  in  terms  of  HV  and  IGD+  on  the  four
benchmarks are presented in Tables S-V to S-XII in the Sup-
plementary File.

For  the  CFs,  it  can  be  found  that  DRLOS-CCMO  and
DRLOS-EMCMO significantly outperformed the correspond-
ing methods using a fixed operator or random operator. How-
ever, CCMO and EMCMO perform better or at least competi-
tively  on  the  three-objective  CF8-10,  revealing  that  for  these
large  objective  space  instances,  the  operators  of  GA  can
enhance convergence. As for MOEA/D-DAE and PPS, it can
be determined that using random and adaptively selected oper-
ators outperformed using a fixed operator. For DAS-CMOPs,
the  superiority  of  CCMO  and  EMCMO  on  DAS-CMOP4-8
reveals  that  these  instances  prefer  the  GA  operator.  On  the
contrary,  DAS-CMOP1-3  and  DAS-CMOP9  prefer  the  DE
operator. However, an adaptive operator selection method can
better  handle  DAS-CMOP1-3  and  DAS-CMOP9  than  PPS
using the DE operator, revealing that the DQL-assisted opera-
tor selection can learn to decide which operator to use accord-
ing  to  the  population  state  during  evolution.  For  DOCs,  the
results  are  similar  to  those  of  CFs.  DRLOS-CCMO  and
DRLOS-EMCMO  performed  significantly  better  than  other
methods, revealing that DOC prefers the DE operator and the
adaptive selection method can accurately determine DE as the
operator. Since PPS uses DE as the operator, the performance
is not significantly influenced by operator selection on DOCs.
The results among RandOS and DRLOS also reveal that using
DRL to adaptively select operators during evolution performs
better  than random selection.  For  LIR-CMOPs,  it  is  apparent
that  the  proposed  OS  method  can  significantly  improve  the
performances of all CMOEAs. Nevertheless, the results show
that LIR-CMOP13-14 prefer GA as operator.

To  better  understand  the  performance,  we  conduct  the
Friedman test with Holm correction at a significance level of

0.05  on  all  results.  The  average  rankings  and  p-values  are
summarized in Table II. It can be found that the DQL-assisted
operator selection method outperforms the fixed operator and
random operator selection. For these four CMOEAs, using our
proposed  DQL-assisted  operator  selection  method  can
improve their performance.
 

TABLE II 

Average Rankings and the p-values by the Friedman
Test on the Effectiveness of DQL-Assisted OS

HV ranking p-value IGD+ ranking p-value

CCMO 2.5476 0.000001 2.5714 0.000001

RandOS-CCMO 1.9762 0.021947 1.9524 0.029096

DRLOS-CCMO 1.4762 1.4762

EMCMO 2.5000 0.000000 2.5238 0.000000

RandOS-EMCMO 2.1071 0.001063 2.1429 0.000208

DRLOS-EMCMO 1.3929 1.3333

MOEA/D-DAE 2.3214 0.001873 2.2857 0.003220
RandOS-MOEA/D-

DAE 2.0357 0.071814 2.0714 0.049535
DRLOS-MOEA/D-

DAE 1.6429 1.6429

PPS 1.9881 0.010346 2.0476 0.012090

RandOS-PPS 2.2857 0.230062 2.2500 0.113631

DRLOS-PPS 1.7262 1.7024

 
 

In  summary,  our  proposed  DQL-assisted  OS  method  can
improve  the  performance  of  these  CMOEAs.  The  DQL-
assisted  operator  selection  method  can  better  determine  the
operator  based  on  the  population  state  compared  to  using  a
fixed or randomly selected operator.  

C.  Comparison Studies
After  the  verification  of  the  proposed  DQL-assisted  OS

method, we further compare the DRLOS-EMCMO algorithm
with  nine  state-of-the-art  CMOEAs  to  study  the  algorithmic
performance of these CMOEAs. The statistical results on four
benchmarks  are  presented  in Tables III−V in  this  file  and
Tables S-XIII−S-XVIII in the Supplementary File.

