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   Dear Editor,
This  letter  studies  finite-time  input-to-state  stability  (FTISS)  for

impulsive switched systems. A set of Lyapunov-based conditions are
established  for  guaranteeing  FTISS  property.  When  constituent
modes  governing  continuous  dynamics  are  FTISS  and  discrete
dynamics  involving  impulses  are  destabilizing,  the  FTISS  can  be
retained if impulsive-switching signals satisfy an average dwell-time
(ADT) condition. When some or even all constituent modes govern-
ing  continuous  dynamics  are  not  FTISS  and  discrete  dynamics
involving  impulses  are  stabilizing,  the  FTISS  can  be  achieved  if
impulsive-switching signals satisfy a reverse ADT condition. Exam-
ples are presented to illustrate the efficiency of proposed results.

Introduction: Many  practical  systems  can  be  modeled  by  hybrid
systems  which  involve  both  discrete-time  and  continuous-time
behaviors [1], [2].  Switched systems and impulsive systems are two
general classes of hybrid systems. Switched systems involve a finite
number of constituent modes and a switching signal orchestrating the
switching  between  them [3],  while  impulsive  systems  depict  real
world  processes  that  generate  instantaneous  state  resets  at  discrete
times [4].  Impulsive  switched  system,  as  a  more  comprehensive
dynamical  system,  involves  impulses  and  switching  in  a  single
framework [5]. Such system, as it is known, does not retain the prop-
erty of constituent mode. Besides, the impulses governing the instan-
taneous  state  changes  often  divide  into  two  classes:  destabilizing
impulses and stabilizing impulses [6], [7]. In that scenario, a suitable
choice of impulsive-switching signal plays an important role in guar-
anteeing stability or robustness for impulsive switched systems.

Input-to-state  stability  (ISS)  characterizes  an  asymptotic  conver-
gence behavior of solutions with external inputs.  Roughly speaking,
ISS includes an asymptotic stability of the solutions in the absence of
external inputs and an asymptotic gain property with respect to exter-
nal inputs [8]–[10]. Finite-time stability, having a faster rates of con-
vergence  time  than  asymptotic  stability,  requires  that  the  solutions
reach to equilibrium point during a finite time interval [11]–[14]. The
settling time, however, typically is unknown and depends on the ini-
tial  conditions.  Combining the properties  of  ISS and finite-time sta-
bility, [15] introduced  a  concept  of  FTISS  for  continuous-time  sys-
tems.  The  theory  of  FTISS  has  proved  very  useful  not  only  in  the
analysis  of  input  systems,  but  also  in  the  design  controllers  and
observers  of  control  systems.  Surprisingly,  there  has  been  little
FTISS results on dynamic systems up to now, see [16]–[18]. Notice
that although the impulse and switching are considered in [17], [18],
those results only considered the case of stable continuous dynamics
with destabilizing impulses. More importantly, a detailed analysis of
the settling time has not been carried out in these existing works.

This letter focuses on FTISS of impulsive switched systems. Some

of

sufficient  conditions,  which  rely  on  a  relation  among  continuous
dynamics,  impulsive  actions,  and  external  input,  are  presented.  The
main  contributions  are  threefold:  1)  The  constituent  modes  govern-
ing continuous dynamics, which may or may not be FTISS, are seri-
ously taken into account; 2) Regarding the impulsive actions in dis-
crete  dynamics,  two  classes  of  impulses  including  destabilizing
impulse  and  stabilizing  impulse  are  considered,  respectively;  3)  A
precise  estimation  settling  time,  whenever  external  inputs  are
absent, can be deduced under certain impulsive-switching signals.

Problem statement: Consider the impulsive switched system
 ẋ(t) = fσ(t)(x(t),ω(t)), for t < Γ

x(t) = gσ(t)(x(t−),ω(t−)), for t ∈ Γ
(1)

t ≥ 0, x ∈ Rn ω ∈ Rm

Γ = {tk,k ∈ Z+}, {tk},
0 = t0 < t1 < t2 < · · · < tk → +∞.

