
 

Letter

A Novel Trajectory Tracking Control of AGV Based on
Udwadia-Kalaba Approach

Rongrong Yu, Member, IEEE, Han Zhao, Shengchao Zhen,
Kang Huang, Xianmin Chen, Hao Sun, and Ke Shao

   Dear Editor,
This letter is about an automated guided vehicle (AGV) trajectory

tracking control  method based on Udwadia-Kalaba (U-K) approach.
This method provides a novel,  concise and explicit  motion equation
for constrained mechanical systems with holonomic and/or nonholo-
nomic  constraints  as  well  as  constraints  that  may  be  ideal  or  non-
ideal.  In this  letter,  constraints are classified into structural  and per-
formance constraints. The structural constraints are established with-
out considering the trajectory control, and the dynamic model is built
based on them. Then the expected trajectories are taken as the perfor-
mance  constraints,  and  the  constraint  torque  is  solved  by  analyzing
the U-K equation. It is shown by numerical simulations that the pro-
posed  method  can  solve  the  trajectory  tracking  control  problem  of
AGV well.

Introduction: In  recent  years,  AGV-A  kind  of  mobile  robot,
which is a nonholonomic mechanical system and a typical model of
uncertain complex system, gradually plays a  more and more impor-
tant  role.  Around  the  modeling  and  control  problems  of  AGV,
domestic and foreign scholars have done a lot of research work, such
as  PID  control [1],  robust  control [2],  adaptive  control [3],  sliding
mode  control [4],  fuzzy  control [5],  neural  network  control [6] and
other control methods [7].

The  problem  of  solving  equations  of  motion  for  nonholonomic
mechanical systems has been energetically and continuously worked
on  by  many  scientists  since  constrained  motion  was  initially
described  by  Lagrange  (1787) [8].  For  example,  Gauss [9] intro-
duced Gauss’s principle, Gibbs [10] and Appell [11] obtained Gibbs-
Appell  equations,  Poincaré [12] generalized  Lagrange’s  equations,
and Dirac [13] provided an algorithm to obtain the Lagrangian multi-
pliers. However, they are all based on the D’Alembert principle, that
is the virtual displacement principle. For constrained mechanical sys-
tems, Lagrangian multipliers can be used effectively for constrained
calculation. However, the application of this method is not easy, as it
is  often  very  difficult  to  find  Lagrangian  multipliers  to  obtain  the
explicit equations of motion for systems, especially for systems with
a large number of degrees of freedom and non-integrable constraints.
The D’Alembert principle works well in many situations, but it is not
applicable  when  the  constraints  are  non-ideal [14].  Thus,  Udwadia
and Kalaba obtained a novel, concise and explicit equation of motion
for constrained mechanical systems that may not satisfy the D’Alem-
bert  principle.  It  can  be  applied  to  constrained  mechanical  systems

with  holonomic  and/or  nonholonomic  constraints  as  well  as  con-
straints may be ideal or non-ideal, which is called U-K theory [15]. It
leads  to  a  new  and  fundamental  understanding  of  constrained
mechanical system and a new view of Lagrangian mechanics.

Compared  with  the  conventional  methods  in  the  trajectory  track-
ing control  of  AGV, the  proposed method has  essential  differences.
In this letter, the dynamic model of the AGV with a driving and turn-
ing front wheel is first established based on the U-K theory. Second,
constraints are classified in a new way, which include structural con-
straints  and  performance  constraints.  The  structural  constraints  are
set up regardless of trajectories, and the dynamic model is built based
on the  structural  constraints.  The AGV’s  desired  trajectory  is  set  as
performance constraints. Third, the constraint torque can be obtained
based on the U-K approach to realize the trajectory tracking control
of  the  AGV.  It  is  shown by numerical  simulations  that,  by  the  pro-
posed method, the AGV’s movements has high accuracy.

Theoretical  description: Using  the  marvelous  U-K  theory,  the
novel,  concise  and  explicit  equation  of  motion  for  constrained
mechanical systems can be derived in three steps [14].

q :=
[
q1,q2, . . . ,qn

]T M (q, t) q̈ = Q (q, q̇, t)
M (q, t) n×n q̇
n×1 q̈ n×1
Q (q, q̇, t)

1)  Consider  an  unconstrained  mechanical  system  with n general-
ized coordinates ( ) as , where

 denotes an  positive definite inertia matrix,  denotes the
 velocity  vector,  denotes  the  acceleration  vector,  and

 denotes  the “known” n-vector  of  impressed  (also  called
“given”) force [16] which is imposed on the system.