In  general,  DRLOS-EMCMO  outperforms  other  CMOEAs
on these challenging CMOPs. But it performed worse in some
CMOPs. Among the selected CMOPs, some instances rely on
a particular operator. For example, the results show that DAS-
CMOP4-8  and  LIR-CMOP13-14  need  the  GA  operator
because  of  their  multimodal  feature.  Besides,  some instances
of  the  CF  test  suite  need  the  DE operator  due  to  the  linkage
between  variables.  However,  since  the  computational
resources  are  used  for  all  operators  in  DRLOS-EMCMO  in
the learning stage, DRLOS-EMCMO has fewer resources for
the  specifically  needed  operator  in  dealing  with  these  prob-
lems,  and  thus,  it  performs  worse.  Additionally,  it  can  be
found  that  LIR-CMOP1-4,  the  CMOPs  with  an  extremely
small feasible region, require some constraint relaxation tech-
niques  such  as  penalty  function  in  c-DPEA [42] and  ShiP-A
[3],  or ε-constrained  in  DSPCMDE [45] and  CCEA [46].
However,  EMCMO  does  not  contain  a  constraint  relaxation
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technique,  and  thus,  it  performs  worse  on  LIR-CMOP1-4.
Except  for  these specific  problems,  DRLOS-EMCMO gener-

ally performs better than other CMOEAs.
We  depict  the  final  solutions  sets  obtained  by  DRLOS-

 

TABLE III 

Statistical Results of IGD+ Obtained by Drlos-emcmo and Other Methods on DOC Benchmark Problems

Problem cDPEA ToP CMOEA_MS BiCo MFOSPEA2 ShiP_A DSPCMDE NSGAIIToR CCEA DRLOS-
EMCMO

DOC1 5.5922e−1
(5.87e−1) −

3.3066e−3
(1.48e−4) −

3.9980e+0
(3.22e+0) −

2.5299e−2
(4.21e−2) −

1.2071e−1
(2.31e−1) −

2.5551e+0
(2.06e+0) −

3.9738e+2
(4.57e+2) −

6.3475e+1
(2.25e+1) −

1.6477e+0
(1.59e+0) −

2.6377e−3
(1.82e−4)

DOC2 NaN
(NaN)

NaN
(NaN)

NaN
(NaN)

NaN
(NaN)

NaN
(NaN)

NaN
(NaN)

2.4608e−1
(7.76e−2) −

NaN
(NaN)

NaN
(NaN)

4.3113e−2
(7.17e−2)

DOC3 7.4298e+2
(2.24e+2) ≈

1.8914e+2
(1.74e+2) +

5.9087e+2
(2.60e+2) ≈

4.9838e+2
(2.67e+2) ≈

7.3066e+2
(2.74e+2) ≈

NaN
(NaN)

1.1650e+2
(1.66e+2) +

NaN
(NaN)

5.8119e+2
(1.29e+2) ≈

6.0270e+2
(4.85e+2)

DOC4 6.0555e−1
(3.81e−1) −

1.0471e−1
(7.36e−2) ≈

7.7869e−1
(5.33e−1) −

2.5349e−1
(1.82e−1) −

3.9220e−1
(3.13e−1) −

8.6957e−1
(8.10e−1) −

4.4231e−2
(8.64e−2) −

1.6298e+1
(6.10e+0) −

8.7862e−1
(5.61e−1) −

4.1216e−2
(4.26e−2)

DOC5 NaN
(NaN)

3.8442e+1
(6.64e+1) −

9.5192e+1
(2.16e+1) −

NaN
(NaN)

NaN
(NaN)

NaN
(NaN)

NaN
(NaN)

NaN
(NaN)

NaN
(NaN)

2.1808e+1
(5.00e+1)

DOC6 3.5707e+0
(2.89e+0) −

5.9406e+0
(2.48e+0) −

2.4328e+0
(2.55e+0) −

9.1093e−1
(8.16e−1) −

9.6498e−1
(1.13e+0) −

1.8291e+0
(1.77e+0) −

2.7957e−3
(1.78e−4) ≈

2.3044e+1
(6.45e+0) −

2.6678e+0
(2.51e+0) −

9.4061e−3
(3.24e−2)

DOC7 7.3217e+0
(2.11e+0) −

1.3820e+0
(7.42e−1) −

3.8020e+0
(1.32e+0) −

5.2266e+0
(2.01e+0) −

5.3131e+0
(2.15e+0) −

NaN
(NaN)

