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   Dear Editor,

In  this  letter,  the  multi-objective  optimal  control  problem of  non-
linear discrete-time systems is investigated. A data-driven policy gra-
dient  algorithm is  proposed in  which the action-state  value function
is used to evaluate the policy. In the policy improvement process, the
policy  gradient  based  method  is  employed,  which  can  improve  the
performance  of  the  system  and  finally  derive  the  optimal  policy  in
the  Pareto  sense.  The  actor-critic  structure  is  established  to  imple-
ment the algorithm. In order to improve the efficiency of data usage
and enhance the learning effect,  the experience replay technology is
used  during  the  training  process,  with  both  offline  data  and  online
data. Finally, simulation is given to illustrate the effectiveness of the
method.

Introduction: The multi-objective  optimal  control  problems have
become  a  growing  research  field  in  recent  years,  due  to  its  wide
application  in  autonomous  driving [1],  smart  grid [2] and  other
autonomous  intelligent  systems [3].  In  some cases,  the  multi-objec-
tive  optimal  control  problems can  be  converted  to  solve  the  Hamil-
ton-Jacobi-Bellman  equation  (HJBE),  which  need  accurate  system
model parameters. However, it is hard to find optimal controllers for
systems without accurate models. At present, reinforcement learning
as  a  model-free  multi-objective  optimal  control  method,  which  is
widely  used  to  learn  policy  from the  process  that  interacts  with  the
unknown environment.

In  recent  years,  ADP  is  introduced  in  order  to  solve  the  problem
that  HJBE  cannot  solve  directly.  The  generalized  policy  iteration
algorithm was proposed by combining the policy iteration algorithm
with the value iteration [4]. Under the framework of policy iterative
algorithm,  the  policy  gradient  adaptive  dynamic  programming
(PGADP) is  an important  policy-based method.  It  used the  gradient
descent  in  step  of  policy  improvement [5].  In [6],  the  experience
replay  was  used  in  combination  with  ADP,  using  the  past  and  cur-
rent data concurrently. In [7]–[9], the adaptive optimal controller was
designed  by  the  online  actor-critic  learning,  in  order  to  solve  the
robust  optimal  control  problem  for  a  class  of  nonlinear  systems.  In
[10], a model-free λ-policy iteration (λ-PI) was presented for the dis-
crete-time linear  quadratic  regulation (LQR) problem. However,  the
above results only consider the solution under a single goal. In engi-
neering  practice  and  scientific  research,  many  problems  need  more
performance indices to describe the goals of the system. In [11], the
policy  iteration  algorithm  was  extended  to  solve  dynamic  multi-

objective  optimal  control  problem  for  continuous-time  systems.
There are few results using policy gradient based methods with expe-
rience  replay  mechanism  to  solve  multi-objective  optimal  control
problems.  It  inspires  the  motivation  to  extend  the  related  methods
from single objective optimal control to multi-objective optimal con-
trol.

Thus, the objective of this letter is try to find the optimal controller
in  the  sense of  Pareto  for  a  discrete-time system with  multiple  con-
trol objectives. The contributions of this letter can be summarized as
follows. Firstly, the action-state value function Q instead of the state
value function is used in multi-objective optimal control. The poten-
tial  dynamic  constraints  can  be  separated  from the  actual  controller
parameters  by  using  the  action  state  value  function.  Secondly,  the
dependency  on  the  model  can  be  removed  completely.  The  experi-
ence  replay  technique  is  incorporated  into  multi-objective  optimal
control  problem,  which  improves  data  usage  efficiency  with  fixed-
size offline dataset and single-frame real-time data received from the
environment. Third, the policy gradient method is extended from sin-
gle-objective optimal control to multi-objective optimal control. This
method  can  make  the  learning  process  smoother  and  reduce  the
amount  of  computation.  The  convergence  of  PGADP with  multiple
objectives is guaranteed in this letter.

Problem statement: First, the related concept of Pareto optimal is
introduced.

u∗
J(u∗) ≤ J(u) u ∈ U J(u∗)

Definition 1 (Pareto optimal): A Solution  is said to be a Pareto
optimal  solution  if  for  all .  is  said  to  be
Pareto optimal.

