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   Abstract—This paper proposes a novel event-driven encrypted
control framework for linear networked control systems (NCSs),
which  relies  on  two  modified  uniform  quantization  policies,  the
Paillier cryptosystem, and an event-triggered strategy. Due to the
fact that only integers can work in the Pailler cryptosystem, both
the  real-valued  control  gain  and  system  state  need  to  be  first
quantized  before  encryption.  This  is  dramatically  different  from
the existing quantized control methods, where only the quantiza-
tion of a single value, e.g., the control input or the system state, is
considered. To handle this issue, static and dynamic quantization
policies  are  presented,  which  achieve  the  desired  integer  conver-
sions and guarantee asymptotic convergence of the quantized sys-
tem state  to  the equilibrium. Then,  the quantized system state  is
encrypted  and  sent  to  the  controller  when  the  triggering  condi-
tion,  specified  by  a  state-based  event-triggered  strategy,  is  satis-
fied. By doing so, not only the security and confidentiality of data
transmitted  over  the  communication  network  are  protected,  but
also the ciphertext expansion phenomenon can be relieved. Addi-
tionally,  by  tactfully  designing  the  quantization  sensitivities  and
triggering  error,  the  proposed  event-driven  encrypted  control
framework ensures the asymptotic stability of the overall  closed-
loop  system.  Finally,  a  simulation  example  of  the  secure  motion
control  for  an  inverted  pendulum  cart  system  is  presented  to
evaluate the effectiveness of the theoretical results.
    Index Terms— Cyber-security,  encrypted  control,  event-triggered
control  (ETC),  networked  control  systems  (NCSs),  semi-homomor-
phic encryption.
  

I.  Introduction
  

A.  Motivation

N ETWORKED control systems (NCSs) are ever-present in
our  societies  by  enabling  critical  systems  and  services

such  as  intelligent  transportation  and  smart  grid  systems.
NCSs  heavily  rely  on  information  and  communication  tech-
nologies  for  their  operations [1].  However,  the  widespread
usage  of  communication  networks  and  untrusted  computing
entities,  e.g.,  cloud-based controllers,  makes NCSs more vul-
nerable  to  cyber-attacks [2].  For  example,  an  adversary  with
access  to  sensor  measurements  of  an  NCS can  easily  extract

sensitive information about the system. Therefore, it is crucial
to address the security vulnerabilities of NCSs.

The homomorphic encryption (HE) technique [3] provides a
promising solution for the security of NCSs as it permits com-
putations  using  encrypted  sensor  measurements  without
access to the actual measurements. Using HE, the sensor mea-
surements of an NCS can be shared with untrusted computing
entities over communication networks. In this case, even if the
transmitted  data,  including  sensor  signals  and  control  input,
are  eavesdropped  by  a  malicious  adversary,  their  actual  val-
ues still remain unknown to the adversary.

However,  the  common HE cryptosystems,  such as  ElGam-
mal,  Rivest-Shamir-Adleman  (RSA),  and  Paillier,  can  only
encrypt positive integers. Thus, any data required for comput-
ing  the  control  law  in  an  NCS  must  be  quantized  before
encryption. However, quantization results in strong nonlinear-
ity  in  the  system,  yielding  system  performance  degradation
and  even  instability.  Moreover,  HE  methods  suffer  from
ciphertext expansion, which undoubtedly increases the size of
data  transmitted  over  communication  networks.  Cyphertext
expansion is a great challenge for NCSs due to their inherent
resource limitations in terms of computation, communication,
and storage [4]. For instance, the high data rate requirement of
HE  cryptosystems  might  result  in  heavy  channel  congestion,
thereby resulting in delays and packet dropouts.  

B.  Contributions
In  this  paper,  we  develop  quantization  and  event-triggered

policies  to  address  the  quantization  and  ciphertext  expansion
challenges of HE-based encrypted NCSs. The main contribu-
tions are three-fold:

1) A novel dynamic quantization policy with a state-depen-
dent  sensitivity  is  presented.  Different  from  traditional  uni-
form quantizers with fixed sensitivity, which only ensure that
the  system state  converges  to  a  neighborhood  of  the  equilib-
rium,  the  proposed  quantization  policy  ensures  asymptotic
convergence  of  the  system  state.  Besides,  unlike  uniform
quantizers  with  time-varying  sensitivity,  the  proposed  dyna-
mic  quantization  policy  does  not  require  an  extra  time
sequence  to  update  the  sensitivity,  which  circumvents  poten-
tial conflicts between sensitivity updating and triggering com-
munication.

2) By defining a quantization-related measurement error, the
adverse effect of quantization errors is implicitly considered in
the  event-triggered  strategy,  which  contributes  to  a  rigorous
analysis  of  the  inter-event  time  interval.  Moreover,  an
adjustable  factor  is  introduced  into  the  triggering  condition,
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ensuring the validation and availability of the event-triggered
strategy.

3)  An  event-driven  encrypted  control  framework  is  pro-
posed  using  the  Paillier  cryptosystem,  modified  static  and
dynamic  quantization  policies,  and  the  quantization-related
event-triggered  strategy.  The  strong  nonlinearities  caused  by
quantization  and  event  triggering,  including  two  coupled
errors, are tactfully compensated by selecting proper parame-
ters.  It  is  shown  that  under  the  proposed  event-triggered
encrypted  controller,  the  closed-loop  system  is  secure  and
asymptotically stable.  

C.  Related Work
HE-based  encrypted  control  of  NCSs  has  been  studied  in

[5]–[10].  A  pioneering  encrypted  control  scheme  was  pro-
posed in [5] to enhance the security of NCSs, based on multi-
plicative HE of RSA and EIGamal. Different problems related
to HE-based encrypted control of NCSs have been studied in
the literature,  e.g.,  quantizer design and stability analysis [6],
[7],  observer-based encryption[8], and overflow/underflow of
encrypted  data [10].  In  particular,  the  quantizer  design  prob-
lem was first addressed in [6] and then was extended in [7], in
which  a  stability-guaranteed  dynamic  ElGamal  cryptosystem
was developed. Furthermore, using the additively HE method,
an encrypted distributed state observer was presented in [8], to
enhance  the  privacy  of  the  measurement  data  and  estimated
state.  Kim et  al. [9] provided a  practice implementation over
homomorphically  encrypted  data  in  an  infinite  time  horizon
using  a  dynamic  feedback  controller.  To  eliminate  the  over-
flow/underflow issue  due  to  encryption,  a  secure  and  private
control approach was proposed in [10], wherein the controller
is reset periodically.