2.7176e−1
(8.13e−1) −

NaN
(NaN)

5.5487e+0
(2.08e+0) −

1.4072e−1
(2.67e−1)

DOC8 7.1094e+1
(4.52e+1) −

5.9654e+1
(2.73e+1) −

1.6705e+2
(7.52e+1) −

6.4607e+1
(5.86e+1) −

7.8331e+1
(6.07e+1) −

8.9302e+1
(5.55e+1) −

2.1322e−1
(5.80e−2) +

3.7281e+2
(8.39e+1) −

8.9903e+1
(5.45e+1) −

2.7264e−1
(8.88e−2)

DOC9 1.5307e−1
(1.16e−1) ≈

2.2487e−1
(7.38e−2) −

7.9311e−2
(1.06e−1) −

1.4714e−1
(1.01e−1) −

1.1725e−1
(9.59e−2) ≈

1.3416e−1
(1.12e−1) −

8.8190e−2
(1.05e−2) −

6.3222e−1
(1.41e−1) −

1.5036e−1
(1.24e−1) ≈

5.0283e−2
(9.22e−3)

+/− / ≈ 0/5/2 1/6/1 0/7/1 0/6/1 0/5/2 0/5/0 2/5/1 0/5/0 0/5/2

Remark: The best result in each row is highlighted.
 

 

TABLE IV 

Statistical Results of HV Obtained by DRLOS-EMCMO and Other Methods on LIR-CMOP Benchmark Problems.

Problem cDPEA ToP CMOEA_M
S BiCo MFOS-

PEA2 ShiP_A DSPCMDE NSGAI-
IToR CCEA DRLOS-

EMCMO

LIRCMOP1 1.6448e−1
(1.08e−2) +

1.0538e−1
(8.84e−3) −

1.0477e−1
(1.34e−2) −

1.3536e−1
(6.52e−3) ≈

1.3108e−1
(1.60e−2) −

2.2967e−1
(2.04e−3) +

1.9200e−1
(2.37e−2) +

9.6272e−2
(5.01e−3) −

1.6415e−1
(1.47e−2) +

1.4210e−1
(1.90e−2)

LIRCMOP2 2.8144e−1
(1.58e−2) +

2.1555e−1
(1.42e−2) −

2.2253e−1
(2.32e−2) −

2.5522e−1
(1.01e−2) ≈

2.5272e−1
(1.53e−2) ≈

3.5009e−1
(2.21e−3) +

3.2355e−1
(1.62e−2) +

2.0338e−1
(6.34e−3) −

2.9124e−1
(1.40e−2) +

2.6388e−1
(2.75e−2)

LIRCMOP3 1.4625e−1
(1.43e−2) +

9.2802e−2
(5.34e−3) −

9.9956e−2
(1.62e−2) −

1.2583e−1
(6.96e−3) +

1.1792e−1
(1.17e−2) ≈

1.9042e−1
(6.25e−3) +

1.6138e−1
(2.11e−2) +

8.7510e−2
(4.22e−3) −

1.5215e−1
(1.21e−2) +

1.1822e−1
(1.61e−2)

LIRCMOP4 2.4589e−1
(1.43e−2) +

1.8034e−1
(9.33e−3) −

1.8730e−1
(1.51e−2) −

2.1935e−1
(1.32e−2) ≈

2.1831e−1
(1.16e−2) ≈

2.8717e−1
(1.10e−2) +

2.6399e−1
(2.49e−2) +

1.7739e−1
(6.98e−3) −

2.5082e−1
(1.34e−2) +

2.1807e−1
(1.98e−2)

LIRCMOP5 1.5599e−1
(2.41e−2) −

0.0000e+0
(0.00e+0) −

1.0881e−1
(6.93e−2) −

0.0000e+0
(0.00e+0) −

1.4741e−1
(2.38e−2) −

1.4847e−1
(1.58e−2) −

2.6549e−1
(3.49e−2) −

0.0000e+0
(0.00e+0) −

8.9994e−2
(7.55e−2) −

2.8301e−1
(1.38e−2)