Consider  the  autonomous  intelligent  systems  with  following  dis-
crete-time general nonlinear form:
 

xk+1 = F (xk,uk) (1)
m,n,k ∈ Z+ R Z+

xk ∈ Rn uk ∈ Rm

F(x,u)

J j(x0,u) =
∑∞

l=0 R j(xl,ul), j = 1, . . . ,N,
R j(xl,ul)

R j(x,u) ∆=W j(u)+S j(x) W j(u)
S j(x)

J = [J1, . . . , JN ]T J j

u(x) V( j,u) (xk) ∆=
∑∞

l=k R j (xl,u (xl)) , j = 1, . . . ,N,
Vu = [V(1,u), . . . ,V(N,u)]T

minu Vu(x0)

where ,  and  denote the set of real numbers and non-
negative integers, respectively.  and  are the state and
control input of the system, respectively. Assume that  is Lips-
chitz  continuous.  In a  multi-objective optimization problem, infinite
horizon  performance  indices 
are used to evaluate the performance of system (1), where  is
a  utility  function  that  satisfies .  and

 are positive definite functions of x and u,  respectively. Define
the  vector ,  with  represents  the j-th  performance
index, and the state value functions for an admissible control policy

 are  defined  as  and
.  Then,  the  above  optimization  problem  is

.
Main results:

Vu(x)
Policy gradient adaptive dynamic programming for multi-objec-
tive nonlinear systems: The value function  can be expressed
as
 

V( j,u) (xk) = R j (xk,u (xk))+
∞∑

l=k+1

R j (xl,u (xl))

= R j (xk,u (xk))+V( j,u)(xk+1)
= R j (xk,u (xk))+V( j,u)(F(xk,uk)). (2)

In order to describe the reward of each action more directly, the Q-
function, also called state-action value function is defined as
 

Qu (xk,µ)
∆
= R (xk,µ)+

∞∑
l=k+1

R (xl,u (xl)) (3)

u(x) ∈ U(X) Qu(0,0) = 0 Qu (xk,µ)

xk
Q( j,u)(xk,µ) = R j(xk,µ)+

∑∞
l=k+1 R j(xl,u(xl)) = R j(xk,µ)+

Q( j,u) (xk+1,u) = R j (xk,µ)+V( j,u) (xk+1)

where  and .  In (3),  represents the
value of the performance index of system (1) by using control policy
u after  taking  action μ at  state .  Then  the j-th  Q-function  can  be
expressed as 

. For 

Q(i)
( j,u) (xk,µ) = R j (xk,µ)+Q(i)

( j,u)

(
xk+1,u(i)

)
(4)
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j = 1, . . . ,N
u(x)

where  and i refers to the iteration index. Update the con-
trol policy  with gradient descent as
 

u(i+1)(x) = u(i)(x)− α
N∑

j=1

w j∇µQ(i)
( j,u)(x,µ)

∣∣∣∣∣∣∣∣
µ=u(i)(x)

(5)

w j w j

ω = [ω1,ω2, . . . ,ωN ]
∑N

j=1ω j = 1

where α and  are constants, α represents the learning rate.  is the
weight  of  the j-th  performance  index,  which  can  generally  be  set
according  to  the  importance  of  each  target.  Thus,  the  weight  vector

 can be constructed, which satisfies .
u∗(x)If  reaches  the  optimal  control  policy,  the j-th  Q-function  is

given by
 

Q j
∗ (xk,µ) = R j (xk,µ)+V j

∗ (xk+1) (6)

Q j
∗(x,µ) ∆= Q( j,u∗)(x,µ) V j

∗(x) ∆= V( j,u∗)(x)where , and .
u(0) (x)

u(0) (x) ∈ U(X)
∀ j ∈ {1,2, . . . ,N}

u(i) (x)

Theorem 1: Let the initial control policy  be admissible, that
is, ,  and the learning rate α satisfies (4).  The Q-func-
tions for  and control policy are given in (4) and (5).
Then,  is admissible and the system is asymptotically stable.

u(0) (x) ∈ U(X)
i = 0 u(l) (x) ∈ U(X) i = l

i = l+1
u(l+1)(x)

Proof:  The  following  proof  can  be  carried  out  by  mathematical
induction.  At  first,  there  is  an  initial  policy  when

. Assuming that  holds when , then the situa-
tion  when  needs  to  be  discussed.  With  the  control  policy

, the system is given by
 

xk+1 = F
(
xk,u(l+1)(xk)

)
. (7)

V j
(l) (xk)

V j
(l) (xk)

The state-value function  can be selected as the Lyapunov
function. Then the difference of  along the state trajectory of
system (7) can be obtained as
 

∆V j(l) (xk) = V j
(l)
(
F
(
xk,u(l+1)(xk)

))
−V j

(l) (xk)

=H j
(
xk,u(l+1),V j

(l)
)
−R j
(
xk,u(l+1)(xk)

)
.

