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Abstract:  Single input rule modules (SIRMs) 

connected fuzzy logic control scheme can greatly 
reduce the number of rules and has found lots of 
applications. In this paper, using the information from 
prior knowledge, we present a systematic method for 
constructing the SIRMs connected fuzzy logic con- 
trollers (SIRM-FLCs), and, interval type-2 fuzzy sets 
are adopted for SIRM-FLCs to achieve better perfor- 
mance. Three kinds of prior knowledge -- odd 
symmetry, monotonicity, and local stability of closed- 
loop systems -- are utilized in our study. Such prior 
knowledge can help us to design SIRM-FLCs systema- 
tically and reduce the scale of the feasible parameter 
space. At last, stabilization control of an inverted 
pendulum system is presented to show how to use the 
proposed control strategy and to demonstrate the 
usefulness of prior knowledge for control synthesis. 
Key words: single input rule module (SIRM); type-2 
fuzzy; prior knowledge; inverted pendulum 
 

1 Introduction 
Single input rule modules (SIRMs) connected fuzzy 

logic control scheme is first proposed by J. Yi, et al.[1-4] 

to simplify the design process of fuzzy logic con- 
trollers (FLCs), and then studied by H. Seki, et al.[5, 6]. 
Compared with the other kinds of FLCs, the number 
of rules in the SIRMs connected fuzzy logic 
controllers (SIRM-FLCs) can be reduced greatly. And, 
this control scheme has been applied to many control 
problems, such as, stabilization control of different 
kinds of inverted pendulum systems [1-3], positioning 
control of overhead traveling crane [4], etc. 

In recent years, a number of extensions to conven- 
tional fuzzy logic (type-1 fuzzy logic) are attracting 
interest. One of the most widely used extensions is 
interval type-2 fuzzy logic [7-10]. Generally speaking, 
compared with type-1 fuzzy logic, interval type-2 

fuzzy logic can give better performance, as interval 
type-2 fuzzy logic utilizes interval type-2 fuzzy sets 
(IT2FSs) which can provide additional degrees of 
freedom and more parameters [7-10]. Recently, we have 
extended the SIRMs connected fuzzy logic control 
scheme to the interval type-2 case and utilized this 
strategy to stabilize the TORA system [11]. However, 
we still lack systematic methods to design the 
SIRM-FLCs (e.g. set up the fuzzy rules in all the 
SIRMs), and the large searching space of parameters 
increases the complexity of the design problems.  

In this study, we will try to solve these problems by 
utilizing the information from prior knowledge. Here, 
the prior knowledge represents the desired properties 
of the controller or the closed-loop system. And, three 
kinds of prior knowledge -- odd symmetry, mono- 
tonicity, and local stability of closed-loop systems -- 
will be explored. Such prior knowledge can help us to 
set up the fuzzy rules in all the SIRMs intuitively and 
reduce the scale of the feasible parameter space. At 
last, to show how to use the proposed control strategy 
and to demonstrate the usefulness of prior knowledge, 
an example on the stabilization control of an inverted 
pendulum system is presented. From the example, we 
can see that 1) the proposed controller is easy to 
design and understand 2) satisfactory performance can 
be achieved. 

2 SIRMs Connected Fuzzy Logic 
Controller [1-6, 11] 

For simplicity, we only consider the SIRM-FLC 
(interval type-2 and type-1) with n input items and 1 
output item. Figure 1 shows a block diagram of the 
SIRMs connected fuzzy logic control system [1-6, 11]. 
The inputs of the SIRM-FLC are the variables 

1, , nx x  which are the normalized values of the state 
variables 1, , nz z  of the plant, and λ=i i ix z  ( 1,=i  



 

 

2, , ) n . The output of the SIRM-FLC can be used to 
control the plant. A SIRM-FLC with n input items 

1, , nx x  is composed of n SIRMs. The SIRMs for 
input items 1, , nx x  can be expressed as [1-6, 11] 

SIRM-1: 1
1 1 1 1 1 1{ : } == → =  mj j j

jR x A y C ,                                            

                                         (1) 
SIRM- n : 1{ : } == → =  nmj j j

n n n n n jR x A y C , 

where  j
iA  s are fuzzy sets of type-1 or interval type-2,  

 j
iC s are weighting factors (denoted as j

ic ) for the 
type-1 case or interval weighting factors (denoted as 
[ j

ic , j
ic ]) for the type-2 case, and im  is the number of 

fuzzy rules in SIRM- i . 
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Fig. 1 Block diagram of the SIRMs connected fuzzy logic 

control system [11] 

 
A SIRM with type-1 fuzzy sets (T1SIRM) can be 

seen as a type-1 fuzzy logic system while a SIRM 
with interval type-2 fuzzy sets (IT2SIRM) can be seen 
as an interval type-2 fuzzy logic system. The inference 
processes of T1SIRM and IT2SIRM can be found in 
detail in [11]. Here, let us suppose that the fuzzy 
inference result of SIRM- i is iu . 

