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   Dear Editor,

This  letter  deals  with  the  synchronization  in  drive-response  net-
works with discrete and distributed delays on time scales.  Based on
the  theory  of  calculus  on  time  scales,  Lyapunov  functional  method
and  inequality  technique,  we  obtain  new  sufficient  conditions  to
ensure synchronization criteria which are dependent on boundedness
of grainness but independent of the types of delays. Numerical simu-
lations are given to illustrate the effectiveness of our new results.

Recently, the synchronization problem has played a significant role
in nonlinear science since its potential applications in image process-
ing, ecological systems, secure communication and harmonic oscilla-
tion  generation,  formation  control,  etc. [1]−[5].  Ways  of  Synchro-
nization  for  chaos  systems  which  is  applied  to  communication  is
investigated in [1]. In [2], the authors discuss the synchronization via
pinning  control  on  general  complex  networks.  In [3],  researchers
have  studied  the  sufficient  criteria  which  can  ensure  the  occurrence
of synchronization for Lur’e systems. Outer synchronization between
drive and response networks via  adaptive impulsive pinning control
is investigated in [6]. An effective control input and a feedback con-
trol with an updated law are designed to realize finite-time synchro-
nization between two complex networks [7].

Among the various works of synchronization, continuous-time syn-
chronization [4], [5] and discrete-time synchronization [8] cases are
studied  respectively.  However,  in  most  systems,  the  interaction
among  neurons  would  occur  at  any  time,  maybe  discrete  moments
following  with  continuous-time  intervals.  Due  to  the  trouble  of
studying  synchronization  for  continuous-time  and  discrete-time
respectively,  it  is  necessary  and  meaningful  to  research  them at  the
same  time  in  neural  networks  on  time  scales.  The  theory  of  time
scales [9] has  received  a  lot  of  attention  recently,  which  was  intro-
duced  by  Hilger  in  order  to  unify  continuous  and  discrete  analysis.
The  field  of  dynamic  systems  on  time  scales  links  and  extends  the
classical  theory  of  differential  and  difference  equations.  Various
works have showed that the theory of time scales is an essential tool
to  deal  with  many  practical  problems.  Many  works  concerning  the
nonlinear  systems  of  differential  equation  on  time  scales  have  been
reported in [9], [10] and references  therein.  However,  there  are  few
results  dealing  with  the  synchronization  of  drive-response  systems
with connection time delays for both discrete and distributed cases on
time scales.

As encountered unavoidably in  some systems,  time delays  should
be  taken  into  account  in  the  modeling  for  practical  networks.  Dis-
crete connection time delays in systems of delayed feedback provide
a good approximation in some electronic networks which consist of a
small  number  of  neurons.  However,  due  to  the  presence  of  parallel
pathways  with  a  variety  of  axon  sizes  and  lengths,  a  spatial  extent
exists  in  biological  neural  networks  which  cannot  be  modeled  with
discrete  time  delays.  In  this  case,  distributed  connection  delays  are

necessary  to  be  used  in  the  models [11].  Motivated  by  the  above
exposition and existing ones [12], we investigate the exponential syn-
chronization  in  drive-response  networks  with  discrete  and  dis-
tributed delays on time scales.

T

R σ(t) := inf{s ∈ T : s > t} t ∈ T ♮i := {i−1, i+1} i ∈ N :=
{1,2, . . . ,n} T Tk = T−{m}

Tk = T µ(t) := σ(t)− t µ̄ := sup
t∈T
µ(t)

f∆(t) f (t) R = {p : T→ R|1+µ(t)p(t) ,
0, t ∈ Tk} ep(t, s) = exp(

r t
s ξµ(τ)(p(τ))∆τ)

ξh : Ch→ Zh

Notations: Throughout the paper,  is a nonempty closed subset of
;  for  all ; , 

.  If  has a left-scattered maximum m,  then ;
otherwise, . The graininess  and let .

 is  the  delta  derivative of ; 
;  is  the  exponential  function

and  is the cylinder transformation [9], [10].