φi (q, t) = 0, i = 1,2, . . . ,h
ψi (q, q̇, t) = 0, i = 1,2, . . . , s

q0 q̇0
t = 0 φi (q0, t) = 0 ψi (q0, q̇0, t) = 0

h+ s

2)  Assume  that  the  system  is  constrained  by h holonomic  con-
straints ,  and s nonholonomic  constraints

. Furthermore, assume that the initial con-
ditions  of  the  system  and  satisfy  these  constraint  equations  at
time ,  i.e., ,  and .  On the assumption
that the  constraints are sufficiently smooth, the non-holonomic
constraints and holonomic constraints are differentiated by time once
and  twice,  respectively,  to  obtain  a  set  of  constraints  in  the  matrix
form
 

A (q, q̇, t) q̈ = b (q, q̇, t) (1)
A (q, q̇, t) m×n

b (q, q̇, t) m×1
where  (may or may not be full rank) denotes an  con-
straint matrix and  denotes an  column vector.

3) The additional generalized forces are imposed on the system to
ensure that the desired trajectory is satisfied. Due to the existence of
additional  generalized  forces,  the  actual  explicit  equation  of  motion
of the constrained system can be described as
 

M (q, t) q̈ = Q (q, q̇, t)+Qc (q, q̇, t) (2)
Qc(q, q̇, t) n×1

Qc(q, q̇, t)

where  denotes the additional  “constraint forces”, that
are  imposed  on  the  unconstrained  system.  Our  aim  is  to  determine

 at any time t, for the Q is known.
Qc(q, q̇, t)

Qc(q, q̇, t)

In  Lagrangian  mechanics,  is  governed  by  the  usual
D'Alembert  Principle  which  indicates  that  constraint  forces  do  zero
work  under  virtual  displacement  and  therefore  is  considered  ideal
constraints.  However,  constraints  can  also  be  non-ideal,  while  non-
ideal  constraints  generate  non-ideal  constraint  forces,  such  as  fric-
tion  force,  electro-magnetic  force,  etc.  If  there  are  both  ideal  and
non-ideal constraints in the system,  can be expressed as
 

Qc(q, q̇, t) = Qc
id(q, q̇, t)+Qc

nid(q, q̇, t) (3)
Qc

id(q, q̇, t) Qc
nid(q, q̇, t)where  denotes  the  ideal  constraint  force  and 

denotes the non-ideal one.

Qc
id Qc

id

Udwadia  and  Kalaba  have  proved  the  general “explicit” equation
of motion at time t for any constrained mechanical system. The ideal
constraint  force  ( )  and  the  non-ideal  constraint  force  ( )  are,
respectively
 

Qc
id = M

1
2 B+(b−AM−1Q) (4)

 

Qc
nid = M

1
2 (I−B+B)M−

1
2 c (5)

B = AM−1/2where  the  matrix ,  the  superscript “+” denotes  the
Moore-Penrose generalized inverse,  and c is  a suitable n-vector that
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is determined by the mechanical system.
From (2)−(5), the general “explicit” equation of motion (including

both ideal and non-ideal constraints) is
 

Mq̈ = Q+M
1
2 B+(b−AM−1Q)+M

1
2 (I−B+B)M−

1
2 c. (6)

Qc
nid = 0

If  the  work  done  by  constraint  forces  under  the  virtual  displace-
ment is zero, then . Equation (6) reduces to obey the D’Alem-
bert principle, which means the general “explicit” equation of motion
is
 

Mq̈ = Q+M
1
2 B+(b−AM−1Q). (7)

Qc(t)
Thus, at each instant of time t, the constrained system subject to an

additional “constraint force”  is given by
 

Qc(t) = M
1
2 B+(b−AM−1Q). (8)

Trajectory  tracking  control  of  AGV: Suppose  that  the  absolute
coordinate system XOY is fixed on the planar of the AGV with three
wheels, consisting of one front wheel and two rear wheels. The front
wheel can not only drive, but also turn. The model is shown in Fig. 1.
The front wheel is independently driven by two DC servo motors for
driving and turning respectively. Two rear wheels only have the role
of  supporting  and  guiding.  The  wheels  contact  with  the  ground  is
characterized  by  pure  rolling  and  no  slipping.  The  variables  and
parameters of AGV are shown in Table 1.
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Fig. 1. AGV with a driving and turning front wheel.
 

