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Abstract— This paper applies prior knowledge - monotonicity
and convexity - to a Single-Input-Single-Output (SISO) un-
normalized interval type-2 Takagi-Sugeno-Kang (TSK) Fuzzy
Logic System (FLS). Sufficient conditions are provided to
guarantee its monotonicity and convexity with respect to its
input, respectively. The derived monotonic conditions focus
on a zeroth-order TSK fuzzy model. Also, the corresponding
proofs for the convex conditions of both the zeroth-order and
first-order TSK fuzzy models are given, respectively. For the
zeroth-order fuzzy systems, simulation examples demonstrate
the validity of the theorems.

I. INTRODUCTION

Since the late 1990s as a result of Prof. Jerry Mendel
and his groups’ works on type-2 fuzzy sets and systems
[1,2], more and more researchers are paying close attention
to type-2 fuzzy sets and systems. At present, interval type-
2 fuzzy sets have received the most attention, and interval
type-2 fuzzy sets and systems are being actively researched
by an ever-growing number of researchers around the world
[3]. Interval Type-2 Fuzzy Logic Systems (IT2FLSs) have
obvious advantages for handling different sources of uncer-
tainty, reducing the number of fuzzy rules, etc. Due to the
merits, there exist a lot of literatures about the applications
of IT2FLSs, for example, nonlinear channel equalization [5]
and nonlinear system identification [6].

Until now, we have always constructed the fuzzy models
of complex systems only using sample data. Since noisy data
can not be avoided in practical applications, the information
contained in sample data is always insufficient. Fortunately,
some prior knowledge of plants or systems, such as bounded
range, symmetry, monotonicity and convexity, etc., can com-
pensate the insufficiency of the information from sample
data [4,7]. Recently, lots of the work has been done to
incorporate prior knowledge into neural networks [12], type-
1 or traditional FLSs [8-10], etc. In [8], Won has presented
sufficient conditions of monotonicity for the traditional nor-
malized TSK fuzzy systems. In [9], Kim has introduced a
constructive manner for the design of the convex type-1 TSK
fuzzy systems. In [6,7], Li has proposed sufficient conditions
to ensure that the prior knowledge of symmetry, bounded
range and monotonicity can be incorporated into normalized
interval type-2 FLSs.
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Normalizing the output of a TSK FLS has been shown
to be unnecessary in some cases because it increases its
computational complexity [11]. In spite of the fact that an
Unnormalized Interval Type-2 TSK FLS (UIT2FLS) is sim-
ple, it can provide fast inference, reduce the computational
complexity, and may achieve the same performance as the
normalized TSK in some specific applications [1,5].

At present, to the authors’ knowledge, there are no liter-
atures that incorporate prior knowledge into UIT2FLSs. In
this paper, we investigate two kinds of prior knowledge —
monotonicity and convexity for SISO UIT2FLSs. The paper
is organized as follows: Section II briefly introduces SISO
UIT2FLSs. Based on Section II, in Section III and Section
IV, sufficient conditions for SISO UIT2FLSs are given to
ensure the monotonic and convex input-output relationships,
respectively. And, simulation examples verify the validity of
Theorems 3.1 and 4.1, respectively. Finally, Section V makes
conclusions.

II. SISO UIT2FLS

Some preliminary knowledge about UIT2FLSs is intro-
duced in this section.

A. Single-input first-order UIT2FLS

A single-input first-order UIT2FLS is depicted by M fuzzy
IF-THEN rules. The ith rule Ri is denoted as

Ri: IF x is Ãi, THEN Y i = Ci
0 + Ci

1x,
where i = 1, 2, . . . , M ; x is the input variable; Ãis are an-
tecedent triangular IT2FSs which can be completely depicted
by its the lower and upper membership functions — μ eAi

(x)
and μ eAi(x); and Ci

ps (p = 0, 1) are consequent parameters
that are interval sets, i.e. Ci

p = [ci
p − si

p, c
i
p + si

p], in which
ci
p denotes the center of Ci

p and si
p denotes the spread of

Ci
p. The firing set F i(x) of rule Ri is an interval type-1 set,

i.e., F i(x) = [f i(x), f
i
(x)], in which f i(x) = μ eAi(x) and

f
i
(x) = μ eAi(x). The consequent Y i of rule Ri is also an

interval set, i.e., Y i = [yi
l(x), yi

r(x)], where

yi
l (x) = ci

1x + ci
0 − |x| si

1 − si
0, (1)

yi
r(x) = ci

1x + ci
0 + |x| si

1 + si
0. (2)

According to Theorem 13-2 in [1], the final output of the
unnormalized interval type-2 TSK model is inferred as

Y (x) =
1
2

∑M

i=1
(f i(x)yi

l (x) + f
i
(x)yi

r(x)). (3)
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Fig. 1. Interval type-2 fuzzy partition in Section III.