σ : R+→Ω fi, gi : Rn ×Rm→ Rn

i ∈Ω fi(0,0) = gi(0,0) = 0.
fi gi

({tk},σ) N(t, s)
tk

(s, t).

where   is the state of system,  is an external input.
 abbreviated  as  is  a  strictly  increasing  impulse-

switching  time  sequence  satisfying 
 is  a switching signal.   are continu-

ous  functions  for  and  moreover  We
assume  that  and  satisfy  certain  conditions  so  system  (1)  pos-
sesses unique solutions in forward time, see [14], [16], [17]. Denote

 as an impulsive-switching signal for later use.  denotes
the  number  of  the  impulsive-switching  times  during  the  interval

S,
S β ∈ GKL γ ∈ K∞,

({tk},σ) S, x0 ∈ Rn

ω ∈ Rm, x(t) = x(t, x0,ω)

For  given  class  of  impulsive-switching  signals  system  (1)  is
UFTISS over  if there exist  and  independent of
the  choice  of  the  signal  in  such  that  for  and

 the resulting state  satisfies
 

|x(t)| ≤ β(|x0|, t)+γ(||ω||[0,t]), t ≥ 0. (2)
Bς S x0 ∈ Bς ,

x(t)
System (1) is said to be UFTISS w.r.t.  over  if for  the

resulting state  of system (1) satisfies (2).

Ωu ⊆Ω
Ωs ⊆Ω

Ωu = ∅,
Ωu , ∅,

V : Rn→ R+ Fα V(x) x
V(0) = 0; α1(|x|) ≤ V(x) ≤ α2(|x|) α1,α2 ∈ K∞.

Main results: This section presents some Lyapunov-based condi-
tions for UFTISS of impulsive switched systems. Denote  and

 as the set of unstable and stable constituent modes. We shall
investigate two cases:  i.e., each constituent mode is individu-
ally  stable;  i.e.,  some  (perhaps  even  all)  constituent  modes
are  unstable.  For  convenience,  we  say  that  continuous  function

 is  of  class  if  1)  is  locally  Lipschitz  in  and
 2)  for 

η ∈ (0,1), a,b,d,
λ,µ ∈ R+, Vi ∈ Fα, φ ∈ K∞

Theorem  1:  Assume  that  there  exist  constants  
 functions   such that

 

|x| ≥ φ(|ω|)⇒
D+Vi(x) ≤ −aVηi (x)−bVi(x), i ∈Ω (3a)

Vi(gi(x,ω)) ≤ e
d

1−η V j(x), i, j ∈Ω. (3b)
S+[λ,µ], S+[λ,µ]
({tk},σ)

Then system (1) is UFTISS over  where  denote a
class of impulsive-switching signals  satisfying
 

dN(t, s)+ (b(η−1)+λ)(t− s) ≤ µ, 0 ≤ s ≤ t. (4)

z(t)=φ(||ω||[0,t]), ψ(t) = α−1
1 (e

µ
1−η α2(α−1

1 (e
d

1−η α2×
(z(t))))), v(t) = Vσ(t)(x(t)). |x(t)| ≥ z(t) ≥ φ(|ω(t)|)

t ∈ [ξ̂, ξ̌),

Proof:  Define  
 and  Assuming  that 

holds for  it then follows from (3a) and (3b) that:
 

v1−η(t) ≤ e−λ(t−ξ̂)+µ
(
v1−η(ξ̂)+ a

b
)− a

b , t ∈ [ξ̂, ξ̌). (5)
ť1 = inf{t ≥ 0 : |x(t)| ≤ z(t)}. v1−η(t) ≤

e−λt+µ(α1−η
2 (|x0|)+ a

b )− a
b = β(|x0|, t), t ∈ [0, ť1).