According to Newton’s law, we can get
 

F cosφ = m
d
dt

(vcosφ) = m (v̇cosφ− vφ̇sinφ) . (9)

The dynamic equation of the driving motor of the front wheel is
 (

k2J1 + J2
)
ẇ1 +

(
k2B1 +B2 +

k2
mk2

Ra

)
w1 =

kmk
Ra

Va1 − rF (10)

km
Ra

Va1
J1

J2
B1

B2

where k denotes the transmission systems gear ratio;  denotes elec-
tromagnetic torque constant of the driving/turning motor;  denotes
armature  resistance  of  the  driving/turning  motor;  denotes  input
voltage of the driving motor;  denotes rotational inertia of the driv-
ing/turning  motor;  denotes  rotational  inertia  of  the  front  wheel
about  the  rolling  axis;  denotes  viscous  friction  coefficient  of  the
driving/turning motor shaft;  denotes viscous friction coefficient of
the front wheels axle; the torque of the driving motor is
 

ud =
kmk
Ra

Va1. (11)

ud

The effects of non-ideal constraints are ignored. Then, the driving
force F is dependent on  and r, then (10) is simplified as
 

F =
ud

r
. (12)

For this AGV model
 

ẋ = vcosφcosθ, ẏ = vcosφsinθ. (13)
Then, we can get

 

v = ẋ
cosθ
cosφ

+ ẏ
sinθ
cosφ

. (14)

Differentiating (14) with respect to t yields
 

v̇ = ẍ
sinθ
cosφ

− ẋ
sinθ
cosφ

θ̇+ ẋcosθ
tanφ
cosφ

φ̇

+ ÿ
sinθ
cosφ

+ ẏ
cosθ
cosφ

θ̇+ ẏsinθ
tanφ
cosφ

φ̇. (15)

From (9), (12) and (15), we can obtain the first structural constraint
 

mr
cosθ
cosφ

ẍ+mr
sinθ
cosφ

ÿ = mr
sinθ
cosφ

θ̇ẋ−mr
cosθ
cosφ

θ̇ẏ+ud . (16)

The dynamic equation of the turning motor of the front wheel is
 (

k2J1 + I
)
ẇ2 +

(
k2B1 +B3 +

k2
mk2

Ra

)
w2 =

kmk
Ra

Va2 (17)

Va2
B3

where  denotes input voltage of the turning motor; I denotes rota-
tional  inertia  of  the  AGV’s  front  wheel  about  the  steering  axis; 
denotes  viscous  friction  coefficient  of  the  front  turning  axle;  the
torque of the turning motor is
 

ut =
kmk
Ra

Va2. (18)

φ̈ = ẇ2 ut

Here,  the  effects  of  non-ideal  constraints  are  ignored.  Then,  the
turning  angular  acceleration  is  dependent  on I and ,  upon
using  relation  (18)  in  (17),  (17)  is  simplified  as  (the  second  struc-
tural constraint)
 

Iφ̈ = ut. (19)
ẋsinθ− ẏcosθ = 0From (13), the constraint is given by . Differenti-

ating it with respect to t (the third structural constraint)
 

−sinθẍ+ cosθÿ = cosθθ̇ẋ+ sinθθ̇ẏ. (20)
Furthermore, orientation angle of the AGV and orientation angular

velocity of the AGV has the relationship
 

θ̇ = w =
vsinφ

d
. (21)

By combining (21) with (14), we can get
 

dθ̇ = ẋcosθ tanφ+ ẏsinθ tanφ. (22)
Differentiating  (22)  with  respect  to t (the  fourth  structural  con-

straint)
 

cosθ tanφẍ+ sinθ tanφÿ−dθ̈ = sinθ tanφẋθ̇

− cosθ
ẋφ̇

(cosφ)2 − cosθ tanφẏθ̇− sinθ
ẏφ̇

(cosφ)2 . (23)

Thus, (16), (19), (20) and (23) can be put into the form of (2), with
 

 