The event-triggered control (ETC) method has been widely
used to address the security of capacity-limited NCSs, such as
faulty  accommodation [11],  anti-DoS  attacks,  deception
attacks, sparse attacks [12]–[14], and privacy-preserving con-
trol [15]. Moreover, the ETC scheme with quantized measure-
ments  has  been  extensively  studied,  especially  using  a  uni-
form  quantizer [16]–[19].  For  instance,  by  combining  uni-
form quantization and the ETC strategy, the leader-following
consensus  problems for  linear  and  Lipschitz  nonlinear  multi-
agent systems were addressed in [17]. Taking external distur-
bances  into  account,  two  high-gain  control  laws  with  quan-
tized  relative  states  were  designed  in [18] to  ensure  the
bounded consensus using event-triggered quantized communi-
cation  protocols.  Xu et  al. [19] studied  a  unified  distributed
control  method  for  linear  networked  systems  with  various
quantizers,  where  the  uniform  quantization  effect  was  ana-
lyzed in detail.  However, due to the fixed quantization sensi-
tivity in [16]–[19],  only uniformly ultimately bounded stabil-
ity of the system was ensured even without the external distur-
bance.

What’s  more,  although  a  few  researchers  have  studied
event-based secure control issue of NCSs (like [11]–[15]), it is
still rare to use encrypted networked control with the HE and
ETC  method,  as  it  is  in  its  infancy  stage.  Kishida [20] pro-
posed  a  Paillier-type  encrypted  control  scheme  for  the  NCS
using  a  uniform  quantizer  with  a  time-varying  quantization

sensitivity.  Then,  the  proposed  encrypted  control  law  was
extended to an event-triggered communication case. Later, the
same  event-triggered  encrypted  control  problem  was  add-
ressed in [21] using the ElGamal cryptosystem. Nevertheless,
it  should be pointed out that  several  deficiencies still  exist  in
the existing event-based secure control schemes of NCSs, e.g.,
potential  conflicts  between  the  quantizer  and  event-trigger
updating  and  the  nonzero  phenomenon  of  the  measurement
error at the triggering time instant.

Inspired  by  the  aforementioned  discussions,  we  develop  a
novel  event-driven  encrypted  control  framework  for  NCSs,
including  two  modified  uniform  quantization  policies,  the
Paillier  cryptosystem,  and  an  event-triggered  strategy.
Remarkably, to construct the HE-based encrypted control law,
we  need  to  quantize  the  system  state  and  the  control  gain
simultaneously. If two uniform quantizers (e.g., [16]–[19]) are
directly  used  to  quantize  them,  the  control  performance  of
closed-loop system will be severely deteriorated due to strong
nonlinearities  stemming  from  coupled  quantization  errors.  In
particular, such an adverse impact on the system performance
would be further aggravated in the triggering communication
scenario. Therefore, these research results in [16]–[19] can not
be  directly  applicable  to  the  HE-based  encrypted  control
framework.  To  address  this  challenge,  we  propose  static  and
dynamic quantization policies for the control gain and system
states,  respectively.  By  carefully  selecting  the  quantization
sensitivities,  the  proposed  quantization  policies  not  only
achieve the desired integer conversions, but also guarantee the
asymptotic  convergence  of  the  quantized  system  state  to  the
equilibrium.  On  the  other  hand,  in  contrast  to  the  time-vary-
ing quantization policy in [20], our dynamic quantization pol-
icy  does  not  require  additional  time  instances  to  update  the
quantizer’s sensitivity. This is particularly important for prac-
tical  implementations  as  it  avoids  potential  conflicts  between
triggering communications and sensitivity updating. Addition-
ally, we use the quantized system state to define the measure-
ment  error  in  the  event-triggered  strategy,  which  ensures  the
measurement  error  can  be  set  to  zero  when  specific  events
occur. Different from the event-triggered policy in [20], [21],
the  adverse  effects  caused  by  quantization  errors  are  implic-
itly  considered  in  the  triggering  condition,  and  a  more  rigor-
ous analysis of the inter-event time interval is provided in our
work.  

D.  Organization
The  rest  of  this  paper  is  organized  as  follows.  Section  II

provides  the  preliminary  technical  background  and  formu-
lates  the encrypted control  problem. Section III  discusses the
event-driven encrypted control algorithm, including the design
of  quantization  and  event-trigger  policies.  The  simulation
results  are  provided  in  Section  IV.  Finally,  concluding
remarks are given in Section V.  

E.  Notations
R Z Z+

Rn Rn×m

n×m
Z+n := {z ∈ Z : 0 ≤ z < n}

Let , ,  and  be sets of the real numbers,  integers,  and
non-negative  integers,  respectively.  Denote  and  as
sets of the n-dimension column vector and  real  matrix.
Let  represent  the  set  of  non-negative
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(·)T (·)†
∥ · ∥

λmin(M)
In n×n

integers less than n.  stands for the transpose operation, 
denotes  the  Moore-Penrose  generalized  inverse,  defines
the  Euclidean  norm  for  vectors  or  the  induced  2-norm  for
matrices,  and  represents  the minimum eigenvalue of
the matrix M. In addition,  denotes the  identify matrix.  

II.  Preliminaries and Problem Formulation

In this section, we first revisit the Paillier cryptosystem and
the uniform quantizer. Then, the encrypted networked control
problem is formulated.  