B. Single-input zeroth-order UIT2FLS

Consider a single-input zeroth-order UIT2FLS whose
fuzzy rule base consists of M fuzzy rules which can be
regarded as a particular form of the previous rules Ris. The
ith fuzzy rule is

R̂i: IF x is Ãi, THEN Y i = Ci
0,

where the characters in rule R̂i have the same meanings as
before. For the sake of convenience, let Ci

0 = [wi, wi], i.e.,
ci
0 − si

0 = wi, ci
0 + si

0 = wi(i = 1, 2, . . . , M). Accordingly,
yi

l(x) = wi and yi
r(x) = wi.

III. MONOTONIC UIT2FLS

In this section, without loss of generality, we only con-
sider the monotonic increase. The definition of single-input
monotonic fuzzy systems is given as follows.

Definition 3.1: Let x be an input of a fuzzy system defined
on U = [a, b], where U ⊂ R, and y = F (x) be the output
of the fuzzy system in the set V ⊂ R. Then, F : U �→ V
is said to be monotonically increasing if a ≤ x1 ≤ x2 ≤ b
implies F (x1) ≤ F (x2) [8].

A. Single-input zeroth-order monotonic UIT2FLS

This section focuses on the single-input zeroth-order FLS
described by R̂ps (p = 1, 2, . . . , M) in which the lower and
upper membership functions of Ãp can be written as

μ eAp(x) =

⎧⎨⎩
hp x−ap

mp−ap , ap < x ≤ mp

hp bp−x
bp−mp , mp < x ≤ bp

0, x ≤ ap or x > bp

, (4)

and

μ eAp(x) =

⎧⎨⎩
h

p x−ap

mp−ap , ap < x ≤ mp

h
p cp−x

cp−mp , mp < x ≤ cp

0, x ≤ ap or x > cp

, (5)

where ap < mp < bp ≤ cp and hp ≤ h
p ≤ 1. Fig. 1 is a

specific case of the membership functions.
Theorem 3.1: Assume that the input domain U = [ul, ur]

is partitioned by M triangular IT2FSs Ã1, Ã2, . . . , ÃM as
shown in Fig. 1. Then, the UIT2FLS is monotonically
increasing with respect to x, if the following conditions are
satisfied:

1) No more than two fuzzy rules are fired, i.e. a1 = ul or
a1 = m2 = ul, mM = bM = cM = ur, ap+1 = mp,
ap < mp < bp ≤ cp ≤ mp+1;

2) kp+1
+ wp+1 + k

p+1

+ wp+1 − kp
−wp − k

p

−wp ≥ 0;
3) wp+1 ≥ wp and wp+1 ≥ wp(p = 1, 2, . . . , M − 1);
4) vp

maxw
p+1 + vp

maxw
p+1 − vp

minwp − vp
minwp ≥ 0 and

(vp+1
min − vp

max)w
p+1 + (vp+1

min − vp
max)w

p+1 ≥ 0;

where

k
p

+ = h
p
/(mp − ap), kp

+ = hp/(mp − ap),

k
p

− = h
p
/(cp −mp), kp

− = hp/(bp −mp),
(p = 1, 2, . . . , M),

vp
max = sup{μ eAp(x) + μ eAp+1(x) : x ∈ Sp},

vp
min = inf{μ eAp(x) + μ eAp+1(x) : x ∈ Sp},

vp
max = sup{μ eAp(x) + μ eAp+1(x) : x ∈ Sp},

vp
min = inf{μ eAp(x) + μ eAp+1(x) : x ∈ Sp},
Sp = [mp, mp+1] (p = 1, 2, . . . , M − 1).

Proof: Assume that no more than two fuzzy IT2FSs can
be fired and the order numbers of the two fired rules are p

and p + 1. Substituting f i(x) = μ eAi(x), f
i
(x) = μ eAi(x),

yi
l(x) = wi and yi

r(x) = wi into (3), the final output can be
rewritten as

Y (x) =
1
2

∑p+1

k=p
(μ eAk

(x)wk + μ eAk(x)wk). (6)

As illustrated in Fig. 1, the theorem will be proved in three
cases as follows.