Let  It  follows  from  (5)  that 
  It indicates that

 

|x(t)| ≤ α−1(β 1
1−η (|x0|, t)

)
= β1(|x0|, t), t ∈ [0, ť1). (6)

|x(t)| ≤ ψ(t), t ≥ ť1. t̂1 = inf{t ≥ ť1 : |x(t)| >
z(t)}. |x(t)| ≤ z(t), t ∈ [ť1, t̂1). t̂1 =∞,
|x(t)| ≤ ψ(t), t ≥ ť1. t̂1 <∞, v(t̂1) ≤ e

d
1−η×

v(t̂−1 ) ≤ e
d

1−η α2(|z(t̂1)|). |x(t̂1)| ≤ α−1
1 (e

d
1−η α2(|z(t̂1)|)).

s ≥ t̂1, |x(s)| > z(s), t̂ = sup{t ≤
s : |x(t)| ≤ z(t)}. |x(t̂)| ≤ α−1

1 ×

Next,  we  show  that   Let 
 It  is  obvious that   If  it  holds that

  If  it  follows  from (3b)  that 
 It  implies  that 

Furthermore,  for  all  such  that  let 
 Similarly,  we  can  conclude  that 
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(e
d

1−η α2(|z(t̂)|)). v1−η(t) ≤ e−λ(t−t̂)+µ×
v1−η(t̂) ≤ eµα1−η

2 (|x(t̂)|), t ∈ [t̂, s]. |x(t)| ≤ α−1
1 ×

(e
µ

1−η α2(|x(t̂)|)) ≤ α−1
1 (e

µ
1−η α2(α−1

1 (e
d

1−η α2(|z(t̂)|)))) = ψ(t̂) ≤ ψ(t)
t ≥ ť1,

 It follows from (3a) and (3b) that 
  It then follows from that 

  . From
the above discussion, for  we have
 

|x(t)| ≤ ψ(t)

= α−1
1
(
e
µ

1−η α2(α−1
1 (e

d
1−η α2(||ω||[0,t])))

)
= γ(||ω||[0,t]). (7)

|x(t)| ≤ β1(|x0|, t)+γ(||ω||[0,t])
t ≥ 0, S+[λ,µ].

We then conclude from (6) and (7) that ,
 thus, system (1) is UFTISS over ■

Vi
i

λ = b(1−η),

N0 = µ/d. λ < b(1−η),

Remark 1:  It  was shown in [15], [16] that  the function  satisfy-
ing condition (3a) is a sufficient condition for the -th mode govern-
ing continuous dynamics to be FTISS. Condition (3b) indicates that
the  discrete  dynamics  involving  impulses  are  destabilizing.  Condi-
tion (4) imposes an upper bound constraint to the number of impul-
sive-switching  times.  Specifically,  for  it  only  holds
when  the  number  of  impulsive-switching  times  is  no  larger  than

 And for  it can be rewritten as
 

N(t, s) ≤ N0 +
t− s
τa
, 0 ≤ s ≤ t (8)

τa,N0 ∈ R+where  are appropriately constants. It is equivalent to the
ADT condition for switched systems in [1] and impulsive systems in
[9].  With the ADT condition given by (4),  Theorem 1 shows that if
switching (or impulse) does not occur too frequently, the UFTISS of
system (1) can be retained successfully.

Savg
+ [τa,N0]

η ∈ (0,1), a,b,d, τa,N0, ς,Tς ∈ R+, Vi ∈ Fα, α1,α2,φ ∈ K∞
b(1−η)Tς −dN0 + ln(

bα1−η
2 (ς)+a

a ) ≥ d
τa

Tς .
Bς Savg

+ [τa,N0].

T (x0,Savg
+ [τa,N0]) ≤ Tς , x0 ∈ Bς .

Corollary  1:  Let  denote  a  class  of  ADT  impulsive-
switching  signals  satisfying  (8).  Assume  that  there  exist  constants

  functions  
such that (3a), (3b) hold and 
Then  system  (1)  is  UFTISS  w.r.t.  over  Moreover,
the settling time, whenever external inputs are absent, is bounded by

 
η ∈ (0,1),

a,b,d,λ,µ ∈ R+, Vi ∈ Fα, φ ∈ K∞
Theorem  2:  Assume  that  there  exist  constants 

 functions   such that
 

|x| ≥ φ(|ω|)⇒
D+Vi(x) ≤ −aVηi (x)+bVi(x), i ∈Ω (9a)