A.  Paillier Cryptosystem
The Paillier encryption includes three steps, i.e., key genera-

tion  (Gen),  encryption  (Enc),  and  decryption  (Dec).  The
detailed operations are as follows [20]:

Gen1) 

gcd(pq, (p−1)(q−1)) gcd(a,b)
a) Choose two large prime numbers p and q randomly such

that  = 1,  where  stands for  the
greatest common divisor of any positive integers a and b;

(N,g) N = pq g ∈ Z+
N2b) Generate the public key , where  and 

is a random integer;
(λ,µ) λ = lcm(p−1,

q−1) µ = λ−1 mod N lcm(a,b)
mod

c)  Generate  the  private  key ,  where 
, ,  is  the  least  common  multi-

ple  of  any  positive  integers a and b,  and  is  the  modulo
operation.

2) Enc
r ∈ Z∗N := {x ∈ Z+N | gcd(x,N) = 1}a) Select random ;

m ∈ Z+N
c = Enc(m) = gm · rN mod N2

b)  Given  a  plaintext  message ,  construct  its  cipher-
text as .

3) Dec
L(x) = (x−1)/N x ∈ Z∗

N2a) Define  for any ;
c ∈ Z+

N2 m =
Dec(c) = L(cλ mod N2)µ mod N

b) For  any  ciphertext ,  compute  its  plaintext  as 
.

m1,m2 ∈ Z+N

A  notable  feature  of  Parillier  encryption  is  its  additively
homomorphic  property.  To  be  specific,  given  any  plaintexts

, it follows that:
 

Dec
(
Enc(m1)Enc(m2) mod N2

)
= m1+m2 mod N (1)

 

Dec
(
Enc(m1)m2 mod N2

)
= m1m2 mod N. (2)

  

B.  Uniform Quantizer

x ∈ R qu(x) : R→ Z

Since the data related to the practical NCSs, such as the sen-
sor measurements and control gain, are usually real numbers,
they must  be quantized before encryption.  For any real  num-
ber , a uniform quantizer  is defined as [22]
 

qu(x) =


M, if x > (M+1/2)∆
−M, if x ≤ −(M+1/2)∆⌊

x
∆
+

1
2

⌋
, otherwise

(3)

⌊·⌋
x ∈ [(k−1/2)∆, (k+1/2)∆)

qu(x) = k k ∈ Z −M ≤ k ≤ M
v ∈ Rn S ∈ Rn×m qu(v) : Rn→ Zn qu(S ) :

Rn×m→ Zn×m

where M is a positive integer representing the saturation value
of  the  quantizer,  ∆  is  a  non-negative  real  number  indicating
the  sensitivity  of  the  quantizer,  and  the  operation  is  the
floor  function.  Specifically,  when ,
we have , where  satisfies . For any
vector  (any  matrix ),  (

)  is  an element-wise uniform quantizer with the

same  sensitivity  and  saturation  value.  The  following  lemma
characterizes the quantization error of the uniform quantizer.

x̃ = x−∆qu(x)

qu(x)

Lemma  1 [22]: Define  as  the  quantization
error. If there is no truncation occurring in the quantizer, that
is,  does not saturate, we have
 

|x̃| ≤ ∆/2. (4)
ṽ = v −

∆qu(v) S̃ = S−
∆qu(S )

Similarly,  the  quantization  error  of  vector v (i.e., 
)  and  the  quantization  error  of  matrix S (i.e., 
) can be upper bounded as

 

∥ṽ∥ ≤ ∆
√

n/2, ∥S̃ ∥ ≤ ∆
√

nm/2. (5)
  

C.  Problem Formulation
Consider the linear networked control system

 

x(t+1) = Ax(t)+Bu(t) (6)
t ∈ Z+ x(t) ∈ Rn

u(t) ∈ Rm A ∈ Rn×n B ∈ Rn×m

(A,B)

where  is  the  time  index,  is  the  system  state,
 denotes the control input,  and  are

the constant matrices. If the matrix pair  is controllable,
the  system  (6)  can  be  stabilized  by  implementing  the  state-
feedback control law
 

u(t) = −Kx(t) (7)
K ∈ Rm×nwhere  is  the  control  gain  matrix.  As  illustrated  in

Fig. 1,  the  control  input  signal  (7)  is  computed  by  a  net-
worked  controller  according  to  the  state  measurements.  A
malicious  adversary  can  directly  obtain  sensitive  state  mea-
surements  by  eavesdropping  the  communication  channels.
Moreover,  the  controller  may  be  implemented  using  an
untrusted  computing  entity,  e.g.,  a  cloud-based  controller.
Since valuable information can be inferred from the state mea-
surements or the control input signal, the security and privacy
of the system may be compromised. Hence, this paper focuses
on the secure control problem of NCSs, stated as Problem 1.
 

Plant SensorActuator

Eavesdropping attack

Plant node

Network Untrusted
controller

Network

 
Fig. 1.     The NCSs subject to possible eavesdropping attacks.
 

x(t)

Problem 1: Develop an encrypted control framework for the
linear  networked  system  (6),  including  a  static  quantization
policy for the control gain K and a state-based dynamic quan-
tization  policy  for  the  system  state ,  and  an  event-trig-
gered policy to achieve the following objectives:

1) Ensuring the asymptotic stability of the closed-loop sys-
tem;

2)  Preserving  the  security  of  the  data  shared  through  the
communication network;

3)  Reducing  data  transmissions  over  the  communication
network between the plant and the controller.

(A,B)

Lemma  2 [23]: Consider  the  linear  networked  system  (6)
with  the  state-feedback  control  law  (7).  If  the  matrix  pair

 is  controllable,  for  any  given  symmetric  and  positive-
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Q ∈ Rn×n P = PT ∈ Rn×n > 0definite matrix , there exists  satis-
fying
 

(A−BK)T P(A−BK)−P+Q = 0. (8)

(A,B)
Assumption  1: For  the  networked  control  system  (6)  with

state-feedback control law (7),  is controllable.
Remark  1: Given  that  the  Paillier  cryptosystem  only  oper-

ates  positive  integers,  all  data  used  for  computing  the  net-
worked  control  law  necessitate  integer  conversions.  Hence,
the  purpose  of  employing uniform quantizers  in  this  paper  is
to  map  the  real-valued  system  state  and  control  gain  into
proper  integer  values.  Although  the  uniform  quantizer  itself
distorts the original signal, protecting data only through quan-
tization seems impracticable as the variation trend of the origi-
nal  signal  remains  unchanged  after  quantization.  Thus,  the
security  enhancement  of  the  NCS still  relies  on  the  usage  of
the Paillier cryptosystem.  