Table 1.  Weighting/Optimal Gain/Minimum Cost
m Mass of the AGV
I Rotation inertia of the AGV’s front wheel about the steering axis
F Driving force
v Velocity of the AGV
θ Orientation angle of the AGV
φ Orientation angle of the AGV’s front wheel
r Radius of the front wheel
d distance between the center of the front wheel and the point C

ud Driving torque of the driving motor
ut Turning torque of the turning motor
w Orientation angular velocity of the AGV
w1 Driving angular velocity of the front wheel
w2 Turning angular velocity of the front wheel
x X component of the position of the point C of the AGV
y Y component of the position of the point C of the AGV
ẋ X component of the velocity of the point C of the AGV
ẏ Y component of the velocity of the point C of the AGV
ẍ X component of the acceleration of the point C of the AGV
ÿ Y component of the acceleration of the point C of the AGV
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mr

cosθ
cosφ

mr
sinθ
cosφ

0 0

0 0 0 I
−sinθ cosθ 0 0

cosθ tanφ sinθ tanφ −d 0




ẍ
ÿ
θ̈

φ̈



=



mr
sinθ
cosφ

θ̇ẋ−mr
cosθ
cosφ

θ̇ẏ

0
cosθθ̇ẋ+ sinθθ̇ẏ(

sinθ tanφẋθ̇− cosθ
ẋφ̇

(cosφ)2

−cosθ tanφẏθ̇− sinθ
ẏφ̇

(cosφ)2

)


+


1 0
0 1
0 0
0 0


[

ud
ut

]
. (24)

Based on (2), the constraint torque can also be described as
 

τ = M (q, t) q̈−Q (q, q̇, t) (25)
where
 

τ = [τ1, τ2,0,0]T = Qc (q, q̇, t) =
[

I2×2
02×2

] [
ud
ut

]
.

Comparing (4) and (25), we can get
 

τ = M
1
2
(
AM−

1
2
)+ (

b−AM−1Q
)
. (26)

τ1 τ2

When the AGV needs to  move along a  desired trajectory,  driving
motor  and  turning  motor  should  generate  corresponding  torques
respectively which are denoted by  and .

x2 + y2 = 1
Numerical simulation: Suppose the AGV needs to track a circle:

. That is
 

x = sin(t) , y = −cos(t) . (27)
Differentiating  (27)  twice  with  respect  to t to  obtain  the  perfor-

mance constraints of form (1) with
 

A =
[

1 0 0 0
0 1 0 0

]
, b =

[
−sin(t)
cos(t)

]
, q̈ =

[
ẍ, ÿ, θ̈, φ̈

]T
.

From (2) and (24), we know
 

Qc (q, q̇, t) =
[

I2×2
02×2

] [
ud
ut

]
=Cu

where
 

C = A+ =
[

I2×2
02×2

]
, u =

[
ud
ut

]
.

Hence, the driving torque and the turning torque generated by the
two motors respectively can be obtained by
 

u =C+M
1
2
(
AM−

1
2
)+ (

b−AM−1Q
)
. (28)

10−12

The motion equation of AGV model is obtained through the above
theoretical  analysis,  and then it  is  numerically simulated by ODE45
differential solver in Matlab, and the error tolerance is . Table 2
shows the parameter values used in the simulation.

x(0) = 0, y(0) = −1,
θ(0) = 0, φ(0) = tan−1( 13

10 ), ẋ(0) = 1, ẏ(0) = 0, θ̇(0) = 1, φ̇(0) = 0
xd = sin(t) yd = −cos(t)

Initial  conditions  are  respectively  given  as: 
.  The

desired trajectory of the AGV is , ,  and simu-
lation time is 30 s.

The simulation results are shown in Fig. 2, which shows that AGV
can track a circular trajectory well by this method.

Conclusion: This letter proposes an AGV trajectory tracking con-
trol method based on U-K approach. In which, constraints are classi-
fied  into  structural  constraints  and  performance  constraints.  The
dynamic model is built based on the structural constraints, and expe-
cted  trajectories  are  taken  as  the  performance  constraints.  Through
theoretical  analysis  and  numerical  simulation,  it  is  proved  that  this
method can solve the trajectory tracking control of AGV well.
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Fig. 2. The actual trajectory and the desired trajectory of the AGV.
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