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Abstract— This paper tries to provide a stability analysis
approach for the single input rule modules (SIRMs) based
type-2 fuzzy logic control systems. First, in the neighbor of
the equilibrium point, the closed-form input-output mappings
of type-2 SIRMs (T2SIRMs) are explored, and the derivatives
of T2SIRMs at the equilibrium point are computed. Then, how
to compute the Jacobian matrix of the SIRMs based type-2
fuzzy logic control systems, which is a fundamental step for
local stability analysis, is presented. At last, two examples on
stabilization control of the TORA system and the inverted
pendulum system are given. The results in both examples
demonstrate that the stability analysis results agree completely
with the control results.

I. INTRODUCTION

In control applications, stability analysis is an important
issue. Stability analysis is not an easy task for fuzzy logic
control systems, especially for type-2 fuzzy logic control
systems. Most results on stability analysis are explored for
special fuzzy logic control systems, in which the controlled
plants are described using TS type fuzzy rules [1-3]. For this
kind of type-2 fuzzy logic control systems, Lam et al. [4]
and Biglarbegian et al. [5] have proved some useful stability
theorems when the controlled plant and the fuzzy controller
both are described by TS type fuzzy rules. But, for general
type-2 fuzzy logic control systems which have non-TS type
fuzzy rules, global stability analysis is quite difficult, as such
type-2 fuzzy logic control systems are seriously nonlinear.
What is more, in this case, even local stability analysis
may be impossible, for it is hard to obtain the closed-form
input-output mappings of the type-2 fuzzy logic controllers
(T2FLCs).

Single input rule modules (SIRMs) based fuzzy logic
control scheme is first proposed by J. Yi, et al. [6-8] to
simplify the design process of conventional type-1 fuzzy
logic controllers (T1FLCs), and then studied by H. Seki,
et al. [9-11]. Compared with the conventional T1FLCs, the
number of rules of the SIRMs based control scheme can be
reduced greatly. And, this control scheme has been applied
to many control problems, such as, stabilization control of
parallel-type double inverted pendulum systems [6], anti-
swing and positioning control of overhead traveling crane [8],
etc. Recently, we have extended the SIRMs based fuzzy logic
control scheme to the type-2 case [12]. Moreover, we have
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Fig. 1. Block diagram of the SIRMs based type-2 fuzzy logic control
system

also utilized this SIRMs based type-2 fuzzy logic controller
(SIRM-T2FLC) to the stabilization control of the TORA
system [13] and the inverted pendulum [14].

However, till now, no stability analysis has been done for
the designed SIRM-T2FLCs which have non-TS type fuzzy
rules. As it is difficult to make global stability analysis for the
SIRMs based type-2 fuzzy logic control system, in this paper,
we try to provide an approach for its local stability analysis.
To achieve this goal, we first explore the closed-form input-
output mappings of the type-2 SIRMs (T2SIRMs), which are
necessary components of SIRM-T2FLCs, and then, compute
the derivatives of such T2SIRMs at their equilibrium points.
On this basis, we present how to compute the closed-loop
Jacobian matrix of the SIRMs based type-2 fuzzy logic
control system. This is a fundamental step for local stability
analysis of the closed-loop system. At last, two examples
are given to show the effectiveness of the proposed stability
analysis approach.

The organization of this paper is as follows. In Section II,
the SIRMs based type-2 fuzzy logic control system is intro-
duced briefly. In Section III, the input-output mappings and
derivatives of T2SIRMs are studied and how to compute the
Jacobian matrix of the closed-loop system is demonstrated.
In Section IV, two examples are given. At last, conclusions
are drawn in Section V.