III.  Main Results

x(t)

In this section, a novel encrypted networked control frame-
work  is  proposed,  as  shown  in Fig. 2.  First,  we  design  the
static  and  dynamic  quantization  policies  to  quantize  the  con-
trol  gain K and  the  system  state ,  respectively.  Remark-
ably,  the  main  purpose  of  the  quantization  is  to  convert  the
real-valued  control  gain  and  system  state  into  integers  since
only  integers  can  be  encrypted  in  the  Paillier  cryptosystem.
Then,  a  state-based  event-triggered  strategy  is  developed  for
scheduling  the  transmission  of  the  quantized  system  state
before encryption. Based on this, an encrypted networked con-
troller  is  constructed.  Finally,  the  inter-event  time  interval
under  the  proposed  event-triggered  policy  is  analyzed.  The
detailed design and analysis procedures are introduced below.
 

u(t)

x(t)

x(t)

Plant

Paillier

Encryptor Quantizer

Dynamic

Static

Paillier
Decryptor

Scalingu+
rk

Plant node
Event
trigger

K

qu(x(tk))

rkC
om

m
un

ic
at

io
n 

ne
tw

or
k

C
on

tro
lle

r

E(u+)

Ep(qu(x(tk)))

Erk
(qu(K)) qu(K)

qu(x)

 
E(u+)

u+

E(u+) u(t)

Fig. 2.     The proposed encrypted networked control scheme, where (  is
the encrypted control law computed by the networked controller,  is the
decrypted result of , and  is actual control command executed on the
actuator.  

A.  Quantization Policy Design
1) Quantization for the Control Gain Matrix

qu(K)
∆K > 0

qu(K)
∆K

Based on the description in Section II, K is the control gain
matrix  in  (7)  and  satisfies  (8).  Let  be  a  uniform quan-
tizer of K with the sensitivity . Then, the static quanti-
zation policy for the uniform quantizer  is designed such
that  satisfies
 

∆K ≤
2

√
mn∥BT PB∥

(
−∥(A−BK)T PB∥

+

√
∥(A−BK)T PB∥2+λmin(Q)∥BT PB∥

)
(9)

where P and Q are positive-define matrices in (8).

u(t) = −K̄x(t) K̄ =
∆Kqu(K)

∆K

Theorem 1: Consider  the  linear  networked system (6)  with
the  state-feedback  control  law ,  where 

.  If  there  is  no  saturation  occurrence  in  the  uniform
quantizer  and  the  sensitivity  is  selected  according  to  the
static  quantization  policy  (9),  then  the  linear  networked  sys-
tem (6) is asymptotically stable.

u(t) = −K̄x(t)
Proof: By  implementing  the  quantized  state-feedback  con-

trol  law ,  the  closed-loop  linear  discrete-time
system (6) can be rewritten as
 

x(t+1) = (A−BK)x(t)+BK̃x(t). (10)
K̃ = K − K̄

V(x, t) = xT (t)Px(t)
Define  as  the  quantization  error  of K.  Then,

choose  as  the  Lyapunov  function  candi-
date. Combining (8) and (10), it follows that:
 

V(x,t+1)−V(x, t)

= xT (t+1)Px(t+1)− xT (t)Px(t)

= (A−BK +BK̃)T P(A−BK +BK̃)− xT (t)Px(t)

= xT (t)
(
(A−BK)T PBK̃ + K̃T BT P(A−BK)

+K̃T BT PBK̃ −Q
)

x(t)

≤ −λmin(Q)∥x(t)∥2+2∥(A−BK)T PB∥∥x(t)∥2∥K̃∥
+ ∥BT PB∥∥x(t)∥2∥K̃∥2. (11)

∥K̃∥ ≤ ∆K
√

mn/2
∆K

Moreover,  based  on  Lemma  1,  holds.
Once  satisfies  (9),  the  following  inequality  will  always
hold:
 

−λmin(Q)+2∥(A−BK)T PB∥∥K̃∥
+ ∥BT PB∥∥K̃∥2 ≤ 0 (12)

which directly implies
 

V(x, t+1)−V(x, t) ≤ 0. (13)
∆KIn  summary,  as  long  as  is  determined  by  (9),  it  is

straightforward  to  infer  from  (13)  that  the  linear  networked
system (6) is asymptotic stable. ■

P̄ Q̄
Additionally,  based  on  Theorem  1,  there  exists  symmetric

positive-define matrices  and  such that
 

(A−BK̄)T P̄(A−BK̄)− P̄+ Q̄ = 0 (14)
which is a discrete Lyapunov equation and will be used in the
design of the quantization policy for the system state.

2) Quantization for the System State
qu(x)

∆x > 0
Let  denote  a  uniform quantizer  of  the  system state x

with the sensitivity . Then, the state-dependent dynamic
quantization policy is designed such that
 

∆x ≤σ∥x(t)∥ (15)
with
 

σ =
2λmin(Q̄)
√

n
/
(
∥(A−BK̄)T P̄BK̄∥

+

√
∥(A−BK̄)T P̄BK̄∥2+λmin(Q̄)∥K̄T BT P̄BK̄∥

)
(16)

P̄ Q̄where the matrices  and  are determined by (14).
Theorem 2: Consider  the  linear  networked system (6)  with
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u(t) = −K̄ x̄(t) x̄(t) =
∆xqu(x)

∆x

the  state-feedback  control  law ,  where 
.  If  there  is  no  saturation  occurrence  in  the  uniform

quantizer  and  the  sensitivity  is  chosen  according  to  the
dynamic  quantization  policy  (15),  then  the  linear  networked
system (6) is asymptotically stable.