H j(xk,u(l+1), V j
(l)) ≤ 0 ∆V j

(l)(xk) ≤ −
R j(xk,u(l+1)(xk)) < 0 x,u , 0

Then,  holds.  Thus, 
 with ,  which  shows  the  asymptotic  sta-

bility of system (7). ■
zk = {xk−1,uk−1, xk}

ZM = {xl,µl, x′l|xl, x′l ∈ X,µl ∈ U,
l = 1,2, . . . ,M} Ψ j(x,µ) ∆=
{ψ js(x,µ)}∞s=1 Φ(x) ∆= {ϕs(x)}∞s=1

Q j(xk,µ) u(x)

Neural  network  implementation  of  PGADP  algorithm  with
actor-critic structure: The online data set is  and
the  offline  data  set  is  defined  as 

,  where M is  the  data  set  size.  Denote 
, and   as complete sets of linearly inde-

pendent basis functions. According to (4) and (5),  and 
can be expressed as
 

Q̂ j
(i)(x,µ) ∆=

L1∑
s=1

θ̂
(i)
jsψ js(x,µ) = Ψ jL

T (x,µ)θ̂(i)j

û(i)(x) ∆=
L2∑

s=1

v̂(i)
s ϕs(x,µ) = ΦL

T (x)v̂(i) (8)

Ψ jL(x,µ) ∆= [ψ j1(x,µ),ψ j2(x,µ), . . . ,ψ jL1
(x,µ)]T

ΦL
T (x) ∆= [ϕ1(x,µ),

ϕ2(x,µ), . . . ,ϕL2 (x,µ)]T

θ̂
(i)
j
∆
= [θ̂(i)j1 , θ̂

(i)
j2 , . . . , θ̂

(i)
jL1

]T v̂(i) ∆= [v̂(i)
1 , v̂

(i)
2 , . . . , v̂

(i)
L2

]T

where  is  the  activa-
tion  function  of j-th  critic  network,  and 

 is the activation function of the actor network.
The vectors  and  are
estimated weights of the actor and critic networks, respectively.

There are errors in the approximate estimation process using neu-
ral networks. Based on (4), the error function of critic network can be
calculated as
 

e(k)
Q j

(
x,µ, x′

) ∆
= Q̂(k)

j (x,µ)− Q̂(k)
j

(
x′, û(k)

)
−R j(x,µ)

= ΨT
jL(x,µ)θ̂(k)

j −Ψ
T
jL

(
x′,ΦT

L
(
x′
)
v̂(k)
)
θ̂

(k)
j −R j(x,µ). (9)

θ̂
(k)
jThe main basis for residual weight method to solve  is that the

weighted integral is zero in the sense of weighted average, which can
be expressed as 

w
K
CQ j (x,µ)e(k)

Q j

(
x,µ, x′

)
d(x,µ) = 0 (10)

CQ j (x,µ) ∆= [cQ j,1(x,µ),cQ j,2(x,µ), . . . ,cQ j,L1 (x,µ)]T

(x,µ)
ψ jp (xk,µk) = ψk

jp, CQ j (xk,µk) = Ck
Q j

where  represents
a weight function vector with respect to . For simplicity, denote

 and
 

A0
j
∆
=

M∑
τ=1

CτQ j

(
ΨτjL

)T
, B0

j
∆
=

M∑
τ=1

CτQ j
ΨT

jL

(
xτ′ ,ΦT

L (xτ′ )η0
)

Ak
j
∆
=A0

j +C
k−1
Q j

(
Ψk−1

jL

)T
, ζ0j

∆
=

M∑
τ=1

CτQ j
R j (xτ,µτ)

Bk
j
∆
=

M∑
τ=1

CτQ j
ΨT

jL

(
xτ′ ,ΦT

L
(
xτ′
)
ηk
)
+Ck−1

Q j

(
Ψk

jL

)T
ζkj
∆
= ζ0j +C

k−1
Q j
R j (xk−1,µk−1) , Ξ ∆=

ΓK
M+1

ΓK
∆
=

r
K d(x,µ) θ̂

(0)
j θ̂

(k)
jwhere . Then,  and  are written as

 

θ̂
(0)
j =

[
ΓK
M
A0

j −
ΓK
M
B0

j

]−1
× ΓK

M
ζ0j , θ̂

(k)
j =
[
ΞAk

j −ΞB
k
j

]−1 ×Ξζkj .
(11)

ρ0
j ρk

j
ρ0

j = (A0
j −B

0
j )
−1ζ0j , ρ

k
j = (Ak

j −B
k
j)
−1ζkj

The  weight  vector  and  of j-th  critic  network  are  computed
with .