Once the fuzzy inference result iu  of SIRM- i is 
already calculated, to express clearly the different role 
of each input item on system performance, the output 
u of the SIRM-FLC will be computed as the sum- 
mation of the products of the fuzzy inference result 

iu of SIRM- i and the importance degree iw  of the 
i th input item ix . In other words, the output u  of 
the SIRM-FLC can be calculated as 1 .n

i i iu w u== ∑  

3 Design of SIRM-FLCs Using Prior 
Knowledge 

In this section, we will present how to systema- 
tically design SIRM-FLCs using prior knowledge. 
Here, we consider three kinds of prior knowledge: odd 
symmetry, monotonicity, and local stability of closed- 
loop systems. Such knowledge is always encountered 

and needs to be satisfied in fuzzy logic controllers. As 
a T1SIRM-FLC can be seen as a special IT2SIRM- 
FLC, hence, in the following, we will only take 
IT2SIRM-FLCs into account. First, let us consider the 
prior knowledge of odd symmetry. 

3.1 Odd Symmetry 
For many control problems, the IT2SIRM-FLCs 

designed should be odd symmetric. The following 
theorem will show how to constrain the parameters of 
IT2SIRMs to ensure that the prior knowledge of odd 
symmetry can be satisfied. 
Theorem 1: An IT2SIRM-FLC is odd symmetric, i.e., 

( ) ( )x x= − −u u , if, for IT2SIRM- i ( 1, 2,=i , ) n , 
j∀ ∈ {1,2, , }im , * {1,2, , }∃ ∈  ij m  such that 
1) the antecedent IT2FSs  j

iA  and 
* j

iA  are 
distributed symmetrically with respect to 0;  

2) [ j
ic , j

ic ]= [-
*j

ic ,-
*j

ic ]. 
Proof: the proof of this theorem is similar to the 

proof of theorem 1 in [12]. 
From Theorem 1, it is easy to show that, u(0) = 0, if 

the IT2SIRM-FLC is odd symmetric. This property 
always needs to be satisfied for control problems. 

3.2 Monotonicity 
In [13], we have addressed how to incorporate the 

monotonicity property into single-input interval type-2 
fuzzy logic systems. Here, we will rewrite the relevant 
results for IT2SIRMs. 

Theorem 2 [13]: IT2SIRM- i is monotonically 
increasing (decreasing), if the antecedent IT2FSs 

1
iA , 2

iA , ,  im
iA  form fuzzy partition as shown in Fig. 

2, and the consequent interval weights satisfy that 
1 2≤ ≤ ≤ im
i i ic c c and 1 2≤ ≤ ≤ im

i i ic c c  ( 1 2≥ ≥i ic c  
≥ im

ic  and 1 2≥ ≥ ≥ im
i i ic c c ). 

 

Fig. 2 Interval type-2 fuzzy partition for the input domain 
of ix  

 
It is obvious that, if all the IT2SIRMs for an 

IT2SIRM-FLC are monotonically increasing (decrea- 
sing), then the IT2SIRM-FLC will be monotonically 
increasing (decreasing). 



 

 

3.3 Local Stability  
In control applications, closed-loop systems must 

be stable. In this subsection, we will discuss how to 
use the prior knowledge of local stability to constrain 
the parameter space of IT2SIRM-FLCs. 

Now, consider the following system                               

( ) ( ( )) (( ( )) ( ( )),z f z g z z= + t t t u t            (2) 

where T
1 2( ) ( ( ), ( ), , ( )) Rz = ∈ n

nt z t z t z t  is the state of 
the system, T

1 2( ( )) ( ( ( )), ( ( )), , ( ( )))f z z z z= ∈ nt f t f t f t  
1R ×n , T

1 2( ( )) ( ( ( )), ( ( )), , ( ( )))g z z z z= ∈ nt g t g t g t 1R ×n , 
and ( ( )) Rz ∈u t  is the control input from an 
IT2SIRM- FLC. 

The following theorem shows us the most useful 
result about local stability of the closed-loop systems. 