u(t) = −K̄ x̄(t)
Proof: The linear networked system (6) with the state-feed-

back control law  can be expressed as
 

x(t+1) = (A−BK̄)x(k)+BK̄ x̃. (17)
x̃(t) = x(t)− x̄(t) x(t)

V(x, t) = xT (t)P̄x(t)
Let  be the quantization error of . Analo-

gous to the proof of Theorem 1, define  as
the Lyapunov function candidate. Then, it gets that
 

V(x,t+1)−V(x, t)

= xT (t+1)P̄x(t+1)− xT (t)P̄x(t)

≤ −λmin(Q̄)∥x(t)∥2+ ∥K̄T BT P̄BK̄∥∥x̃(t)∥2

+2∥(A−BK̄)T P̄BK̄∥∥x(t)∥∥x̃(t)∥ (18)

y ≤ a∥x(t)∥2+
b∥x(t)∥+ c y = V(x, t+1)−V(x, t) a = −λmin(Q̄) b =
2∥(A−BK̄)T P̄BK̄∥∥x̃∥ c = ∥K̄T BT P̄BK̄∥∥x̃∥2

y ≤ 0

where Lemma 2 in (8) is used. Following [6], (18) can be per-
ceived  as  a  quadratic  inequality  in  the  form  of 

,  where ,  , 
,  and .  Further,  the

solution of  can be supported by
 

∥x(t)∥ ≥ −b−
√

b2−4ac
2a

. (19)

Next, inserting a, b and c into (19) results in
 

∥x̃∥ ≤ λmin(Q̄)∥x(t)∥/
(
∥(A−BK̄)T P̄BK̄∥

+

√
∥(A−BK̄)T P̄BK̄∥2+λmin(Q̄)∥K̄T BT P̄BK̄∥

)
. (20)

V(x, t+1)−
V(x, t) ≤ 0 x̃

∥x̃∥ ≤ ∆x
√

n/2
∆x

Thus,  (20)  is  a  sufficient  condition  to  ensure 
.  Next, recalling Lemma 1, the quantization error 

is  always  restrained  by .  In  light  of  this,  once
 is selected by (11), the sufficient condition in (20) will be

always satisfied, which implies that the closed-loop system is
asymptotic stable. ■

P̄x = P̄T
x

It follows from Theorem 2 that there exists a positive-define
matrix  such that:
 

(A−BK̄)T P̄x(A−BK̄)− P̄x + Q̄x = 0 (21)
Q̄xfor any given symmetric positive-define matrix . This equa-

tion will be used in the stability analysis of Theorem 3.

u(t) = −Kx̄(t)

∆x
√

2/2

∆x
√

2/2

It is constructive to compare the closed-loop control perfor-
mance of an NCS under the traditional fixed-sensitivity quan-
tizer in [16]–[19] and the dynamic sensitivity quantizer in our
paper.  More  specifically,  consider  the  linear  system  (6)  with

,  where A, B,  and K are  given referring to [21].
Fig. 3(a)  shows  the  quantization  error  under  the  traditional
fixed-sensitivity  quantizer  with  different  sensitivity  levels.
Fig. 3(b)  shows  the  quantization  error  under  the  proposed
dynamic  quantization  policy.  According  to Fig. 3,  although
the quantization errors under these two cases are strictly con-
strained  within  the  upper  bound ,  the  quantization
performance  of  the  fixed-sensitivity  quantizer  heavily  relies
on the selection of the quantization sensitivity. Moreover, the
quantization  error  of  the  fixed-sensitivity  quantizer  only
approaches  its  relevant  upper  bound  at  the  steady-

x(t)

x(t)

state  stage,  which  only  ensures  the  convergence  of  to  a
neighborhood  of  the  equilibrium.  Differently,  the  quantiza-
tion  error  under  the  proposed  dynamic  quantization  policy
successfully  trends  towards  zero  at  the  steady-state  stage,
thereby ensuring the asymptotic convergence of .  

B.  Event-Triggered Strategy
e(t) = x̄(tk)− x̄(t), t ∈ [tk, tk+1)

tk, k ∈ Z+

Define  as  the  measurement
error between the latest triggered quantized state and the cur-
rent  quantized  state,  where  is  the  latest  triggering
instance. Then, the event-triggered strategy is developed as
 

tk+1 = inf{t ≥ tk
∣∣∣F(t) ≥ 0} (22)

inf(·)
t1 = 0 F(t)

where  is  the  infimum  operation,  the  initial  triggering
instant is , and  is the triggering function given by
 

F(t) = ∥e(t)∥− (β−
√

n/2σ)∥x(t)∥ (23)
with an adjustable factor
 

β =
1

∥K̄T BT P̄xBK̄∥

(
−∥(A−BK̄)T P̄xBK̄∥

+

√
∥(A−BK̄)T P̄xBK̄∥2+ (ε+λmin(Q̄x))∥K̄T BT P̄xBK̄∥

)
(24)

ε > 0where  is  a  position  constant.  Note  that  the  proposed
event-triggered  strategy  (22)  is  Zeno-free,  thus  it  is  exe-
cutable.  The detailed  analysis  of  the  inter-event  time interval
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of (22) is provided in the later part of this section.  

C.  Encrypted Control Law

qu(K)
rk qu(K) Erk (qu(K)) =

rkqu(K) Erk(qu(K))
Drk (Erk(qu(K))) = Erk(qu(K))/rk = qu(K)

We use a multiplicative blinding encryption method [20] to
encrypt the control  gain matrix.  To be specific,  for the quan-
tized control gain matrix , we select randomly a positive
integer . The ciphertext of  is computed as 

. Correspondingly, the decryption result of 
is  computed  as .  By
doing this, the security of the control gain can be ensured.