ηk

S(x) = CT
u (x)
∑N

j=1 w j∇µ×
ΨT

jL(x,ΦT
L (x)v̂(k))

v̂(k+1)

Next,  the  update  rule  for  is  exported,  which  represents  the
weight  of  the  actor  network.  Denote 

. Similar to the weight vector of critic network, the
weight vector of actor network  is written as
 

v̂(k+1) = v̂(k) −α
[w
X
Cu

T (x)ΦL
T (x)dx

]−1
×

w
X
S(x)θ̂(k)

j dx. (12)

The  Monte  Carlo  integration  method  is  also  used  to  calculate  the
integral, that is
 w

X
Cu

T (x)ΦL
T (x)dx =

ΓK
M+1

Pkw
X
S(x)θ̂(k)

j dx =
w
X
S(x)ρk

jdx =
ΓK

M+1
Dk
(
ρk

j

)
where
 

Pk
∆
= P0 +CT

u (xk)ΦT
L (xk) =

M∑
τ=1

CT
u (xl)ΦT

L (xl)+CT
u (xk)ΦT

L (xk)

Dk
(
ρk

j

) ∆
=

M∑
τ=1

S(xl)ρk
j +S(xk)ρk

j . (13)

ηkSummarized  from  (12)  to  (13),  the  update  rule  for  can  be
obtained
 

ηk+1 = ηk −αPk
−1Dk

(
ρk

j

)
. (14)

∀ (x,µ) ∈ K ε1 j > 0 ε2 j > 0
K ∀k ≥ K

Theorem 2:  For , , ,  there  exists  a  posi-
tive integer  that for , there are
 ∣∣∣∣Q̂(k)

j (x,µ)−Q j
(k)(x,µ)

∣∣∣∣ ≤ ε1 j

and
 ∣∣∣∣Q̂(k)

j (x,µ)−Q j
(∗)(x,µ)

∣∣∣∣ ≤ ε2 j.

Proof:  The detailed proof  process  is  similar  to  the proof  of  Theo-
rem 2 in [5]. For brevity, it is not described in detail here. ■

Simulation: In this section, the effectiveness of the PGADP-based
multi-objective control method will be tested through the simulation
of a discrete-time nonlinear system.

Consider  the  multi-objective  optimal  control  problem  for  the  fol-
lowing system:
 

xk+1 =


(
xk,1 + x2

k,2 +uk
)
cos
(
xk,2
)

0.5
(
x2

k,1 + xk,2 +uk
)
sin
(
xk,2
) 
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xk = [xk,1, xk,2]T x0 = [0.2,0.7]T

V(1,u) (x0) =
∑∞

l=0 xl
T xl +ul

T ul V(2,u) (x0) =
∑∞

l=0 2xl
T xl +ul

T ul
α = 0.02 ω = [0.2,0.8]

η0 = [−1.5,0.5,0,0,0]T

ρk,1 ρk,2
ηk α = 0.06

α = 0.02

where the state , and the initial state .
Here,  the  case  of  two  goals  is  considered.  The  simulations  are  car-
ried  out  separately  from  the  perspective  of  different  learning  rates
and  different  value  functions.  The  value  functions  can  be  given  by

 and .
Collect  40  frames  of  offline  data  and  select , ,
and . Then the simulation results are shown in
Figs. 1(a)  and 1(b)  represent  the  trajectories  of  the  critic  network
weight vector  and . Fig. 1(c) demonstrates the convergence of
the  critic  network  weight  vectors .  Select  as  a  compara-
tive  experiment,  and the  results  are  shown in Figs. 2(a)−2(c).  It  can
be  seen  from  the  figure  that  although  the  convergence  is  finally
reached,  the  process  is  more  oscillating  compared  with  the  case  of

.
 

(a) (b)
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Fig. 2. The weight vectors of the critic network when α = 0.06. (a) The weight
vectors  for  the first  critic  network ;  (b)  The weight  vectors  for
the  second  critic  network  ;  (c)  The  state  trajectories  ,  ,
the control policy trajectories , and the performance index , .
 

Conclusion: In  this  letter,  by using data  from real  system instead
of  calculating by the  mathematical  system models,  a  PGADP-based
control  algorithm  is  proposed  to  solve  the  multi-objective  optimal
control problem. The optimal control policy is designed to ensure the
multiple  objective  functions  converge  to  the  optimal  vectors  in  the
Pareto  sense,  and  the  stability  and  convergence  of  the  algorithm  is
proved.  The  policy  gradient  method  is  used  to  reduce  unnecessary
calculations.  In  addition,  the  experience  replay  technique  is  used  to
derive the rules for updating actor-critic network parameters. Finally,

a  simulation  example  is  given  to  verify  the  performance  of  the
method.  The  future  works  can  be  extended  to  the  multi-objective
optimization problem with conflicts and more actual situations.
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