1) When x ∈ Sp, x′ ∈ Sp, x′ > x,

Y (x′)− Y (x)

=
1
2
[(μ eAp

(x′)− μ eAp
(x))wp + (μ eAp(x′)

− μ eAp(x))wp + (μ eAp+1(x
′)− μ eAp+1(x))wp+1

+ (μ eAp+1(x′)− μ eAp+1(x))wp+1]. (7)

According to the different regions that x and x′ belong
to, we can discuss the first case as follows.

a) When x ≤ bp, x′ ≤ bp and x ≤ x′, (7) can be
rewritten as

Y (x′)− Y (x)

=
1
2
[−Δxkp

−wp −Δxk
p

−wp

+ Δxkp+1
+ wp+1 + Δxk

p+1

+ wp+1]

=
1
2
Δx[−kp

−wp − k
p

−wp

+ kp+1
+ wp+1 + k

p+1

+ wp+1],

where Δx = x′ − x and Δx > 0.
b) When x ≤ bp, bp < x′ ≤ mp+1 and x ≤ x′,

we denote δ = x′ − bp, if bp < x′ ≤ mp+1;
δ = 0, if bp < x′ ≤ cp; and δ = x′ − cp, if
cp < x′ ≤ mp+1. So we can easily find δ > 0
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and δ ≥ 0. Furthermore, we have

Y (x′)− Y (x)

=
1
2
[−(Δx− δ)kp

−wp − (Δx− δ)k
p

−wp

+ Δxkp+1
+ wp+1 + Δxk

p+1

+ wp+1]

≥1
2
[−Δxkp

−wp −Δxk
p

−wp

+ Δxkp+1
+ wp+1 + Δxk

p+1

+ wp+1].

c) When bp < x ≤ cp, bp < x′ ≤ mp+1 and x ≤ x′,
we let δ = x′ − cp, if cp < x′ ≤ mp+1. Since
δ > 0, we get

Y (x′)− Y (x)

=
1
2
[0− (Δx − δ)k

p

−wp

+ Δxkp+1
+ wp+1 + Δxk

p+1

+ wp+1]

≥1
2
[−Δxkp

−wp −Δxk
p

−wp

+ Δxkp+1
+ wp+1 + Δxk

p+1

+ wp+1].

d) When bp < x ≤ mp+1, bp < x′ ≤ mp+1 and
x ≤ x′, (7) can be rewritten as

Y (x′)− Y (x)

=
1
2
[0 + 0 + Δxkp+1

+ wp+1 + Δxk
p+1

+ wp+1]

≥1
2
[−Δxkp

−wp −Δxk
p

−wp

+ Δxkp+1
+ wp+1 + Δxk

p+1

+ wp+1].

Based on the four cases a), b), c), and d), we
can derive Y (x′) ≥ Y (x) on Sp if the second
condition of Theorem 3.1 holds.

2) When x ∈ Sp and x′ ∈ Sp+1, it is obvious that x′ > x.
If the third condition of Theorem 3.1 holds, we can
obtain

Y (x) ≥1
2
[(μ eAp(x) + μ eAp+1(x))wp

+ (μ eAp(x) + μ eAp+1(x))wp]

≥1
2
[vp

minwp + vp
minw

p]

and

Y (x) ≤1
2
[(μ eAp(x) + μ eAp+1(x))wp+1

+ (μ eAp(x) + μ eAp+1(x))wp+1]

≤1
2
[vp

maxw
p+1 + vp

maxw
p+1].

So, we can derive 1
2 (vp

minwp + vp
minwp) ≤ Y (x) ≤

1
2 (vp

maxw
p+1 +vp

maxw
p+1). If the second inequality of

the fourth condition holds, the minimum value of Y (x)
on the interval Sp+1 must be greater than the maximum
value of Y (x) on the interval Sp . Thus, there exists
the inequality Y (x′) ≥ Y (x) in this case.
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Fig. 2. Graph of the membership functions.
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Fig. 3. Graph of the output of the zeroth-order monotonic UIT2FLS.