Ep(qu(x(tk)))

E(u+)

Let  be the Paillier-type encrypted result of the
quantized system state at  the kth triggering instant.  Then, the
encrypted control law  is designed as
 

E(u+) = −
(
Ep(qu(x(tk)))Erk (qu(K)) mod N2

)
. (25)

Dp(·)
The detailed implementation of the proposed encrypted con-

trol scheme is summarized in Algorithm 1, where  is the
Paillier-based decryption operation.

Algorithm 1 The Implementation of the Proposed Encrypted Con-
trol Scheme With Static and Dynamic Quantizers and the Event-Trig-
gered Policy

p,q,g,rk ,K,Q, Q̄, Q̄xInitialize: choose 
u(t)Ensure: 

1: /*Parameter computation*/
2: Compute P according to (8)
3: /*Static quantization*/

∆K4: Select  so that (9) holds
qu(K) K̄5: Compute  and 
P̄6: Compute  according to (14)

7: /*Dynamic quantization*/
∆x8: Compute σ and select  such that (15) holds

qu(x)9: Obtain 
P̄x10: Compute  according to (21)

11: /*Event trigger*/
12: Compute β based on (24)

t = tk + i, i = 1, . . .13: for  do
F(t)14: 　　Calculate  using (23)

F(t) ≥ 015: 　　if  then
tk+116: 　　　　Determine  by (22)

tk = tk+117: 　　　　

e(t) = 018: 　　　　

qu(x(tk))19: 　　　　Update 
20: 　　end if
21: end for
22: /*Encryption*/

qu(K) rk23: Encrypt  using a random positive integer 
qu(x(tk))24: Encrypt  using Paillier encryption

Erk (qu(K)) EP(qu(x(tk)))25: Transmit  and  to the controller node
26: /*Controller*/

E(u+)27: Compute the encrypted controller  as per (25)
E(u+)28: Transmit  to the plant node

29: /*Decryption*/
u+ = −Dp

(
Drk (E(u+))

)
= −Drk (Erk (qu(K))qu(x(tk))) =

−qu(K)qu(x(tk))

30: Compute 
 

31: /*Scaling*/
u(t) = −K̄ x̄(tk)32: Obtain and implement 

Theorem  3: Consider  the  linear  networked  system  (6)  and
suppose that  there  is  no saturation occurrence in  the  uniform
quantizer.  Implementing  the  encrypted  control  law  (25)  with
the  event-triggered  strategy  (22)  following  Algorithm  1,  the
control objectives stated in Problem 1 are achieved.

u(t) = ∆K∆xu+

u(t)

Proof: Benefiting  from the  homomorphic  property  of  Pail-
lier encryption, we have . Thus, the actual con-
trol command  executed on the actuator is represented by
 

u(t) = ∆x∆KDp
(
Drk (E(u+))

)
= −K̄ x̄k. (26)

Therefore, the linear networked system (6) now becomes
 

x(t+1) = Ax(t)−BK̄ x̄(tk)

= (A−BK̄)x(t)−BK̄w(t) (27)
w(t) = x̄(tk)− x(t)

V(x, t) = xT (t)P̄xx(t)
where  is an auxiliary error. Then, choose the
Lyapunov  function  candidate  as .  Its  dif-
ference along (27) is calculated by
 

V(x, t+1)−V(x, t)

= xT (t)(A−BK̄)T P̄x(A−BK̄)x(t)− xT (t)P̄xx(t)

+2xT (t)(A−BK̄)T P̄xBK̄w(t)

+wT (t)K̄T BT P̄xBK̄w(t)

≤ −λmin(Q̄x)∥x(t)∥2+ ∥w(t)∥2∥K̄T BT P̄xBK̄∥
+2∥(A−BK̄)T P̄xBK̄∥∥w(t)∥∥x(t)∥. (28)

e(t) x̃(t)Recalling the definitions of  and , it follows that:
 

w(t) = x̄(tk)− x̄(t)+ x̄(t)− x(t)

≤ ∥e(t)∥+ ∥x̃(t)∥. (29)

∥e(t)∥ ≤ (β−
√

n/2σ)∥x(t)∥ t ∈ [tk, tk+1)

∥w(t)∥ ≤ β∥x(t)∥

According to the event-triggered strategy (22), it is inferred
that  holds  for .  More-
over,  combining  Lemma  1  and  (29),  it  is  easy  to  obtain  that

. Given this fact, (28) is further simplified as
 

V(x, t+1)−V(x, t) ≤ −ε∥x(t)∥2. (30)
Therefore,  the  closed-loop  control  system  under  the  pro-

posed  encrypted  control  scheme  is  asymptotically  stable.
Moreover, under the event-triggered policy, the system state is
encrypted  and  transmitted  only  when  the  specific  triggering
condition  is  fulfilled,  which  contributes  to  communication
load reduction. Furthermore, the data security during network
transmissions is clarified by Remark 2. ■

Remark  2: According  to Fig. 2 and  Algorithm  1,  all  data
transmitted over the communication network,  i.e.,  the system
state,  control  gain,  and  control  input  signal,  have  been
encrypted before transmission. Since the private key is exclu-
sively  known by  the  plant,  no  sensitive  information,  particu-
larly the system state and controller signal, can be leaked even
in  the  presence  of  network  eavesdroppers  and  malicious
adversities,  which  ensures  the  security  and  confidentiality  of
data shared through the communication channel.

Remark 3: Considering the design process of the encrypted
networked  control  scheme,  we  present  the  static,  dynamic
quantization  policies,  the  event-triggered  strategy,  and  the
encrypted  control  law  successively.  Combining  the  proof  of
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each theorem, it is easily observed that Theorem 2 is obtained
based  on  the  premise  of  a  discrete  Lyapunov  equation  (14)
generated  from Theorem 1.  Similarly,  the  discrete  Lyapunov
equation (21) generated by Theorem 2 is used to construct the
event-triggered strategy (22), which drives the encrypted con-
trol law (25). Hence, Theorem 1 is a prerequisite for Theorem 2,
and Theorem 2 is a prerequisite for Theorem 3.  