LIRCMOP6 1.0447e−1
(1.26e−2) −

3.8214e−3
(1.45e−2) −

6.4431e−2
(5.03e−2) −

0.0000e+0
(0.00e+0) −

1.0871e−1
(1.33e−2) −

9.8962e−2
(9.44e−3) −

1.6168e−1
(4.32e−2) −

0.0000e+0
(0.00e+0) −

5.1631e−2
(4.62e−2) −

1.9379e−1
(1.07e−3)

LIRCMOP7 2.5030e−1
(7.64e−3) −

1.4326e−2
(5.45e−2) −

2.4401e−1
(7.28e−3) −

1.6982e−1
(1.13e−1) −

2.5122e−1
(8.92e−3) −

2.4627e−1
(9.69e−3) −

2.8984e−1
(1.05e−2) −

0.0000e+0
(0.00e+0) −

2.4328e−1
(7.28e−3) −

2.9240e−1
(4.63e−3)

LIRCMOP8 2.3549e−1
(9.02e−3) −

1.3858e−2
(5.27e−2) −

2.2602e−1
(9.02e−3) −

5.9252e−2
(1.00e−1) −

2.3840e−1
(1.01e−2) −

2.3424e−1
(1.20e−2) −

2.9288e−1
(4.64e−4) −

0.0000e+0
(0.00e+0) −

2.2442e−1
(4.88e−3) −

2.9365e−1
(9.30e−4)

LIRCMOP9 3.7822e−1
(6.59e−2) −

2.9975e−1
(7.81e−2) −

2.3427e−1
(6.54e−2) −

1.2413e−1
(4.59e−2) −

3.2135e−1
(6.48e−2) −

3.4557e−1
(5.83e−2) −

3.4121e−1
(2.58e−2) −

3.6661e−2
(1.23e−2) −

2.2556e−1
(5.96e−2) −

4.4138e−1
(2.17e−2)

LIRCMOP10 5.4129e−1
(5.30e−2) −

4.5018e−1
(1.02e−1) −

3.6909e−1
(1.67e−1) −

6.4856e−2
(3.07e−2) −

5.0681e−1
(9.87e−2) −

3.5948e−1
(1.05e−1) −

5.9874e−1
(2.98e−2) −

5.3776e−2
(2.94e−2) −

1.2244e−1
(9.89e−2) −

6.8631e−1
(1.23e−2)

LIRCMOP11 6.3446e−1
(3.25e−2) −

3.8783e−1
(8.40e−2) −

3.9226e−1
(1.19e−1) −

2.2469e−1
(8.90e−2) −

6.2055e−1
(3.97e−2) −

4.5297e−1
(1.03e−1) −

6.2135e−1
(5.89e−2) −

6.0264e−2
(2.87e−2) −

3.3593e−1
(1.63e−1) −

6.8144e−1
(9.55e−3)

LIRCMOP12 5.2337e−1
(4.27e−2) −

4.7168e−1
(4.51e−2) −

4.2431e−1
(7.04e−2) −

3.4807e−1
(1.07e−1) −

5.1668e−1
(3.92e−2) −

4.9940e−1
(3.07e−2) −

5.1211e−1
(5.02e−2) −

7.5184e−2
(2.28e−2) −

4.1243e−1
(5.49e−2) −

5.7470e−1
(1.69e−2)

LIRCMOP13 5.5469e−1
(1.72e−3) +

2.3424e−3
(1.26e−2) −

5.4982e−1
(3.00e−2) +

1.1278e−4
(1.46e−4) −

1.1147e−4
(1.02e−4) −

5.3448e−1
(3.24e−3) ≈

5.0437e−1
(3.10e−3) −

0.0000e+0
(0.00e+0) −

5.5860e−1
(9.25e−4) +

5.3441e−1
(3.20e−3)

LIRCMOP14 5.5445e−1
(1.37e−3) +

2.4647e−3
(1.23e−2) −

5.5565e−1
(1.14e−3) +

3.9193e−4
(3.00e−4) −

4.6467e−4
(2.92e−4) −

5.4340e−1
(2.85e−3) −

5.3045e−1
(3.44e−3) −

5.3460e-5
(1.79e−4) −

5.5810e−1
(7.14e−4) +

5.4856e−1
(1.82e−3)