II. SIRMS BASED TYPE-2 FUZZY LOGIC CONTROL

SYSTEM

In this section, we will give a brief introduction of
the SIRMs based type-2 fuzzy logic control system. For
simplicity, the controlled plant is assumed to have n state
variables and only one control input. The results can be
readily extended to controlled plants which have multiple
control inputs.
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Fig. 2. The inference structure of T2SIRM [15-19]

Figure 1 shows a block diagram of the SIRMs based type-
2 fuzzy logic control system. In our following discussion, we
suppose that the controlled plant is depicted as:

żzz(t) = fff(zzz(t)) + ggg(zzz(t))u(zzz(t)), (1)

where zzz(t) = (z1(t), z2(t), ..., zn(t))T ∈ Rn is the state
vector of the system, fff(zzz(t)) = (f1(zzz(t)), f2(zzz(t)), ...,
fn(zzz(t)))T ∈ Rn×1, ggg(zzz(t)) = (g1(zzz(t)), g2(zzz(t)), ...,
gn(zzz(t)))T ∈ Rn×1, and u(zzz(t)) ∈ R is the control input
to the system from a SIRM-T2FLC.

A SIRM-T2FLC for the controlled plant which has n states
has n input items x1, x2, ..., xn, which are normalized values
of z1, z2, ..., zn, i.e. xi = λizi, where λi is the scaling factor
for the variable zi. A SIRM-T2FLC with n input items is
composed of n type-2 SIRMs (T2SIRMs). The T2SIRM for
the input item xi (T2SIRM-i) can be expressed as [12-14]

T2SIRM-i : {Rj
i : if xi is Ãj

i , then ui is C̃j
i }mi

j=1 (2)

where Ãj
i s are interval type-2 fuzzy sets (IT2FSs), C̃j

i s are
interval weighting factors, and C̃j

i = [cj
i , c

j
i ]. IT2FSs Ãj

i s and
interval weighting factors [cj

i , c
j
i ]s can be formed by blurring

type-1 fuzzy sets Aj
i s and crisp values cj

i s, respectively [15-
20].

A T2SIRM can be seen as a single-input-single-output
type-2 fuzzy logic system (T2FLS) [15-20]. Therefore, the
inference structure of T2SIRMs is the same as the inference
structure of T2FLSs. The inference structure of T2SIRMs is
shown in Fig. 2 and it consists of a fuzzifier, an inference
engine, a rule base, a type-reducer and a defuzzifier [15-20].

Once a crisp input xi = λizi is applied to T2SIRM-i,
through the singleton fuzzifier and the inference process, the
interval firing strength of the jth rule can be expressed as

F j
i (xi) = [f j

i
(xi), f

j

i (xi)], (3)

where

f j

i
(xi) = μ eAj

i

(xi), f
j

i (xi) = μ eAj
i
(xi), (4)

in which μ(), μ() denote the grades of the lower and upper
membership functions (MFs) of IT2FSs.

To generate a crisp output from T2SIRM-i, the outputs
of the inference engine should be type-reduced and then
defuzzified. Here, we adopt the most widely used center-of-
sets (COS) type-reduction method which is based on Karnik-
Mendel algorithms [15-19]. With the COS type-reduction

method [15-19], the output of the type-reducer in T2SIRM-i
can be expressed as

Ui(xi) = [uil(xi), uir(xi)], (5)

where the left end point uil(xi) and the right end point
uir(xi) can be expressed as

uil(xi) = min

{∑mi

j=1 f j
i cj

i∑mi

j=1 f j
i

|f j
i ∈ F j

i (xi), c
j
i ∈ [cj

i , c
j
i ]

}

=

∑Li

j=1 f
j

i (xi)c
j
i +

∑mi

j=Li+1 f j

i
(xi)c

j
i∑Li

j=1 f
j

i (xi) +
∑mi

j=Li+1 f j

i
(xi)

(6)

uir(xi) = max

{∑mi

j=1 f j
i cj

i∑mi

j=1 f j
i

|f j
i ∈ F j

i (xi), c
j
i ∈ [cj

i , c
j
i ]

}

=

∑Ri

j=1 f j

i
(xi)c

j
i +

∑mi

j=Ri+1 f
j

i (xi)c
j
i∑Ri

j=1 f j

i
(xi) +

∑mi

j=Ri+1 f
j

i (xi)
(7)

where Li and Ri are switch points that can be computed by
the iterative Karnik-Mendel algorithms [15-19].