Theorem 3 [14]: Suppose that 0 is an equilibrium of 
the autonomous system ( ) ( ( ))z f z= t t , i.e. ( )0 0=f , 
and that (.), (.), (.)f g u  are differentiable. And, 
assume that the Jacobian matrix J =  

0

( ( ( )) (( ( )) ( ( )))

z

f z g z z
z =

∂ + 
 ∂ 

t t u t  is bounded. Under 

these conditions, 0 is an exponentially stable 
equilibrium of (2), if:  

1) ( ) 00u = , which assures that 0=z  is an 
equilibrium of (2);  

2) J  is exponentially stable. 
To design locally stable IT2SIRMs connected fuzzy 

control systems, the first condition in Theorem 3 can 
be realized easily, e.g., the odd symmetric IT2SIRM- 
FLCs. Then, the remaining task is to determine the 
parameters of IT2SIRM-FLCs to guarantee the stabi- 
lity of the Jacobian matrix J . 

In the following, we will discuss how to obtain the 
Jacobian matrix at the equilibrium 0 for the IT2SIRMs 
connected fuzzy logic control systems. 

Denote the Jacobian matrix J  as [ ] ×=J ij n na , 
where                          

   0 0
( ( )) ( (( ( )) ( ( )))

| |z z
z z z

= =

∂ ∂
= +

∂ ∂
i i

ij
j j

f t g t u t
a

z z
.     (3) 

Note that ( ) 00u =  and ( ( ))u t =z 1 ( )=Σ =n
i i i iw u x  

1 ( )λ=Σn
i i i i iw u z , where iλ  is the scaling factor for the 

variable iz , and the ith input item for IT2SIRM-i 
becomes i izλ . 

Hence            

0

( (( ( )) ( ( )))
|

(( ( )) ( ( )( ) | ( ) |

( )
( ) |

j

i

j

i
i

j j

j j j
i j z

j

g t u t
z

g t u tu g
z z
u z

g w
z
λ

=

= =

=

∂
∂

∂ ∂
= +

∂ ∂

∂
=

∂

0

0 00 0

0

z

z z

z z

z z    (4) 

Therefore,                               

0

( )( ( ))
| ( ) |0 0z

z λ
= =

∂∂
= +

∂ ∂ j

j j ji
ij i j z

j j

u zf t
a g w

z z
    (5) 

For specific IT2SIRMs, 0( ) / |λ =∂ ∂
jj j j j zu z z  can be 

determined. In the following, we will determine 

0( ) / |λ =∂ ∂
jj j j j zu z z  for the IT2SIRMs shown in Table I 

which are called IT2SIRM-I and IT2SIRM-II, 
respectively. In this table, N, Z, and P are fuzzy sets 
(interval type-2 or type-1) for the input item i i ix zλ= . 
Figure 3 shows the membership functions of N, Z, and 
P, where triangular IT2FSs are used and the 
changeable width ∆  can reflect the uncertainties 
contained in IT2FSs. When ∆ =0, IT2FSs become 
T1FSs, and IT2SIRM becomes T1SIRM. For 
IT2SIRM-I and IT2SIRM-II, we can obtain the 
following results (details are omitted due to page 
limitation) 

0

, 0
( )

| 1 , 0
2 1

j

j
j j

z j
j

u z
z

λ
λ

λ=

∆ =
∂ = ∂ ∆ ≠ − ∆

I (6)

0

, 0
( )

| 1 , 0
2 1

j

j
j j

z j
j

u z
z

λ
λ

λ=

− ∆ =
∂ = ∂ − ∆ ≠ − ∆

II            (7) 

TABLE I Settings of IT2SIRM-I and IT2SIRM-II 
for input item x 

Input Item Consequent Part 
of IT2SIRM-I 

Consequent Part 
of IT2SIRM-II 

N -1 1 
Z 0 0 
P 1 -1 

N Z P

-  - +  -1 1 0 1 1Δ       -Δ     Δ           Δ    
Fig. 3 Interval type-2 fuzzy sets for N, Z, and P with 

changeable width ∆  



 

 

 
From the above discussions, we can obtain the 

Jacobian matrix at the equilibrium 0 for the IT2SIRMs 
connected fuzzy logic control systems. And, it is 
obvious that, for the IT2SIRM-I/II connected FLCs, 
the scaling factors iλ , the changeable width ∆  and 
the importance degrees iw  all affect the stability of 
the equilibrium 0 of the IT2SIRMs connected fuzzy 
logic control systems. Therefore, to design a desirable 
IT2SIRM-FLC for the system (2), the parameters of 
the IT2SIRM-FLC should be chosen to satisfy that all 
the eigenvalues of the Jacobian matrix J have negative 
real parts.  