3) When x ∈ Sp, x′ ∈ Sq and q > p, x′ > x holds,
where p, q = 1, 2, ..., M .
As mentioned above in 2), we can obtain

Y p+1(x1) ≥ Y p(x2),
where p = 1, 2, ..., M − 1, x1 ∈ Sp+1 and x2 ∈ Sp.
Then, we have

Y (x′) ≥ Y (x).

Therefore, from the discussion above, we can conclude
that the theorem holds.

B. Example of monotonic UIT2FLS

Consider the SISO zeroth-order UIT2FLS with four fuzzy
rules as follows.

Ri: IF x is Ãi, THEN Y i = Ci
0 (i = 1, 2, 3, 4),

where x ∈ U , U = [1, 4]. Based on (4) and (5), the
parameters of Ãi (i = 1, 2, 3, 4) are

a1 = 1, m1 = 1, b1 = 2, c1 = 2,

a2 = 1, m2 = 2, b2 = 3, c2 = 3,

a3 = 2, m3 = 3, b3 = 4, c3 = 4,

a4 = 3, m4 = 4, b4 = 4, c4 = 4,

h
i
= 0.8, hi = 0.55 (i = 1, 2, 3),

h
4

= 0.9, h4 = 0.7.
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Fig. 5. Interval type-2 fuzzy partition in Section IV.

The consequent interval weights of the THEN-part are
C1

0 = [0.2, 0.3], C2
0 = [0.3, 0.4], C3

0 = [0.4, 0.5] and
C4

0 = [0.5, 0.6]. All these parameters meet the conditions
of Theorem 3.1, therefore the output of the UIT2FLS should
be monotonically increasing with respect to its input. The
four membership functions are depicted in Fig. 2, and the
output of the zeroth-order monotonic UIT2FLS is shown in
Fig. 3. It is obvious that the simulation result is consistent
with Theorem 3.1.

IV. CONVEX UIT2FLS

In this part, we study sufficient conditions that make SISO
UIT2FLSs become convex. The definition of single-input
convex fuzzy systems is given below.

Definition 4.1: Let x ∈ U ⊂ R be an input of fuzzy
system y = F (x) ∈ V ⊂ R. Then, F : U �→ V is said
to be convex with respect to x, if the following condition is
satisfied:

F (λx1 + (1− λ)x2) ≤ λF (x1) + (1 − λ)F (x2),

where 0 ≤ λ ≤ 1 [10].

A. Single-input zeroth-order convex UIT2FLS

Consider a SISO UIT2FLS whose IF-THEN rules are the
same as the rules in Section II-B. The lower and upper
membership functions of the fuzzy sets Ãps used here are
expressed in (8) and (9), as illustrated in Fig. 4.

μ eAp(x) =

⎧⎨⎩
hp x−ap

mp−ap , ap < x ≤ mp

hp bp−x
bp−mp , mp < x ≤ bp

0, x ≤ ap or x > bp

(8)

μ eAp(x) =

⎧⎨⎩
h

p x−ap

mp−ap , ap < x ≤ mp

h
p bp−x

bp−mp , mp < x ≤ bp

0, x ≤ ap or x > bp

(9)

Some sufficient conditions which can ensure the convexity
of the single-input zeroth-order UIT2FLSs are studied below.

Theorem 4.1: Assume that the input domain U = (ul, ur)
is partitioned by M triangular IT2FSs Ã1, Ã2, . . . , ÃM as
shown in Fig. 5. Then, the UIT2FLS is convex with respect
to x, if the following conditions are satisfied:

1) mp < mq for q > p, 1 ≤ p ≤ M − 1 and 2 ≤ q ≤ M ;
2) a1 = m1 = ul, bM = mM = ur, mp = ap+1 and

bp = mp+1 for 1 ≤ p ≤ M − 1;
3) (mp+1 − mp)(hp−1wp−1 + h

p−1
wp−1) −(mp+1 −

mp−1)(hpwp + h
p
wp) +(mp − mp−1)(hp+1wp+1 +

h
p+1

wp+1) ≥ 0 for 2 ≤ p ≤ M − 1.
Proof: According to the first two conditions of Theorem 4.1,
we can derive that only two interval type-2 fuzzy sets are
fired at each point on the interval U as illustrated in Fig. 5.
Hence, substituting

μ eAp
(x) = hp(mp+1 − x)/(mp+1 −mp), (10)

μ eAp(x) = h
p
(mp+1 − x)/(mp+1 −mp), (11)

μ eAp+1(x) = hp+1(x−mp)/(mp+1 −mp), (12)