Vi(gi(x,ω)) ≤ e
−d
1−η V j(x), i, j ∈Ω. (9b)
S−[λ,µ], S−[λ,µ]
({tk},σ)

Then system (1) is UFTISS over  where  denote a
class of impulsive-switching signals  satisfying
 

−dN(t, s)+ (b(1−η)+λ)(t− s) ≤ µ, 0 ≤ s ≤ t. (10)
ť1 v(t) ϑ =

α
η−1
2 (a/b), Ξ1(|x0|, t) = eb(1−η)t(α1−η

2 (|x0|)− a
b )+ a

b , Ξ2(|x0|, t) ={
e−λt+µα1−η

2 (|x0|), t ∈ [0,Tρ),
eb(1−η)(t−Tρ) a

b (ρ−1)+ a
b , t ≥ Tρ,

ρ ∈ (0,1) Tρ = inf{t ≥ 0 :

e−λt+µα1−η
2 (|x0|) ≤ a

bρ}. t ∈ [0, ť1),

Proof:  Define  and  as  in  Theorem  1.  Moreover,  define 
  and 

 where  and 

 We firstly show that for 
 

v1−η(t) ≤
{
Ξ1(|x0|, t), x0 ∈ Bϑ
Ξ2(|x0|, t), x0 < Bϑ

= β(|x0|, t). (11)

x0 ∈ Bϑ, v1−η(t) ≤ eb(1−η)t

(v1−η(0)− a
b )+ a

b ≤ Ξ1(|x0|, t), t ∈ [0, ť1). x0 < Bϑ,
t ∈ [0, ť1),

When  it  follows  from  (9a)  and  (9b)  that 
  While  we  can  con-

clude from (9a) and (9b) that for 
 

v1−η(t) ≤ e−dN(t,0)+b(1−η)tv1−η(0) ≤ e−λt+µv1−η(0). (12)
Tρ ≥ ť1, v1−η(t) ≤ Ξ2(|x0|, t)

t ∈ [0, ť1). Tρ < ť1, v1−η(t) ≤ e−λt+µ×
α

1−η
2 (|x0|) t ∈ [0,Tρ) v1−η(Tρ) ≤ a

bρ.

v1−η(t) ≤ eb(1−η)(t−Tρ)(v1−η(Tρ)− a
b )+ a

b ≤ eb(1−η)(t−Tρ) a
b (ρ−1)+ a

b
t ∈ [Tρ, ť1).
|x(t)| ≤ α−1

1 (β
1

1−η (|x0|, t)) = β1(|x0|, t), t ∈ [0, ť1).
|x(t)| ≤ α−1

1 (e
µ

1−η

α2(φ(||ω||[0,t]))) = γ(||ω||[0,t]), t ≥ ť1. |x(t)| ≤ β1
(|x0|, t)+γ(||ω||[0,t]), t ≥ 0, S−[λ,µ].

If  it  follows  from  (12)  that  for
 If  we can conclude from (12) that 
 for  and  Then,  it  follows  that

 for
 We  conclude  that  (11)  holds.  It  then  follows  from  (11)

that   Next,  using simi-
lar  arguments  as  Theorem  1,  we  can  conclude  that 

  Then  it  follows  that 
  thus,  system (1) is UFTISS over 

■

Vi
i

Remark 2:  It  was shown in [13], [14] that  the function  satisfy-
ing condition (9a) indicates that the -th mode governing continuous
dynamics can be unstable.  Condition (9b) indicates  that  the discrete
dynamics  involving  impulses  are  stabilizing.  Subsequently,  condi-
tion (10) imposes a lower bound constraint to the number of impul-
sive-switching times for ensuring UFTISS. It can be rewritten as
 

−N0 +
t− s
τα
≤ N(t, s), 0 ≤ s ≤ t (13)

τα,N0 ∈ R+where  are appropriately constants. It is equivalent to the
reverse ADT condition for impulsive systems in [9]. With the reverse
ADT condition given by (10), Theorem 2 shows that if there are no
overly  long  intervals  between  two  consecutive  impulses  (or  switch-
ing), the UFTISS of system (1) can be achieved accordingly.