+/− / ≈ 6/8/0 0/14/0 2/12/0 1/10/3 0/11/3 4/9/1 4/10/0 0/14/0 6/8/0

Remark: The best result in each row is highlighted.
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EMCMO and other CMOEAs on CF1, DAS-CMOP9, DOC2,
and  LIR-CMOP8  in  Figs.  S-1  to  S-3  in  the  Supplementary
File  and Fig. 4 in  this  file.  The  results  clearly  show  that
DRLOS-EMCMO  can  approximate  the  CPF  and  obtain  an
even distribution in every instance. For DOC2, it can be found
that only DRLOS-EMCMO can converge to two segments of
the CPF,  revealing that  using GA performs worse than using
an adaptively selected operator. As for LIR-CMOP8, it can be
found  DSPCMDE,  adopting  DE  as  the  operator,  also  con-
verges  to  the  CPF.  However,  some  dominant  and  extreme
solutions  remain,  revealing  that  when  GA  can  be  adaptively
selected,  convergence  can  be  further  enhanced.  Similarly  for
DAS-CMOP9,  DSPCMDE  finds  fewer  segments  of  the  CPF
compared to DRLOS-EMCMO, demonstrating that when GA
can be used during evolution, the population can more effec-
tively converge to the CPF and is less likely to get trapped in
local optima.

Additionally, we depict the convergence profiles of DRLOS-
EMCMO and other CMOEAs on CF4, DAS-CMOP1, DOC7,
and LIR-CMOP6 in Fig. 5. It can be determined that DRLOS-
EMCMO  can  not  only  achieve  faster  convergence  speed  but
also obtain a better final indicator value.

In  summary,  DRLOS-EMCMO  outperforms  these  CMO-

EAs  using  a  fixed  operator,  revealing  that  the  DQL-assisted
operator  selection  can  achieve  better  versatility  on  different
CMOPs.  

D.  Parameter Analyses
In  the  first  part  of  parameter  analyses,  we  change  the

required size of EP and the batch size to test its influence on
training the DQL. Also, we change the greedy threshold to test
the  robustness  of  our  method.  The  statistical  results  are  pre-
sented  in  Tables  S-XIX to  S-L  in  the  Supplementary  File.  It
can be found that these two parameters have little influence on

 

TABLE V 

Average Rankings and the p-Values by the Friedman
Test on the Comparison Studies

HV ranking p-value IGD+ ranking p-value

c-DPEA 4.2738 0.027929 4.2381 0.020103

ToP 7.1548 0.000000 7.2024 0.000000

CMOEA-MS 6.4286 0.000000 6.4762 0.000000

BiCo 6.6071 0.000000 6.3690 0.000000

MFOSPEA2 4.8929 0.001717 5.0357 0.000413

ShiP-A 4.5833 0.007658 4.4881 0.006876

DSPCMDE 3.8690 0.040718 3.9981 0.034346

NSGA-II-ToR 9.3333 0.000000 9.5238 0.000000

CCEA 5.5357 0.000040 5.4762 0.000027

DRLOS-EMCMO 2.8214 2.7024
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Fig. 4.     The final solution sets obtained by DRLOS-EMCMO and other methods on DAS-CMOP9 with the median IGD+ value among 30 runs.
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Fig. 5.     The convergence profiles  on IGD+ of  DRLOS-EMCMO and other
methods  on  CF4,  DAS-CMOP1,  DOC7,  and  LIR-CMOP6  with  the  median
IGD+ values among 30 runs.
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the performance in terms of all benchmark problems, demon-
strating that our method is not parameter sensitive. Therefore
current  parameter  settings  are  applicable  when  applying  the
DQL-assisted operator selection method to a new CMOEA.

Then in the second part  of  parameter analyses,  we conduct
different settings of important parameters in the DQN, includ-
ing the decay of learning rate,  learning rate,  number of itera-
tions in training, and number of nodes in each hidden layer, to
test  the influence of these parameter settings.  Detailed expla-
nations  of  variants  are  reported  in  Table  S-IV in  the  Supple-
mentary  File.  In  this  part,  only  DRLOS-EMCMO is  adopted
to save space. Statistical results of HV and IGD+ are reported
in  Tables  S-L  to  S-LVIII  in  the  Supplementary  File.  On  all
benchmark  problems,  different  parameter  settings  have  little
or  no  significant  influence  on  DRLOS-EMCMO,  revealing
that the DQN adopted in this work is not parameter sensitive.  