After the COS type-reduction process, the defuzzified crisp
output from T2SIRM-i is the average of uil(xi) and uir(xi),
i.e.

ui(xi) =
1
2
(uil(xi) + uir(xi)). (8)

Once the fuzzy inference result ui(xi) of T2SIRM-i is
already calculated, to express clearly the different role of
each input item on system performance, the output u(zzz) of
SIRM-T2FLC will be computed as the summation of the
products of the fuzzy inference result ui(xi) of T2SIRM-
i and the importance degree wi of the ith input item xi.
In other words, the output u(zzz) of SIRM-T2FLC can be
calculated as [12-14]

u(zzz) =
n∑

i=1

wiui(xi) =
n∑

i=1

wiui(λizi). (9)

As discussed in [12-14], the total number of rules in
SIRM-T2FLCs increases only linearly with the number of
input items and SIRM-T2FLCs can deal with the rule explo-
sion problem.

III. STABILITY ANALYSIS OF SIRM BASED TYPE-2
FUZZY LOGIC CONTROL SYSTEM

It is quite difficult, maybe impossible, to analyze the
global stability of the closed-loop systems in (1) controlled
by SIRM-T2FLCs. Therefore, in this section, we will only
consider the local stability in the neighbor of the equilibrium
points of the SIRMs based type-2 fuzzy logic control sys-
tems. Below, we will first explore the input-output mappings
and the derivatives of T2SIRMs, and then study the local
stability of the SIRMs based type-2 fuzzy logic control
systems.

For simplicity, in this paper, we suppose that the equilib-
rium point of the SIRMs based type-2 fuzzy logic control
systems is the origin 000. Similar results can be obtained for
the equilibrium points in other locations.
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Fig. 3. Type-2 fuzzy partition of the input domain [−1, 1]: (a) Gaussian
IT2FSs, (b) triangular IT2FSs
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Fig. 4. Interval partition of the output domain

A. Input-Output Mapping and Derivatives of T2SIRM

Usually, the IT2FSs adopted in T2FLCs are Gaussian or
triangular. If Gaussian or triangular IT2FSs are utilized in
T2SIRM, the input domain [−1, 1] of the normalized variable
xi can be partitioned as shown in Fig. 3(a) or Fig. 3(b).
For the output variable u, the partition of its domain is
often chosen as shown in Fig. 4. In SIRM-T2FLCs, we
always choose the following two kinds of T2SIRMs as
its components (denoted as T2SIRM-I and T2SIRM-II for
short):

T2SIRM-I :

⎧⎨⎩ x = N → u = N
x = Z → u = Z
x = P → u = P

(10)

T2SIRM-II :

⎧⎨⎩ x = N → u = P
x = Z → u = Z
x = P → u = N

(11)

In the following, we study the input-output mappings and
derivatives of T2SIRM-I and T2SIRM-II in two situations.

• The Antecedent IT2FSs in T2SIRM-I and T2SIRM-
II are Gaussian (as Shown in Fig. 3(a))

In order to reduce the number of the parameters in
T2SIRM-I and T2SIRM-II, we suppose that the antecedent
Gaussian IT2FSs N, Z, P in T2SIRM-I and T2SIRM-II are
symmetric with respect to the origin 0, and they have the
same uncertain width [σ2, σ2]. In the same way, we also
assume that the consequent intervals N, Z, P in T2SIRM-I
and T2SIRM-II are symmetric with respect to the origin 0,
i.e. N = [−1− δ,−1 + δ] = −P, and Z = [−η, η].