Savg
− [τα,N0]

ρ,κ,η ∈ (0,1), a,b,d, τα,N0, ς,Tς ∈ R+, Vi ∈ Fα,
α1,α2,φ ∈ K∞ dN0 + ln(

bα1−η
2 (ς)
ρa ) ≤ ( d

τα
−

b(1−η))κTς , 1
b(η−1) ln(1−ρ) ≤ (1− κ)Tς .

Bς Savg
− [τα,N0].

T (x0,Savg
− [τα,N0]) ≤ Tς ,

x0 ∈ Bς .

Corollary 2: Let  denote a class of reserve ADT impul-
sive-switching  signals  satisfying  (13).  Assume  that  there  exist  con-
stants   functions 

 such that (9a), (9b) hold and 
  Then system (1)  is  UFTISS

w.r.t.  over  Moreover,  the  settling  time,  whenever
external  inputs  are  absent,  is  bounded  by 

Ωs , ∅ Ωs ⫋Ω
T u(t, s)

Ωu [s, t).
ϱ ∈ R+, γ1, γ2 ∈ [0,1]

We further investigate the case:  and  i.e., some con-
stituent  modes  may be  stable.  Denote  as  the  activation  time
of constituent modes in  during the interval  We assume that
there exist constants   such that
 

γ1(t− s)−ϱ ≤ T u(t, s) ≤ γ2(t− s)+ϱ, 0 ≤ s ≤ t. (14)
γ2 = 0,
Ωu ϱ.

γ1 = 1,
Ωs ϱ.

Notice  that,  for  the  case  of  it  only  holds  when the  activa-
tion time of constituent modes in  is no larger than  For the case
of  moreover,  it  only  holds  when  the  activation  time  of  con-
stituent modes in  is no larger than 

η ∈ (0,1), γ1,γ2 ∈
[0,1], a,b,d,ϱ,λ,µ ∈ R+, Vi ∈ Fα, φ ∈ K∞

Theorem  3:  Assume  that  there  exist  constants  
  functions   such  that  (14)

holds and
 

|x| ≥ φ(|ω|)⇒


D+Vi(x) ≤

{
−aVηi (x)−bVi(x), i ∈Ωs
−aVηi (x)+bVi(x), i ∈Ωu

Vi(gi(x,ω)) ≤ e
−d
1−η V j(x), i, j ∈Ω.
Smix
− [λ,µ], Smix

− [λ,µ]
({tk},σ)

Then  system  (1)  is  UFTISS  over  where 
denote a class of impulsive-switching signals  satisfying
 

−dN(t, s)+ (2bγ2(1−η)+λ)(t− s) ≤ µ, 0 ≤ s ≤ t.

D+V(x) ≤ −aVη(x) V(x) ≥ φ(|ω|).

Remark 3: Recently, the work of [17] studies FTISS for nonlinear
impulsive  systems  by  means  of  ADT  condition  and  Lyapunov
method. However, the continuous dynamic potentially contributes to
FTISS since  it  satisfies  whenever 
And  the  estimation  of  settling  time  remains  unanswered.  Consider-
ing both  impulse  and switching in  a  single  framework,  the  UFTISS
results in this paper considered two cases: stable modes with destabi-
lizing  impulses  (Theorem  1)  and  unstable  modes  with  stabilizing
impulses  (Theorems 2 and 3).  More importantly,  a  precise  formula-
tion of settling time can be achieved under certain impulsive-switch-
ing signals satisfying ADT-like condition.

Numerical  example: This  section  presents  two  examples  with
numerical simulations to illustrate the main results.

x,ω ∈ R3,Example 1: Consider system (1) with  and
 

ẋ = f1(x,ω) =


−0.4

√
|x1|sign(x1)−1.5x1 +ω1

−0.4
√
|x2|sign(x2)−1.5x2 +ω2

−0.4
√
|x3|sign(x3)−1.5x3 +ω3

ẋ = f2(x,ω) =


−0.2

√
|x1|sign(x1)−2x1 +0.5x2 +ω1

−0.2
√
|x2|sign(x2)−2x2 +0.5x3 +ω2

−0.2
√
|x3|sign(x3)−2x3 +0.5x1 +ω3

x = gi(x,ω) =

0.7 0.3 0
0 0.8 0.2

0.1 0 0.9

 x+
0.3 0.2 0
0.1 0 0.4
0 0.2 0.3

ω
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V1(x) = V2(x) = xT x φ(r) = |r|.
a = 0.2, b = 1, η = 3/4, d = 0.25.