E.  Ablation Studies on Assessing Population State Using Indica-
tors

In this part,  we adopt two indicators, HV [48] and Spacing
[51], to estimate the population state, respectively. These two
indicators are selected because they do not need prior knowl-
edge of the true PF. Compared to the items used in (7) and (9),
HV  and  Spacing  are  two  more  sophisticated  indicators  that
can provide a more concise estimation of the population state.
The  HV  indicator  can  evaluate  convergence  and  diversity,
while the Spacing indicator can evaluate diversity.

The  results  are  reported  in  Tables  S-LIX  and  S-LX  in  the
Supplementary File, according to which the following conclu-
sions can be found.

1) For CCMO and EMCMO, using simplistic evaluations as
in  (7)  and  (9)  performs  better  when  dealing  with  DSA-
CMOP1-3  and  DOCs,  revealing  that  a  sophisticated  evalua-
tion  can  easily  lead  to  local  optima  because  these  instances
need  not  only  operators  of  GA  but  also  other  operators.  In
contrast, using HV and Spacing indicators performs better on
DAS-CMOP4-9  which  prefers  GA.  The  indicators  provide  a
more  concise  estimation  of  the  dynamics  of  the  population,
allowing the algorithm to determine how to select operators of
GA.

2) For MOEA/D-DAE, the choice of simplistic or sophisti-
cated  evaluations  has  no  significant  influence  on  the  perfor-
mance.

3) For PPS, using sophisticated evaluations performs signif-
icantly worse on instances with no preference for operators of
GA and performs better  on some instances with a  preference
for  operators  of  GA,  which  further  demonstrates  that  a  sim-
plistic evaluation has better versatility.  

V.  Conclusions and Future Work

In  this  article,  we  propose  a  DQL-assisted  online  operator
selection method for CMOPs, filling the research gap in oper-
ator  selection  in  CMOPs and  introducing  DRL techniques  to
CMOPs. We develop a DQL model that uses population con-
vergence,  diversity,  and  feasibility  as  the  state,  the  operators
as actions, and the improvement of the population state as the
reward. Based on this DQL model, we develop a versatile and
easy-to-use  DQL-assisted  operator  selection  framework  that

can  contain  any  number  of  operators  and  be  embedded  into
any  CMOEA.  We  embedded  the  proposed  method  into  four
existing  CMOEAs.  Experimental  studies  have  demonstrated
that the proposed adaptive operator selection method is effec-
tive,  and  the  resulting  algorithm  outperformed  nine  state-of-
the-art CMOEAs.

Nevertheless,  some issues  must  be  addressed regarding the
current  study  of  this  paper.  According  to  the  experimental
results, DRL-assisted CMOEAs perform worse when a CMOP
prefers  specific  operators.  Therefore,  it  is  necessary  to
improve  learning  efficiency  so  that  fewer  computational
resources can train a more accurate DRL model to determine
the  desired  operators.  Moreover,  increasing  the  maximum
number  of  function  evaluations  in  the  experiments  may
improve  the  numerical  performance  of  DRL-assisted
CMOEAs,  which  is  also  true  when  the  proposed  method  is
applied to real-world problems.

In the future, the following directions are worth trying:
1)  Some  other  operators  can  be  embedded  to  extend  this

framework  to  solve  other  kinds  of  MOPs.  For  example,  the
CSO [13] or other enhanced operators [52] can be embedded
to solve large-scale CMOPs [53]. In addition, some advanced
learning-based  optimizers  such  as  switching  particle  swarm
optimizers [54], [55] can be used as actions to enhance perfor-
mance.

2)  Advanced neural  networks [56] can  be  employed as  the
DQN to  see  if  they can enhance the  performance of  the  pro-
posed DQL-assisted operator selection method.

3)  Moreover,  hyperparameter  adaptation [57] is  necessary
for  future  study  since  there  are  many  hyperparameters  that
need to be adjusted.

The codes of the methods in this work can be obtained from
the authors upon request.
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