If more than two fuzzy rules can be fired at one point in the
input domain, then the outputs of T2SIRM-I and T2SIRM-II
at this point should be computed using the iterative Karnik-
Mendel algorithms [15-19]. As a result, no closed-form
expressions can be obtained for the input-output mappings
of T2SIRM-I and T2SIRM-II at this point. If the antecedent
IT2FSs in T2SIRM-I and T2SIRM-II are Gaussian, then, in
the neighbor of the origin 0, the three fuzzy rules in T2SIRM-
I and T2SIRM-II can always be fired. Hence, it is impossible

to obtain the closed-form input-output mappings of T2SIRM-
I and T2SIRM-II and compute the derivatives of T2SIRM-I
and T2SIRM-II at the origin 0. However, if the consequent
interval Z satisfies that Z = [−η, η] = 0, the closed-form
input-output mappings of T2SIRM-I and T2SIRM-II in the
neighbor of the origin 0 can be obtained.

In this case, for T2SIRM-I, its input-output mapping in
the neighbor of the origin 0 can be expressed as (details are
omitted)

uI(x) =
1
2
(ulI(x) + urI(x)), (12)

ulI(x) =
(−1− δ)e−

(x+1)2

2σ2 + (1− δ)e−
(x−1)2

2σ2

e−
(x+1)2

2σ2 + e
− x2

2σ2 + e
− (x−1)2

2σ2

, |x| ≤ h,

(13)

urI(x) =
(−1 + δ)e−

(x+1)2

2σ2 + (1 + δ)e−
(x−1)2

2σ2

e
− (x+1)2

2σ2 + e
− x2

2σ2 + e−
(x−1)2

2σ2

, |x| ≤ h,

(14)

where

h =
{

min{b−√b2 − c, 1}, if b2 − c ≥ 0
1, if b2 − c < 0

(15)

and

b =
σ2 + σ2

σ2 − σ2
, (16)

c = 1− 2σ2σ2

σ2 − σ2
ln

1− δ

1 + δ
. (17)

From(12)-(14), we can compute the derivative of T2SIRM-
I at the origin 0 as: (details are omitted)

∂uI(x)
∂x

|x=0 =
1
2

[
∂ulI(x)

∂x
|x=0 +

∂urI(x)
x

|x=0

]
, (18)

∂ulI(x)
∂x

|x=0 =
p′l(0)ql(0)− pl(0)q′l(0)

(ql(0))2
, (19)

∂urI(x)
∂x

|x=0 =
p′r(0)qr(0)− pr(0)q′r(0)

(qr(0))2
, (20)

where

pl(0) = (−1− δ)e−
1

2σ2 + (1− δ)e−
1

2σ2 , (21)

p′l(0) =
1 + δ

σ2 e−
1

2σ2 +
1− δ

σ2
e
− 1

2σ2 , (22)

ql(0) = 1 + e−
1

2σ2 + e
− 1

2σ2 , (23)

q′l(0) = − 1
σ2 e−

1
2σ2 +

1
σ2

e
− 1

2σ2 , (24)

pr(0) = (−1 + δ)e−
1

2σ2 + (1 + δ)e−
1

2σ2 , (25)

p′r(0) =
1− δ

σ2
e
− 1

2σ2 +
1 + δ

σ2 e−
1

2σ2 , (26)

qr(0) = 1 + e
− 1

2σ2 + e−
1

2σ2 , (27)

q′r(0) = − 1
σ2

e
− 1

2σ2 +
1
σ2 e−

1
2σ2 . (28)
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In the similar way, for T2SIRM-II, its input-output map-
ping in the neighbor of the origin 0 can be obtained as (details
are omitted)

uII(x) = −uI(x). (29)

Hence, the derivative of T2SIRM-II at the origin 0 can be
computed as

∂uII(x)
∂x

|x=0 = −∂uI(x)
∂x

|x=0. (30)

• The Antecedent IT2FSs in T2SIRM-I and T2SIRM-
II are Triangular (as shown in Fig. 3(b))

In this situation, no more than two fuzzy rules can be
fired at each point in [−1, 1], therefore, the closed-form
input-output mappings of T2SIRM-I and T2SIRM-II in the
neighbor of the origin 0 can be obtained.