S+[λ,µ]. ωi(t) =
sin(0.5t), i = 1,2,3, λ = 0.05, µ = 0.25, ({tk},σ) {[0,1.25),
1}, {[1.25,3),2}, {[3,4.25),1}, {[4.25,6),2} . . . .

x1
0 = (2,3,−3)T , x2

0 = (4,−2,2)T ,
x3

0 = (−3,2,4)T

Let  and  It follows that (3a) and (3b)
hold  with    and  We  conclude  from
Theorem  1  that  system  (1)  is  UFTISS  over  Let 

    and  is given 
 The  sate  trajectories  of

system  (1)  with  initial  conditions  
and  are shown in Fig. 1, respectively.

 
4

3

2

1

0

–1

–2

–3
–4 –2 –20 02

2
4

4

x 3

x1
x2

x1
0 = (2, 3, –3)T

x2
0 = (4, –2, 2)T

x3
0 = (–3, 2, 4)T

Nonlinear gain

 
Fig. 1. Simulation results of Example 1.
 

Example 2: Consider the following switched system:
 

σ = 1 : ẋ(t) = −0.25x
1
3 (t)+0.4x(t)+ω(t)

σ = 2 : ẋ(t) = −0.3x
1
3 (t)+0.5x(t)+ω(t) (15)

tkinvolving impulsive actions at switching instant 
 

x(tk) = ζx(t−k )+ω(t−k ) (16)
t ≥ 0, ζ ∈ R+ {tk} τa = 0.25 N0 = 2.

ζ
V1(x) = V2(x) = |x| φ(r) = 4|r|.

a = 0.25, b = 0.75, η = 1/3, d ≤ −3ln(0.25+ ζ)/2.
ς = 1, Tς = 4.5, ρ = 1/4, κ = 4/5.

ζ ≤ 0.3415,
Savg
− [0.25,2]. T (x0,Savg

− [0.25,2]) ≤
4.5, x0 ∈ B1. x0 = 0.95, ζ = 0.34, ω(t) = 0.15sin(t), ({tk},σ)

{[0,0.3),1}, {[0.3,0.5),2}, {[0.5,0.8),1}, {[0.8.1),2}, . . . .

Tς = 4.5.
ζ = 0.88,

ζ

where   and  satisfies  (8)  with  and 
Next,  we  shall  design  to  stabilize  system (15)  and  (16)  in  FTISS
sense. Let  and  It follows that (9a) and
(9b) hold with    and 
Let    and  We conclude  from Corol-
lary  2  that,  when  system (15)  and  (16)  is  UFTISS  over

 And  the  settling  time  satisfies 
  Let    and  is

given  One  can
observe from Fig. 2(a) that system (15) and (16) is FTISS, and more-
over, the unforced system is finite-time stable before  Under
same conditions, if we take  then it goes against the restric-
tions on  by Corollary 2. Notice that although the impulses may still
stabilize  system  (15)  and  (16)  in  FTISS  sense,  the  desired  settling
time of unforced system cannot be achieved, see Fig. 2(b).

Conclusion: This letter studied FTISS for impulsive switched sys-
tems involving external  inputs affecting both constituent  modes and
impulsive  dynamics.  With  the  help  of  ADT-like  condition,  some
Lyapunov-based conditions have been proposed with certain classes
of  impulsive-switching  signals.  Moreover,  a  precise  formulation  of
settling time, whenever external inputs are absent, has been achieved
under the designed impulsive-switching signals.
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Fig. 2. Simulation  results  of  Example  2.  (a)  Trajectories  of  system  (15)  and
(16) with ; (b) Trajectories of system (15) and (16) with  .
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