D.  Inter-Event Time Interval Analysis

x(t) w(t) = x̄(tk)− x(t)
u(t) = −K̄ x̄(tk)

Referring to [24], the inter-event time interval between two
consecutive  events  is  analyzed  by  studying  the  evolutions  of

 and the auxiliary error . To this end, the
linear networked system (6) with  is rewritten in
the form of
 

x(t+1) = (A−BK̄)x̄(tk)−Aw(t). (31)
t ∈ [tk, tk+1) k > 1For  and , the solution of (31) can be repre-

sented by
 

x(t) = At−tk x(tk)−
t−tk−1∑

i=0

At−tk−1−iBc1 (32)

c1 = K̄ x̄(tk) w(t)
w(t+1) = x̄(tk)− x(t+1)

where  is constant. Using the definition of , we
have , which implies
 

w(t) = At−tk w(tk)+
t−tk−1∑

i=0

At−tk−1−ic2

= At−tk x̃(tk)+
t−tk−1∑

i=0

At−tk−1−ic2 (33)

e(tk) = 0 c2 = (In−A+BK̄)x̄(tk)
w(t)

where  and  is  constant.  More-
over, the norm of  is upper bounded as
 

∥w(t)∥ ≤ ∥At−tk x̃(tk)∥+
∥∥∥∥∥∥∥

t−tk−1∑
i=0

At−tk−1−ic2

∥∥∥∥∥∥∥
≤ c3∥At−tk∥+

∥∥∥∥∥∥∥
t−tk−1∑

i=0

At−tk−1−ic2

∥∥∥∥∥∥∥ (34)

c3 =
√

n/2σ∥x(tk)∥where  is  a  constant.  Further,  the  inter-
event time interval is determined by
 

t∗ = arg min
t>tk

c3∥At−tk∥+
∥∥∥∥∥∥∥

t−tk−1∑
i=0

At−tk−1−ic2

∥∥∥∥∥∥∥
≥ β
∥∥∥∥∥∥∥At−tk x(tk)−

t−tk−1∑
i=0

At−tk−1−iBc1

∥∥∥∥∥∥∥
 (35)

∥w(t)∥ ≤ β∥x(t)∥where  we  have  used  the  fact  that  (see  the
proof of Theorem 3) and (34).  

IV.  Simulation Example

In this  section,  the encrypted control  of an inverted pendu-
lum cart  system shown in Fig. 4 is  considered as an example
to  validate  the  efficiency  of  the  proposed  event-driven
encrypted  control  framework.  The  motion  equation  of  the
inverted pendulum cart system is described by [25] 


ẋ

ẍ

ϕ̇

ϕ̈

 =


0 1 0 0

0
−(I+ml2)b

I(M+m)+Mml2
m2gl2

I(M+m)+Mml2
0

0 0 0 1

0
−mlb

I(M+m)+Mml2
mgl(M+m)

I(M+m)+Mml2
0




x

ẋ

ϕ

ϕ̇



+



0

I+ml2

I(M+m)+Mml2

0

ml
I(M+m)+Mml2


u

(36)

M = 0.5 m = 0.2
b = 0.1 N/m/s

l = 0.3
I =

0.006 kg ·m2

g = 9.8 m/s2

ϕ = θ−π u = F

[x(0), ẋ(0), ϕ(0), ϕ̇(0)] = [0,
0, 0.1, 0]

where  kg and  kg denote the mass of the cart
and the  pendulum, respectively;  is  the  friction
coefficient  of  the  cart;  m stands  for  the  distance from
the  pivot  point  to  the  pendulum’s  center  of  mass; 

 is  the  moment  of  inertia  of  the  pendulum;
 indicates  the  acceleration  of  gravity; θ denotes

the pendulum angle and ; x is the cart position; 
is the force exerted on the cart. The initial state of the inverted
pendulum  cart  system  is  set  as 

.

T = 0.01
The inverted pendulum cart  system (36) is  discretized with

 s.  The  state-feedback  control  law  is  determined  by
solving  the  discrete-time  linear  quadratic  regulator  (LQR)
problem, where the cost function is given by
 

J =
∞∑

t=0

(
x(t)T Qxx(t)+u(t)T Ruu(t)

)
(37)

Qx = 0.5I2 Ru = 0.5with  and .  Accordingly,  the  control  gain
matrix K is calculated as
 

K = [ −0.9317, −1.9130, 19.5402, 3.7600 ].

By choosing
 

Q =


0.9 0.9 −9.1 −1.8
0.9 2.3 −18.7 −3.6
−9.1 −18.7 191.4 36.7
−1.8 −3.6 36.7 7.6


∆K ≤ 0.025

∆K = 0.025 Q̄ = Q̄x = Q
(24) σ = 0.0012 β = 0.0757 ε = 30

we obtain  from (8) and (9). In our simulation, we
set .  Moreover,  letting  and using (16)
and ,  we  have  and ,  where .
The  saturation  values  of  the  static  and  dynamic  quantization
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m, I

θ

 
Fig. 4.     The schematic of an inverted pendulum cart system.
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policies  are  set  to  800.  Besides,  define  the  energy  consump-
tion of the inverted pendulum system as follows:
 

E =
∞∑

t=0

u(t)T u(t). (38)
  

A.  Effectiveness Verification
Figs. 5 and 6 show the state trajectories and the actual con-

trol commands for the encrypted control law (25) (denoted as
“w/ encryption”) and unencrypted control law (7) (denoted as
“w/o  encryption”),  respectively.  These  two  figures  confirm
that  the  asymptotic  stability  and  control  performance  of  the
encrypted  control  system  are  similar  to  those  of  the  unen-
crypted control system. The triggering release instants and the
inter-event triggering intervals under the proposed event-trig-
gered strategy (22) are plotted in Fig. 7,  where the triggering
number,  minimum,  and  maximum  triggering  intervals,  are
165, 2 and 15, respectively.
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Fig. 5.     State trajectories under the encrypted and unencrypted control sys-
tems.
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Fig. 6.     Control command under the encrypted and unencrypted control sys-
tems.
 

