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Abstract— An adaptive controller for a class of multiple-
input-multiple-output (MIMO) uncertain nonlinear systems
with extern disturbance and control input limitations is pre-
sented in this paper. The controller is designed with a priori
consideration of input limitation effects, hence it can generate
control signals satisfying input limitations. This controller
uses adaptive radial basis function (RBF) neural networks
to approximate the unknown nonlinearities. To compensate
the effects of input limitations, an auxiliary system is con-
structed and used in neural network parameter update laws.
Furthermore, in order to deal with approximation errors for
unknown nonlinearities and extern disturbances, a supervisory
control is designed, which guarantees that the closed loop
system achieves a desired level H∞ tracking performance.
The closed loop system performance is analyzed by Lyapunov
method. Steady state and transient tracking performance index
are established and can be adjusted by design parameters.
Computer simulations are presented to illustrate the efficiency
and tracking performance of the proposed controller.

Index Terms— Input Saturation, RBF Neural Network, Adap-
tive Control, Nonlinear System, H∞ Control Performance

I. INTRODUCTION

Every physical control system contains actuators with am-

plitude and rate limitations, such as the elevator of an aircraft

can only generate a limited force or torques in a limited rate.

Magnitude limitation or rate limitation of actuators is one of

the main sources of control system performance limitation.

In controller design, actuator dynamics should be considered.

The controllers that ignore actuator limitations may cause

the closed loop system performance to degenerate or even

make the closed system unstable, and decrease the lifetime

of the actuators, or damage the actuators. Hence how to

incorporate the actuator dynamics in controller design is a

research subject both having practical interest and theoretical

significance.

The design of stabilizing controllers with a priori consid-

eration of the actuator saturation effect for nonlinear sys-

tems with unknown nonlinearities and external disturbance

is a challenging problem. For uncertain nonlinear single-

input-single-output (SISO) systems with input saturation,

Zhou [1, Chapter 11] proposed an adaptive backstepping

controller which took the input saturation into controller

design. An auxiliary system was constructed to compensate
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the effect of saturation. J. Farrell et.al presented adaptive

backstepping approach [2] and online approximation based

adaptive backstepping approach [3–6] for unknown nonlinear

systems with known magnitude, rate, bandwidth constraints

on intermediate states or actuators without disturbance.

Those approaches also used constructed auxiliary systems

for generating a modified tracking error to guarantee stability

during saturation.

In this paper, we will address the problem of controlling

a class of multiple-input-multiple-output (MIMO) uncertain

nonlinear systems in the presence of disturbances and control

input limitations. In the controller design process, adaptive

RBF neural networks are used to approximate unknown

nonlinearities. In order to deal with actuator limitations,

an auxiliary system is constructed and used in parameter

update laws of the RBF neural network to compensate

the effects of input limitations. A supervisory control is

designed to attenuate the effects of approximation errors

and external disturbance. The performance of the closed

loop system is obtained through Lyapunov analysis. Explicit

bounds on the performance of the tracking error in terms of

design parameters are given. Hence, the bounds of tracking

errors can be adjusted by tuning the design parameters. The

proposed controller can generate control signals satisfying

actuator magnitude and rate limitations, and guarantee a H∞

tracking performances of the closed loop system.

The rest of this paper is organized as follows. In Section

II, the problem statement is presented. In Section III, the

adaptive control scheme is discussed, and the performance

is analyzed. A numerical example is shown in Section IV.

Section V concludes the paper. Throughout this paper, | · |
indicates the absolute value, ‖ · ‖ indicates the Euclidean

vector norm, and ‖ · ‖2 indicates the L2 norm.

II. PROBLEM FORMULATION

Consider the following MIMO fully-actuated affine non-
linear system

ẋ =f(x) +

m∑
i=1

gi(x)ui + d

yj =hj(x) j = 1, · · · ,m
(1)

where x ∈ R
n is the state, f(x),gi(x)(i = 1, · · · ,m) are

unknown but smooth vector fields, y = (y1, · · · , ym)T ∈
R

m is the system output, h1(x), · · · , hm(x) are continuous
functions, d = (d1, · · · , dn)T is extern disturbance. di is
unknown but bounded. ui, i = 1, · · · ,m are inputs, which
satisfy the following constraints

|ui| ≤ uimax, |u̇i| ≤ vimax (2)

where uimax, vimax are positive constants.
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The control objective is to find control laws which satisfy

magnitude and rate constraints that make yi follow a given

bounded reference signal yid with a H∞ tracking perfor-

mance in the presence of extern disturbance.