T
Model description: Consider n-neuron drive-response system with

discrete delays on time scale 
 

x∆i (t) = −aixi(t)+bi f (xi(t))+
∑
j∈♮i

ci j f (x j(t−τi j)) (1)

 

y∆i (t) = −aiyi(t)+bi f (yi(t))+ ki(xi(t)− yi(t))+
∑
j∈♮i

ci j f (y j(t−τi j))

(2)
and corresponding drive-response system with distributed delays
 

x∆i (t) = −aixi(t)+bi f (xi(t))

+
∑
j∈♮i

ci j

w τi j

0
Ki j(u) f (x j(t−u))∆u (3)

 

y∆i (t) = −aiyi(t)+bi f (yi(t))+ ki(xi(t)− yi(t))

+
∑
j∈♮i

ci j

w τi j

0
Ki j(u) f (y j(t−u))∆u (4)

t ∈ T ⊂ R
r τi j

0 Ki j(u)∆u = 1 K̄i j = sup
t∈[0,τi j]T

Ki j(t)
ε > 0 M > 0

where ,  and  if  there
exist  and  such that
 

n∑
i=1

w2
i (t) ≤ M

 n∑
i=1

sup
s∈[−τ,0]T

w2
i (s)

e⊖ε(t,0)

t ∈ [0,+∞)T
wi(t) = xi(t)− yi(t) i ∈ N

for all , then system (1) and (2) (or system (3) and (4)) is
exponentially synchronized, where  for .

Main  results: Now,  we  will  give  the  criteria  which  are  indepen-
dent of delays for synchronization of systems (1)−(2) and (3)−(4).

θ1, θ2, . . . , θn ε > 0
Theorem  1:  For  drive-response  system  (1)  and  (2),  if  there  exist

positive constants  and  such that
 

(1+ µ̄ε)µ̄(|bi|L+ai + ki)2 + (|bi|L−ai − ki)+λi < 0 (5)
where
 

λi =
ε

2
+

(1+ µ̄ε)L
2

∑
j∈♮i

[
|ci j|+

θ j

θi
|c ji|eετ ji (1+4µ̄L|c ji|)

]
i ∈ Nand , then system (1) and (2) is exponentially synchronized.

wi(t) = xi(t)− yi(t) i ∈ N t ∈ [−τ,+∞)TProof:  Let  for  and .  It  fol-
lows from (1) and (2) that:
 

w∆i (t) = −aiwi(t)+bi[ f (xi(t))− f (yi(t))]− kiwi(t)

+
∑
j∈♮i

ci j[ f (x j(t−τi j))− f (y j(t−τi j))] (6)

which leads to
 

|w∆i (t)| ≤ (|bi|L+ai + ki)|wi(t)|+L
∑
j∈♮i
|ci jw j(t−τi j)|.

Hence, we can get that
 

(w∆i (t))2 ≤ 2(|bi|L+ai + ki)2(wi(t))2

+4L2
∑
j∈♮i

c2
i jw

2
j (t−τi j) (7)
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and
 

w∆i (t)wi(t) ≤ (|bi|L−ai − ki)w2
i (t)+L

∑
j∈♮i
|ci j||wi(t)w j(t−τi j)|. (8)

Choose a Lyapunov functional candidate as
 

V(t) =
1
2

eε(t,0)
n∑

i=1

θiw2
i (t)+ I1(t)+ I2(t), t ∈ [0,+∞)T

where
 

I1(t) =
1+ µ̄ε

2
L

n∑
i=1

θi
∑
j∈♮i

ci j

w t

t−τi j
eε(s+τi j,0)w2

j (s)∆s

I2(t) = 2(1+ µ̄ε)µ̄L2
n∑

i=1

θi
∑
j∈♮i

c2
i j

w t

t−τi j
eε(s+τi j,0)w2

j (s)∆s.

It follows from (6) that:
 

V∆(t) ≤ (1+µ(t)ε)eε(t,0)
n∑

i=1

θiw2
i (t)

×
[
ε

2
+ (|bi|L−ai − ki)+

(1+ µ̄ε)L
2

∑
j∈♮i
|ci j|

+
(1+ µ̄ε)L

2

∑
j∈♮i

θ j

θi
|c ji|eετ ji

+ (1+ µ̄ε)µ̄(|bi|L+ai + ki)2

+2(1+ µ̄ε)µ̄L2
∑
j∈♮i

θ j

θi
c2

jie
ετ ji

]
.