Fig. 8 depicts the energy consumption of the encrypted and
unencrypted control systems. In Fig. 9, we show the commu-
nication  size  for  the  unencrypted  control  system  (denoted  as
“w/o  encryption”),  the  proposed  event-driven  encrypted  con-

4
8

6616 20 016

trol  system  (denoted  as “w/  encryption”),  and  the  encrypted
control  system without  an  event-triggered  policy  (denoted  as
“w/ encryption w/o trigger”). The unencrypted control system
only requires -byte to communicate each variable or parame-
ter,  while  the  Paillier  encryption  scheme  requires -byte  to
communicate  each  variable.  In  this  case,  the  sizes  of  data
transmitted  over  the  communication  network  under  the  pro-
posed encrypted control law (25) and unencrypted control law
(7)  are  bytes  and  bytes,  respectively.  Without
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Fig. 7.     The triggering instant and inter-event interval.
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Fig. 9.     Comparison  of  the  communication  size  between  the  encrypted  and
unencrypted control systems.
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40 016

3.34%
66.95%

consideration  of  the  event-triggered  policy  (“w/  encryption
w/o trigger”), the system requires  bytes to transmit the
encrypted  data.  Therefore,  the  total  size  of  data  transmitted
over  the  communication  network  is  significantly  reduced
under the proposed event-triggered encrypted control scheme.
Moreover,  combining Fig. 8 with Fig. 9,  the  proposed  encry-
pted  control  scheme  increases  the  energy  consumption  by
nearly ,  while  reducing  the  communication  size  by

 compared  with  those  under  the  unencrypted  control
law, which indicates it is still resource-efficient.

The encrypted system states and control law are depicted in
Figs. 10 and 11, respectively. As can be seen, there is no cor-
relation exists between the original/actual data (Figs. 5 and 6)
and the encrypted data (Figs. 10 and 11). Therefore, the sensi-
tive state measurements and the control input signal transmit-
ted over the communication network are well protected.
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Fig. 10.     The encrypted system states of the system.
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Fig. 11.     The encrypted control law of the system.  

B.  Comparison With the Existing Method

Ω ∈ (0,1)

It  is  worth  noting  that [20] addressed  the  same  event-trig-
gered encrypted control problem of NCSs as our work. Specif-
ically, the Paillier cryptosystem, uniform quantizer, and event-
triggered  control  method  were  utilized  to  construct  the
encrypted controller.  Hence,  the  encrypted control  scheme in
[20] is simulated as a comparative example, named “The com-
pared  method”.  To  ensure  a  fair  comparison,  the  system
parameters  and  control-related  matrices  remain  unchanged
with subsection A. However, in order to maintain the scaling
factor  as specified in [20], the saturation value of the

50 000uniform quantizer for the system state is increased to .
Due to space limitations,  we have omitted the encrypted sys-
tem states and control law.

Θ ≈ 400

78.39% 83.47%

Fig. 12 shows  the  state  trajectories  under  these  two
encrypted control schemes. It is evident from Fig. 12 that both
schemes  ensure  the  asymptotic  stability  of  the  system.  How-
ever, the proposed method in this paper exhibits a better tran-
sient  control  performance,  contributing  to  smoother  control
command and less energy consumption, as depicted in Fig. 13.
In Fig. 14, the updating time instant and interval of the time-
varying  quantizer  in [20] are  plotted,  with  a  total  of  89
updates. It is important to note that the event-triggered condi-
tion in [20] heavily relies on a parameter Θ used in the time-
varying quantizer, and the triggering error can not be reset to
zero at  every triggering instant.  In our  simulation setting,  we
have .  In  this  case,  the  event-triggered  condition  in
[20] can be always satisfied.  As a result,  although the updat-
ing number of the time-varying quantizer is reduced, it results
in  a  large  number  of  triggering  instances,  which  implies  that
the  size  of  data  transmitted  over  the  communication  work  in
[20] amounts  to 40  016 bytes.  Overall,  in  contrast  to  the
encrypted  control  scheme  in [20],  the  encrypted  control
scheme  proposed  in  this  paper  reduces  the  energy  consump-
tion by  and reduces communication size by .
 

0 2 4 6 8 10
−0.10

−0.05

0

−0.10

−0.05

0

0.05

0.10

0

0.05

0.10

−0.4

−0.3

−0.2

−0.1

0

x x·

ϕ ϕ·
Time (s)

0 2 4 6 8 10
Time (s)

0 2 4 6 8 10
Time (s)

0 2 4 6 8 10
Time (s)

The proposed method The compared method

 
Fig. 12.     State trajectories under two encrypted control schemes.  

V.  Conclusion

In this paper, a novel event-driven encrypted control frame-
work  of  NCSs  was  proposed  using  semi-homomorphic
encryption.  By  designing  the  quantization  policies  with  the
static  and  dynamic  sensitivities,  the  bounded  quantization
error inherent in the traditional fixed-sensitivity uniform quan-
tizer  was  tactfully  compensated,  contributing  to  the  system
state’s asymptotic convergence. Moreover, an event-triggered
strategy  was  developed  to  reduce  the  communication  con-
sumption of NCSs and relieve ciphertext expansion. With the
aid  of  static/dynamic  quantization  policies,  event-triggered
strategy,  and  Paillier  encryption,  the  asymptotic  stability  and
the data security of NCSs are ensured simultaneously. Finally,
the validity of the proposed encrypted control framework was
investigated through a numerical example of motion control of
an inverted pendulum cart system. Future work will focus on
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the secure control problem of NCSs subject to more practical
constraints,  such  as  parameter  uncertainties  and  exogenous
disturbances.
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Fig. 13.     Comparisons of control command and energy under two encrypted
control schemes.
 

 

U
pd

at
in

g 
in

te
rv

al
 o

f t
im

e-
va

ry
in

g 
qu

an
tiz

er

0 200 400 600 800 1000
Updating time instant

0

1

2

0 10 20 30 40 50

118

92

0

20

40

60

80

100

120

 
Fig. 14.     The  updating  instant  and  updating  interval  of  time-varying  quan-
tizer in [20].
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