For T2SIRM-I, (details are omitted)

uI(x) =
{

x, x ∈ [−1, 1], Δ = 0,
1
2

(1−δ−η)x
1−Δ , x ∈ [−Δ, Δ], Δ �= 0.

(31)

For T2SIRM-II, (details are omitted)

uII(x) =
{ −x, x ∈ [−1, 1], Δ = 0,

− 1
2

(1−δ−η)x
1−Δ , x ∈ [−Δ, Δ], Δ �= 0.

(32)

From (31) and (32), the derivatives of T2SIRM-I and
T2SIRM-II at the origin 0 can be computed as

∂uI(x)
∂x

|x=0 =
{

1, Δ = 0
1
2

1−δ−η
1−Δ , Δ �= 0 (33)

∂uII(x)
∂x

|x=0 =
{ −1, Δ = 0
− 1

2
1−δ−η
1−Δ , Δ �= 0 (34)

B. Stability Analysis

Suppose that 000 is an equilibrium of the autonomous system
żzz(t) = fff(zzz(t)), i.e. fff(000) = 000, and that fff(.), ggg(.), u(.) are
differentiable. Further, assume that the Jacobian matrix J =[

∂(fff(zzz(t))+ggg(zzz(t))u(zzz(t)))
∂zzz

]
zzz=000

is bounded.

As well known [21], under above conditions, 000 is an
exponentially stable equilibrium of (1), if: 1) u(000)=0, which
assures that zzz = 000 is an equilibrium of (1), 2) the real parts
of the eigenvalues of its Jacobian matrix J are negative.

Therefore, in order to verdict the local stability of the
closed-loop systems in (1), first, we should prove that the
outputs of SIRM-T2FLCs satisfy that u(000)=0, and then,
compute the closed-loop Jacobian matrix J to judge whether
the real parts of its eigenvalues are negative.

• The First Condition:
For T2SIRM-I, if its antecedent IT2FSs are Gaussian, then,

from (13) and (14), it is obvious that

ulI(x) = −urI(−x). (35)

Hence, in this case, the input-output mapping of T2SIRM-
I at the origin 0 satisfies that

uI(0) =
ulI(0) + urI(0)

2
=
−urI(0) + urI(0)

2
= 0. (36)

For T2SIRM-I, if its antecedent IT2FSs are triangular,
then, from (31), it is obvious that uI(0) = 0

From similar analysis, for T2SIRM-II, we can prove that
uII(0) = 0.

Therefore, the T2SIRM-Is/T2SIRM-IIs based type-2 fuzzy
logic controllers satisfy the first condition.

• The Second Condition: Computation of the Jacobian
Matrix

Below, we will discuss how to obtain the Jacobian matrix
at the equilibrium 000 for the SIRMs based type-2 fuzzy logic
control systems.

Denote the Jacobian matrix J as J = [aij ]n×n, where

ai,j =
∂fi(zzz(t))

∂zj
|zzz=000 +

∂gi(zzz(t))u(zzz(t))
∂zj

|zzz=000. (37)

Note that[
∂gi(zzz(t))u(zzz(t))

∂zj

]
zzz=000

=u(000)
∂gi(zzz(t))

∂zj
|zzz=000 + gi(000)

∂u(zzz(t))
∂zj

|zzz=000. (38)

From above discussion, we know that

u(000) = 0, (39)

u(zzz(t)) =
n∑

i=1

wiui(xi) =
n∑

i=1

wiui(λizi). (40)

Hence, from (38) (39) and (40), we can obtain that[
∂gi(zzz(t))u(zzz(t))

∂zj

]
zzz=000

=gi(000)
∂u(zzz(t))

∂zj
|zzz=000

=gi(000)wj
∂uj(λjzj)