V∆(t) ≤ 0 t ∈ [0,+∞)T
V(t) ≤ V(0)

From  (5),  one  gets  for  all .  So,  we  have
 and hence

 

n∑
i=1

w2
i (t) ≤ M1

 n∑
i=1

sup
s∈[−τ,0]T

w2
i (s)

e⊖ε(t,0) (9)

where
 

M1 =
maxi∈N {θi}
mini∈N {θi}

·max
i∈N

{
1+ (1+ µ̄ε)L

∑
j∈♮i
|c ji|

×τ jieετ ji (1+4µ̄L|c ji|)
}
.

■
Next, we give the criteria to ensure the occurrence for the exponen-

tial synchronization of driver-response system (3) and (4) where the
connection time delay is of the distributed case.

θ1, θ2, . . . , θn ε > 0
Theorem 2: For system (3) and (4), if there exist positive constants

 and  such that
 

(1+ µ̄ε)µ̄(|bi|L+ai + ki)2 + (|bi|L−ai − ki)+ηi < 0 (10)
where
 

ηi =
ε

2
+

(1+ µ̄ε)L
2

∑
j∈♮i

[
|ci j|

+
θ j

θi
|c ji|eετ ji (1+4µ̄L|c ji|τ jiK̄ ji)

]
, i ∈ N

then, system (3) and (4) is exponentially synchronized.
Proof: Similarly to Theorem 1, we have the error system

 

w∆i (t) = −aiwi(t)+bi[ f (xi(t))− f (yi(t))]− kiwi(t)

+
∑
j∈♮i

ci j

w τi j

0
Ki j(u)[ f (x j(t−u))− f (y j(t−u))]∆u (11)

which leads to
 

|w∆i (t)| ≤ (|bi|L+ai + ki)|wi(t)|

+L
∑
j∈♮i
|ci j|

w τi j

0
Ki j(u)|w j(t−u)|∆u.

Hence, we get
 

(w∆i (t))2 ≤ 2(|bi|L+ai + ki)2w2
i (t)

+4L2
∑
j∈♮i

c2
i jτi j

w τi j

0
K2

i j(u)w2
j (t−u)∆u (12)

and
 

wi(t)w∆i (t) ≤ (|bi|L−ai − ki)w2
i (t)

+L
∑
j∈♮i
|ci j|

w τi j

0
Ki j(u)|wi(t)w j(t−u)|∆u. (13)

Now construct another Lyapunov functional as follows:
 

V(t) =
1
2

eε(t,0)
n∑

i=1

θiw2
i (t)+ J1(t)+ J2(t), t ∈ [0,+∞)T

where
 

J1(t) =
(1+ µ̄ε)L

2

n∑
i=1

θi
∑
j∈♮i
|ci j|

×
w τi j

0
Ki j(u)

(w t

t−u
eε(s+u,0)w2

j (s)∆s
)
∆u

J2(t) = 2(1+ µ̄ε)µ̄L2
n∑

i=1

θi
∑
j∈♮i

c2
i jτi j

×
w τi j

0
K2

i j(u)
(w t

t−u
eε(s+u,0)w2

j (s)∆s
)
∆u.

V(t)The delta derivatives of  can be derived as follows:
 

V∆(t) ≤ (1+µ(t)ε)eε(t,0)
n∑

i=1

θiw2
i (t)

×
[ε
2
+ (|bi|L−ai − ki)

+ (1+ µ̄ε)µ̄(|bi|L+ai + ki)2

+
(1+ µ̄ε)L

2

∑
j∈♮i
|ci j|+

(1+ µ̄ε)L
2

∑
j∈♮i

θ j

θi
|c ji|eετ ji

+2(1+ µ̄ε)µ̄L2
∑
j∈♮i

θ j

θi
c2

jiτ jiK̄ jieετ ji
]
.

V∆(t) ≤ 0 t ∈ [0,+∞)T
V(t) ≤ V(0)

From  (10),  one  gets  that  for  all  which
implies that  and hence
 

n∑
i=1

w2
i (t) ≤ M2

( n∑
i=1

sup
s∈[−τ,0]T

w2
i (s)

)
e⊖ε(t,0) (14)

where
 

M2 =
maxi∈N {θi}
mini∈N {θi}

×max
i∈N

{
1+ (1+ µ̄ε)L

∑
j∈♮i
|c ji|

×τ jieετ ji (1+4µ̄L|c ji|τ jiK̄ ji)
}
.