μ eAp+1(x) = h
p+1

(x−mp)/(mp+1 −mp), (13)

into (6), the final output can be rewritten as

Y (x) =
1

2(mp+1 −mp)
[(mp+1 − x)(hpwp + h

p
wp)

+ (x−mp)(hp+1wp+1 + h
p+1

wp+1)]. (14)

After simple computation, we can obtain

Y (x) = a(p)x + b(p), (15)

where

a(p) =
hp+1wp+1 + h

p+1
wp+1 − hpwp − h

p
wp

2(mp+1 −mp)
(16)

and

b(p) =
mp+1(hpwp + h

p
wp)−mp(hp+1wp+1 + h

p+1
wp+1)

2(mp+1 −mp)
.

Once the fuzzy system has been constructed, a(p) and
b(p) are constants. Since linear function is a kind of
convex function, each segment of Y (x) on open interval
(mp, mp+1) (p = 1, 2, . . . , M) is convex. But in the
neighborhood of the points mp (p = 2, 3, . . . , M − 1),
Y (x) may not be convex. In order to ensure that the fuzzy
system is convex on the input domain U , the relationship
between slope(AB) and slope(BC) must satisfy (17) [9], as
illustrated in Fig. 6.

slope(AB) ≤ slope(BC), (17)
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where slope(AB) and slope(BC) denote the slopes of the
straight-line segments. Moreover, from (15), we can infer
that slope(AB) = a(p− 1) and slope(BC) = a(p).

Based on (17), the following inequality can be derived

a(p− 1) ≤ a(p). (18)

Substituting (16) into (18), we have

(mp+1 −mp)(hp−1wp−1 + h
p−1

wp−1)

− (hpwp + h
p
wp)(mp+1 −mp−1)

+ (mp −mp−1)(hp+1wp+1 + h
p+1

wp+1) ≥ 0.

According to (17), every three adjacent vertices can consti-
tute a triangle which is a kind of convex polygons. Therefore,
the whole polygon is also convex if the third condition of
Theorem 4.1 holds.

B. Single-input first-order convex UIT2FLS

Consider an SISO UIT2FLS whose IF-THEN rules are the
same as the rules in Section II-A. The lower and upper mem-
bership functions of the fuzzy sets Ãps (p = 1, 2, . . . , M)
used in this part are depicted in (8) and (9), as illustrated in
Fig. 4. Then, we derive the following sufficient conditions
which can guarantee the convexity of the single-input first-
order UIT2FLSs.

Theorem 4.2: Assume that the input domain U = (ul, ur)
is partitioned by triangular IT2FSs Ã1, Ã2, . . . , ÃM as shown
in Fig. 5. Then, the UIT2FLS is convex with respect to x, if
the following conditions are satisfied:

1) mp < mq for q > p, 1 ≤ p ≤ M − 1 and 2 ≤ q ≤ M ;
2) a1 = m1 = ul, bM = mM = ur, mp = ap+1 and

bp = mp+1 for 1 ≤ p ≤ M − 1;
3) (h

p+1
+hp+1)cp+1

1 +(h
p+1−hp+1)sgn(x)sp+1

1 −(h
p
+

hp)cp
1 − (h

p − hp)sgn(x)sp
1 ≥ 0 for x ∈ (mp, mp+1);

4) (h
p+1

+hp+1)(mp−mp−1)(mpcp+1
1 +cp+1

0 ) +(h
p+1−

hp+1)(mp − mp−1)(|mp|sp+1
1 + sp+1

0 ) −(h
p

+
hp)(mp+1 −mp−1)(mpcp

1 + cp
0) −(h

p − hp)(mp+1 −
mp−1)(|mp|sp

1 + sp
0) +(h

p−1
+ hp−1)(mp+1 −

mp)(mpcp−1
1 + cp−1

0 ) +(h
p−1 − hp−1)(mp+1 −

mp)(|mp|sp−1
1 + sp−1

0 ) ≥ 0 for 2 ≤ p ≤ M − 1.

Proof: According to the first two conditions of Theorem 4.2,
we can derive that only two interval type-2 fuzzy sets are
fired at each point on the interval U as illustrated in Fig. 5.

Y m( )
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Y m( )
p

Y m( )
p+1

m
p

m
p-1

m
p+1

Fig. 7. Quadratic function in Sp−1 and Sp.