∂zj
|zj=0

=gi(000)wj

(
∂uj(λjzj)
∂(λjzj)

∂λjzj

∂zj

)
|zj=0

=gi(000)wjλj
∂uj(xj)

∂xj
|xj=0. (41)

In summary,

ai,j =
∂fi(zzz(t))

∂zj
|zzz=000 + gi(000)wjλj

∂uj(xj)
∂xj

|xj=0. (42)

As discussed in the previous subsection, for the specific
T2SIRMs – T2SIRM-I and T2SIRM-II, ∂uj(xj)

∂xj
|xj=0 can be

determined. Thus, we can obtain the Jacobian matrix at the
equilibrium 000 for the SIRMs based type-2 fuzzy logic control
systems. And, it is obvious that, for T2SIRM-I/II based
fuzzy logic controllers, the scaling factors λi, the changeable
width σ2, σ2, Δ and the importance degrees wi all affect the
stability of the equilibrium 000 of the SIRMs based type-2
fuzzy logic control systems.

In conclusion, as the closed-loop Jacobian matrix of the
SIRMs based type-2 fuzzy logic control system can be
obtained, we can judge whether the SIRMs based type-2
fuzzy logic control system is exponentially stable through
observing the locations of the eigenvalues of the Jacobian
matrix J .
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IV. EXAMPLES

In this section, we use the following two examples to
demonstrate the effectiveness of the stability analysis ap-
proach. The first example is the stabilization control of the
TORA system, while the second example is the stabilization
control of the inverted pendulum systems.

A. Control of the TORA System

Suppose that the disturbance F = 0, then, the dynamic of
the TORA system can be given by the following equation
[13,22]:

żzz = fff(zzz) + ggg(zzz)u, (43)

where zzz = (z1, z2, z3, z4)T, u is the torque applied to the
eccentric mass m and obtained from a SIRM-T2FLC, and

fff(zzz) =

⎡⎢⎢⎢⎣
z2

−z1+εz2
4 sin z3

1−ε2 cos2 z3

z4
ε cos z3(z1−εz2

4 sin z3)
1−ε2 cos2 z3

⎤⎥⎥⎥⎦ , (44)

ggg(zzz) =

⎡⎢⎢⎣
0

−ε cos z3
1−ε2 cos2 z3

0
1

1−ε2 cos2 z3

⎤⎥⎥⎦ , (45)

where the coupling parameter ε is set up to be 0.1.
In [13], we have shown how to design the SRIM-T2FLC

for this system. The T2SIRMs chosen for z1, z2, z3 and
z4 are T2SIRM-I, T2SIRM-I, T2SIRM-II and T2SIRM-
II, respectively. In these T2SIRMs, Gaussian IT2FSs (as
shown in Fig. 3(a)) are adopted, and, the parameters in the
consequent intervals are chosen as η = 0, δ = 0.1. The other
parameters of the SIRM-T2FLC for the TORA system are
[13]:

λ1 = 4.27, λ2 = 1.94, λ3 = 0.58, λ4 = 0.67
w1 = 9.98, w2 = 0.71, w3 = 2.84, w4 = 8.65

[σ2
1, σ

2
1] = [0.48, 0.63], [σ2

2, σ
2
2] = [0.82, 0.98],

[σ2
3, σ

2
3] = [0.21, 0.42], [σ2

4, σ
2
4] = [0.25, 0.36].

Substituting these parameters into (18)-(30) and (42), we
can obtain the Jacobian matrix at the equilibrium 000 for this
closed-loop system as

J =

⎡⎢⎢⎣
0 1 0 0

−4.4840 −0.0829 0.1353 0.5174
0 0 0 1

34.8403 0.8294 −1.3533 −5.1736

⎤⎥⎥⎦ .

The eigenvalues of this Jacobian matrix are: −4.1265,
−0.3817+ 0.8653i, −0.3817− 0.8653i, −0.3667. Thus, we
know that this closed-loop system is stable in the neighbor
of the equilibrium 000.