■
τ jiK̄ ji = 1Remark  1:  As ,  (10)  has  the  same  form  as  (5)  and  it  is

obvious  that  exponential  synchronization  of  system  (1)−(2)  and
(3)−(4) on time scales is guaranteed by the same criteria.

µ̄ = 0
T = Z

T = R

Remark 2:  Synchronization criteria  (5)  and (10)  are dependent  on
upper bound of grainness. When upper bound of grainness , our
results includes previous ones [12] as its special cases. As , the
synchronization  of  coupled  systems  or  drive-response  neural  net-
works are investigated in [13]. As , (1)−(2) and (3)−(4) reduce
to continuous cases, our results lead to ones in [12].

(µ(t) = 0)
(µ(t) = 1)

Remark  3:  Synchronization  of  drive-response  systems  or  coupled
neural networks in continuous-time  are studied in [4], [5],
[12] and discrete-time  cases are investigated in [13]. This is
the  first  time  that  we  apply  the  theory  of  time  scales  to  unify  and
improve discrete-time and continuous-time neural network under the
same  frameworks  of  systems  (1)−(2)  and  (3)−(4).  It  is  well  known
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that few works have been done to study the synchronization of drive-
response systems on time scales, thus the main technique that we use
in Theorems 1 and 2 is novel.

n = 6 x(t) =
(x1(t), x2(t), . . . , x6(t))T y(t) = (y1(t),y2(t), . . . ,y6(t))T t ∈ [0,+∞)T

Numerical  example: For  convenience,  we  let  and 
, ,  for

the systems (1)−(2) and (3)−(4) in the following example.
T = P1,1 =

∪∞
k=0[2k,2k+1]

µ(t) = 1 µ̄ = 1 (1) (2) ai = 0.1
bi = −0.1 ci j = 0.05 τi j = 1.0 ki = 0.5 θi = 0.5 i = 1,2, . . . ,6
f (x) = 0.1sin x s ∈ [−τ,0]T=P1,1

Example  1:  Consider .  In  this  case,  we
have ,  and .  For  system  and ,  let ,

, , , ,  for , and
. For , the initial condition is

 

(x1(s), x2(s), . . . , x6(s)) = (0.05,0.1,0.15,0.2,0.25,0.3)
(y1(s),y2(s), . . . ,y6(s)) = −(0.05,0.1,0.15,0.2,0.25,0.3).

(5) t ∈ [0,+∞)T=P1,1

x(t) y(t)
It  is  easy  to  check  that  holds.  Then,  for ,  the

state trajectory of  and  with exponential synchronization can
be observed in Fig. 1.
 

0 10 20 30 40 50 60
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3

Time t
 

x1(t)
y1(t)
x2(t)
y2(t)
x3(t)
y3(t)

x4(t)
y4(t)
x5(t)
y5(t)
x6(t)
y6(t)

 
T = P1,1Fig. 1. The state trajectory of system (1)−(2) with .

 

(3) (4) ai = 0.2 bi = −0.1 ci j = 0.05 τi j =

1.0 ki = 0.5 θi = 0.5 i = 1,2, . . . ,6 f (x) = 0.1sin x
s ∈ [−τ,0]T=P1,1

For  system  and ,  let , , , 
, ,  for ,  and .  For

, the initial condition is
 

(x1(s), x2(s), . . . , x6(s)) = (0.1,0.2,0.3,0.4,0.5,0.6)
(y1(s),y2(s), . . . ,y6(s)) = −(0.1,0.2,0.3,0.4,0.5,0.6)

with the functions
 

Ki j(u) = 1, i = 1,2, . . . ,6, j = i−1, i+1.

(10) t ∈ [0,+∞)T=P1,1

x(t) y(t)
It  is  easy  to  check  that  holds.  Then,  for ,  the

state trajectory of  and  with exponential synchronization can
be observed in Fig. 2.

Conclusion: In  this  letter,  by  using  the  Lyapunov  functional
method and inequality technique, we have derived new sufficient cri-
teria to ensure the synchronization of systems (1)−(2) and (3)−(4) on
time scales. Both continuous-time and discrete-time synchronization
are studied in a unified framework (1)−(2) and (3)−(4) as well as the
connection  time  delays  are  of  discrete  or  distributed  cases.  Our
numerical  results  have proved that  our  results  obtained in this  letter
are effective and the method utilized in this letter can be served as a
universal  framework  for  the  research  of  other  dynamic  systems  on
time scales.
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