Hence, substituting (1), (2), (10), (11), (12) and (13) into (6),
the final output can be computed as

Y (x) =
1
2
(hp mp+1 − x

mp+1 −mp
(cp

1x + cp
0 − |x| sp

1 − sp
0)

+ h
p mp+1 − x

mp+1 −mp
(cp

1x + cp
0 + |x| sp

1 + sp
0)

+ hp+1 x−mp

mp+1 −mp
(cp+1

1 x + cp+1
0 − |x| sp+1

1 )

− sp+1
0 + h

p+1 x−mp

mp+1 −mp
(cp+1

1 x

+ cp+1
0 + |x| sp+1

1 + sp+1
0 )). (19)

We notice that |x| = sgn(x)x, where sgn(x) is sign
function. (19) can be rewritten as

Y (x) =
1
2
(hp mp+1 − x

mp+1 −mp
(cp

1x + cp
0 − xsgn(x)sp

1 − sp
0)

+ h
p mp+1 − x

mp+1 −mp
(cp

1x + cp
0 + xsgn(x)sp

1 + sp
0)

+ hp+1 x−mp

mp+1 −mp
(cp+1

1 x + cp+1
0 − xsgn(x)sp+1

1

− sp+1
0 ) + h

p+1 x−mp

mp+1 −mp
(cp+1

1 x + cp+1
0

+ xsgn(x)sp+1
1 + sp+1

0 )). (20)

Simplifying (20) and combining the similar terms, we get

Y (x) = â(p)x2 + b̂(p)x + ĉ(p), (21)

where

â(p) =
1

2(mp+1 −mp)
[(h

p+1
+ hp+1)cp+1

1 + (h
p+1 − hp+1)

× sgn(x)sp+1
1 − (h

p
+ hp)cp

1 − (h
p − hp)sgn(x)sp

1],

b̂(p) =
1

2(mp+1 −mp)
[(h

p+1
+ hp+1)cp+1

0 + (h
p+1 − hp+1)

× sp+1
0 − (h

p
+ hp)cp

0 − (h
p − hp)sp

0 + (h
p

+ hp)

×mp+1cp
1 + (h

p − hp)mp+1sgn(x)sp
1 − (h

p+1

+ hp+1)mpcp+1
1 − (h

p+1 − hp+1)mpsgn(x)sp+1
1 ],

ĉ(p) =
1

2(mp+1 −mp)
[(h

p
+ hp)mp+1cp

0 + (h
p − hp)mp+1sp

0

− (h
p+1

+ hp+1)mpcp+1
0 − (h

p+1 − hp+1)mpsp+1
0 ]

for x ∈ Sp.
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Once the fuzzy system has been constructed, â(p), b̂(p)
and ĉ(p) are constants. Y (x) can be a quadratic function with
respect to x when x ∈ Sp. Therefore, if mp+1 > mp and
â(p) ≥ 0, that is, the third condition of Theorem 4.2 holds,
then the segments are convex when x ∈ (mp, mp+1) (p =
1, 2, . . . , M − 1), as displayed in Fig. 7. But in the neigh-
borhood of the points mp (p = 2, 3, . . . , M − 1), the fuzzy
system output Y (x) may not be convex. In order to ensure
that Y (x) is convex on the input domain U , the following
inequality (22) should be satisfied [10]:

lim
x→mp−

dY (x)
dx

≤ lim
x→mp+

dY (x)
dx

, (22)

where dY (x)
dx = 2â(p)x + b̂(p)

∣∣
x=mp .

On the basis of (22), we have

2â(p− 1)mp + b̂(p− 1) ≤ 2â(p)mp + b̂(p). (23)

Substituting â(p−1), â(p), b̂(p−1) and b̂(p) into (23), we
can obtain

2
1

(mp −mp−1)
[(h

p
+ hp)cp

1 + (h
p − hp)sgn(mp)sp

1

− (h
p−1

+ hp−1)cp−1
1 − (h

p−1 − hp−1)sgn(mp)sp−1
1 ]mp

+
1

(mp −mp−1)
[(h

p
+ hp)cp

0 + (h
p − hp)sp

0

− (h
p−1

+ hp−1)cp−1
0 − (h

p−1 − hp−1)sp−1
0

+ (h
p−1

+ hp−1)mpcp−1
1 + (h

p−1 − hp−1)mpsgn(mp)sp−1
1

− (h
p

+ hp)mp−1cp
1 − (h

p − hp)mp−1sgn(mp)sp
1]