One simulation result of the SIRM-T2FLC in this example
is shown in Fig. 5.
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Fig. 5. Control result of the SIRM-T2FLC in example 1

B. Control of the Inverted Pendulum System

The dynamic equations of the inverted pendulum system
can be expressed as [14,23]

ż1 = z2, (46)

ż2 =
(M + m)g sin z1 −mlz2

2 sin z1 cos z1 − u(t) cos z1

4
3 (M + m)l −ml cos2 z1

,

(47)

ż3 = z4, (48)

ż4 =
4
3mlz2

2 sin z1 −mg sin z1 cos z1 + 4
3u(t)

4
3 (M + m)−m cos2 z1

, (49)

where z1 = θ is the pole angle, z2 = θ̇ is the angular velocity
of the pole, z3 = x is the position of the cart, and z4 is the
velocity of the cart. In our simulation, the mass of the cart
M is 1kg, the mass of the pole m is 0.1kg, half of the pole
length l is 1m, and g=9.81.

In [14], we have shown how to design the SRIM-T2FLC
for this system. The T2SIRMs chosen for z1, z2, z3 and
z4 are all T2SIRM-I. In these T2SIRMs, triangular IT2FSs,
whose widths are set up to be Δ = 0.2, are adopted, and,
the parameters in the consequent intervals are chosen as η =
0, δ = 0. The other parameters of the SIRM-T2FLC for the
inverted pendulum system are [14]:

λ1 = 3.82, λ2 = 1.90, λ3 = 0.5, λ4 = 1,

w1 = 50, w2 = 50, w3 = 20, w4 = 20.

Substituting these parameters into (33), (34) and (42), we
can obtain the Jacobian matrix at the equilibrium 000 for this
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Fig. 6. Control result of the SIRM-T2FLC in example 2

closed-loop system as

J =

⎡⎢⎢⎣
0 1 0 0

−79.4517 −43.4451 −4.5732 −9.1463
0 0 0 1

185.6237 92.6829 9.7561 19.5122

⎤⎥⎥⎦ .

The eigenvalues of this Jacobian matrix are: −28.8101,
−0.7474+ 1.0435i, −0.7474− 1.0435i, −0.9451. Thus, we
know that this closed-loop system is stable in the neighbor
of the equilibrium 000.

One simulation result of the SIRM-T2FLC in this example
is shown in Fig. 6. We also depict the stability domain (with
respect to the pole angle and the angular velocity) of the
inverted pendulum system controlled by the SIRM-T2FLC
in Fig. 7, where ts denotes the stabilizing time. From this
figure, we can see that the stability domain of the proposed
controller is large enough.

V. CONCLUSIONS

In our work, a stability analysis approach for the SIRMs
based type-2 fuzzy logic control systems is provided.
Although stability analysis of conventional non-TS type
T2FLCs is difficult, stability analysis of the SIRMs based
type-2 fuzzy logic control systems becomes possible, be-
cause the closed-form input-output mappings of T2SIRMs
which are necessary components of SIRM-T2FLCs can be
obtained in the neighbor of the equilibrium point under some
reasonable assumptions. These mappings can be used to
realize the fundamental step for local stability analysis –
computation of the Jacobian matrix of the closed-loop sys-
tem. These mappings also demonstrate that, in the neighbor
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Fig. 7. Stability region of the pole angle and the angular velocity ( �:
ts ≤ 10s, ◦: ts ≤ 15s, �:ts ≤ 20s)

of the equilibrium point, the T2SIRM which uses Gaussian
antecedent IT2FSs has nonlinear characteristics while the
T2SIRM which uses triangular antecedent IT2FSs has linear
characteristics. The proposed approach is applied to the
stabilization control of the TORA system and the inverted
pendulum system. The fact that the stability analysis results
are consistent entirely with the control results shows the
effectiveness of the proposed approach.
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