4 Simulations 

In this section, we will use an inverted pendulum 
system as the example to show how to design 
IT2SIRMs connected fuzzy logic control systems 
using prior knowledge. The dynamic equations of the 
inverted pendulum system can be found in [1]. Here, 
due to page limitation, we omit these equations. 

For the inverted pendulum system, the three kinds 
of prior knowledge will be discussed as follows: 

1) Considering the odd symmetry of states of the 
inverted pendulum system, all the IT2SIRMs for 

1 2 3 4, , ,z z z z  should be odd symmetric. 
2) From our experience, to make 0iz → , the larger 

iz  is, the larger iu  is needed. Hence, all the 
IT2SIRMs for 1 2 3 4, , ,z z z z  should be monotonically 
increasing. From the above discussion, both 

IT2SIRM-I and IT2SIRM-II are odd symmetric, but 
IT2SIRM-I is monotonically increasing, while 
IT2SIRM-II is monotonically decreasing. Therefore, 
in this simulation, all the IT2SIRMs for 1 2 3 4, , ,z z z z   
are chosen to be IT2SIRM-I. 

3) The Jacobian matrix J  for the inverted 
pendulum system controlled by the IT2SIRM-Is 
connected FLC can be obtained as 

3( )
2 1 2 2 2 3 2 4(4 )

3
4 1 4 2 4 3 4 4(4 )

0 1 0 0

0 0 0 1

M m g
M m l

mg
M m l

t k t k t k t k

t k t k t k t k

+
+

−
+

 
 + =  
 

+  

J . 

where 2 3 /(4 )= − +t M m l , 4 4 /(4 )= +t M m , =jk λj jw  
( j = 1,2, 3,4) , if ∆ = 0; and / 2(1 )λ= − ∆j j jk w , if 

0∆ ≠ . 
In this simulation, the parameters are chosen to be 

1 3.82λ = , 2 1.90λ = , 3 0.5λ = , 4 1λ = , 1 50w = , 

2 50w = , 3 20w = , 4 20.w = Then, it is easy to verify 
that J  is stable no matter whether ∆ = 0 or not. 

Simulation results for the initial state ( / 6,0,π  
0,0)  are depicted in Fig. 4 (a) and (b). Fig. 4 (a) 
demonstrates the time responses of the pole angle 
controlled by the IT2SIRM-FLCs ( ∆ = 0 and ∆ = 0.2), 
while Fig 4 (b) displays the time responses of the cart 
position. Moreover, comparisons between the 
IT2SIRM-FLCs ( ∆ =0 and ∆ =0.2) are shown in 
Table II with respect to ISE, IAE, ITAE for different 
initial states ( / 6,0,0,0)π  and ( / 6, / 6,π π 1,0)− .  

TABLE II Comparisons between the IT2SIRM-FLCs ( ∆ = 0 and ∆ = 0.2) 

 

 
Fig. 4 Time responses of the inverted pendulum system: (a) pole angle, (b) cart position 

initial 

states 

ISE IAE ITAE 

∆ = 0 ∆ = 0.2 ∆ = 0 ∆ = 0.2 ∆ = 0 ∆ = 0.2 

( / 6,0,0,0)π  43.1007 41.2418 8.2003 8.0031 62.2832 55.0349 

( / 6, / 6, 1,0)π π −  64.3305 60.7752 12.0617 11.6667 141.6144 120.4052 



 

 

From Fig. 4 and Table II, we can see that, the 
proposed control scheme can achieve the control 
objective, but, from ISE, IAE and ITAE’s point of 
view, the controller with ∆ = 0.2 gives better 
performance. What is more, the controllers can be 
easily designed and we only need 12 fuzzy rules (3 
rules for each IT2SIRM) in our control scheme. 

5 Conclusions 

In real-world control applications, prior knowledge 
can provide important information for control 
synthesis. This paper has focused on utilizing three 
kinds of prior knowledge -- odd symmetry, 
monotonicity, and local stability of closed-loop 
systems -- to alleviate the difficulty of designing 
interval type-2 fuzzy logic controllers. As shown in 
our study, with the help of prior knowledge, the design 
of the SIRMs connected FLCs becomes much easier. 
And, simulation results have also shown the 
effectiveness of the proposed control scheme and the 
usefulness of prior knowledge. 
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