≤2
1

(mp+1 −mp)
[(h

p+1
+ hp+1)cp+1

1 + (h
p+1 − hp+1)

× sgn(mp)sp+1
1 − (h

p
+ hp)cp

1 − (h
p − hp)sgn(mp)sp

1]m
p

+
1

(mp+1 −mp)
[(h

p+1
+ hp+1)cp+1

0 + (h
p+1 − hp+1)sp+1

0

− (h
p

+ hp)cp
0 − (h

p − hp)sp
0 + (h

p
+ hp)mp+1cp

1

+ (h
p − hp)mp+1sgn(mp)sp

1 − (h
p+1

+ hp+1)mpcp+1
1

− (h
p+1 − hp+1)mpsgn(mp)sp+1

1 ]. (24)

Simplifying (24) and combining similar terms, we have

(h
p+1

+ hp+1)(mp −mp−1)(mpcp+1
1 + cp+1

0 )

+ (h
p+1 − hp+1)(mp −mp−1)(mpsgn(mp)sp+1

1 + sp+1
0 )

− (h
p

+ hp)(mp+1 −mp−1)(mpcp
1 + cp

0)

− (h
p − hp)(mp+1 −mp−1)(mpsgn(mp)sp

1 + sp
0)

+ (h
p−1

+ hp−1)(mp+1 −mp)(mpcp−1
1 + cp−1

0 )

+ (h
p−1 − hp−1)(mp+1 −mp)(mpsgn(mp)sp−1

1 + sp−1
0 ) ≥ 0.

Because the equation |mp| = sgn(mp)mp holds, we can
derive the fourth condition of Theorem 4.2.

In Theorem 4.2, the conditions 1)-3) ensure that the
segment between mp and mp+1 for 1 ≤ p ≤ M−1 is convex
and the condition 4) guarantees that the fuzzy system output
is convex in the neighborhood of mp (p = 1, 2, . . . , M).
Consequently, these constraints can make Theorem 4.2 hold.
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Fig. 8. Graph of the membership functions.
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Fig. 9. Graph of the output of the zeroth-order convex UIT2FLS.

C. Example of convex UIT2FLS

Consider the SISO zeroth-order UIT2FLS with four fuzzy
rules as follows.

Ri: IF x is Ãi, THEN Y i = Ci
0 (i = 1, 2, 3, 4),

where x ∈ U , U = [1, 4]. Based on (8) and (9), the
parameters of Ãi (i = 1, 2, 3, 4) are

a1 = 1, m1 = 1, b1 = 2,

a2 = 1, m2 = 2, b2 = 3,

a3 = 2, m3 = 3, b3 = 4,

a4 = 3, m4 = 4, b4 = 4,

h
i
= 0.8, hi = 0.55 (i = 1, 2, 3, 4).

The consequent interval weights of the THEN-part are
C1

0 = [0.6, 0.8], C2
0 = [0.3, 0.4], C3

0 = [0.4, 0.5] and
C4

0 = [0.5, 0.8]. All these parameters meet the conditions
of Theorem 4.1, therefore the output of the UIT2FLS should
be convex with respect to its input. The four membership
functions are depicted in Fig. 8, and the output of the zeroth-
order convex UIT2FLS is shown in Fig. 9. It is obvious that
the simulation result is consistent with Theorem 4.1.

In Theorem 4.2, since the inequalities that the parameters
of the single-input first-order UIT2FLS need to meet are
very complex, it is quite difficult to solve such inequalities
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and estimate these parameters. Therefore, we should find a
feasible ways to identify the parameters.

V. CONCLUSIONS

In this paper, how to encode the prior knowledge of mono-
tonicity and convexity into SISO UIT2FLSs has been studied.
The derived sufficient conditions ensure that the prior knowl-
edge can be incorporated. For the zeroth-order UIT2FLS, we
have provided two simulation examples to verify the validity
of Theorem 3.1 and Theorem 4.1. Simulation results have
demonstrated the correctness of the two theorems. But, it
is difficult to determine the parameters of SISO first-order
UIT2FLSs discussed in Theorem 4.2. What is more, we
have not discussed how to obtain UIT2FLSs’ parameters to
satisfy the conditions presented in the aforementioned three
theorems. Therefore, we plan to find systematic optimization
methods to identify these parameters to acquire satisfactory
performance in system identification problems.
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