We make the following assumptions on System (1):

Assumption 1: All the states of this system are observable,

and the output signals and references signals are continuous

differentiable.

Assumption 2: System (1) has a (vector) relative degree

{r1, · · · , rm}(∑m
i=1 ri = n) at its state space.

Assumption 3: LdL
σi

f hi(x) = 0(i = 1, · · · ,m) for any

σi < ri − 1, where Lfhi represents the Lie derivative of

hi along vector field f(x), and Lk
f hi is defined recursively

as Lk
f hi

def
= Lf (L

k−1
f hi). σi is called the disturbance

characteristic index [7] of yi.
According to Assumption 2, there exist r functions

φi1 = hi(x), φi2(x) = Lfhi(x), · · · , φiri(x) =
Lri−1
f hi(x) such that under the coordinate transforma-

tion (z11, · · · , z1r1 , · · · , zm1, · · · , zmrm)T = Φ(x) =
(φ11, · · · , φ1r1 , · · · , φm1, · · · , φmrm)T , System (1) can be
transformed into the following form

żi1 = zi2, · · · , żi,ri−1 = ziri

żiri = bi(z) +
m∑

j=1

aij(z)uj + ci(z)

yi =zi1 i = 1, · · · ,m

(3)

where z = (zT1 , · · · , zTm)T , zi = (zi1, · · · , ziri)T , i =
1, · · · ,m, aij(z) = LgjL

ri−1
f hi(Φ

−1(z)), bi(z) =
Lri
f hi(Φ

−1(z)), ci(z) = LdL
ri−1
f hi(Φ

−1(z)).
System (3) characterizes the norm form [8] of System

(1) with a (vector) relative degree {r1, · · · , rm}, and has
a general form as follows

ẋi1 = xi2, · · · , ẋi,ri−1 = xiri

ẋiri = fi(x) +
m∑

j=1

gij(x)uj + di

yi = xi1 i = 1, · · · ,m

(4)

where x = (x11, · · · , x1r1 , x21, · · · , x2r2 , · · · , xm1, · · · ,
xmrm)T ∈ R

∑m
i=1 ri ; fi(x)(i = 1, · · · ,m), gij(i, j = 1, · · · ,

m) are smooth functions; di still represents bounded extern
disturbance, ui(i = 1, · · · ,m) are control inputs satisfying
the constraints (2). System (4) also can be rewritten in the
following compact form

Y(r) = F(x) +G(x)u+ d (5)

where

F (x) =

⎡
⎢⎣

f1 (x)
.
.
.

fm (x)

⎤
⎥⎦ ,u =

⎡
⎢⎣

u1

.

.

.
um

⎤
⎥⎦ ,d (x) =

⎡
⎢⎣

d1
.
.
.

dm

⎤
⎥⎦

G (x) =

⎡
⎢⎣

g11 (x) · · · g1m (x)
.
.
.

. . .
.
.
.

gm1 (x) · · · gmm (x)

⎤
⎥⎦ ,Y(r) =

⎡
⎢⎢⎣

y
(r1)
1
.
.
.

y
(rm)
m

⎤
⎥⎥⎦

In the following, the controller design for System (5) will

be considered.

III. CONTROLLER DESIGN

To begin, define τ1, · · · , τm as follows

τi = y
(ri)
1d +

ri∑
j=1

λije
(j−1)
i i = 1, · · · ,m (6)

where yid, i = 1, · · · ,m are the reference signals, ei = yid−
yi(i = 1, · · · ,m) are the tracking errors, λi1, · · · , λiri are
parameters to be chosen such that the roots of the equation
sri + λiris

ri−1 + · · ·+ λi2s+ λi1 = 0 in the open left-half
complex plane. Let τ = (τ1, · · · , τm)T . If F(x) and G(x)
are known and the constrains on control inputs are ignored,
then based on dynamic inversion algorithm, the control law

uc′ = G#(x)(−F(x) + τ + ud) (7)

can be applied to System (5) to achieve the following error
dynamic system⎡

⎢⎢⎢⎣
e
(r1)
1 +

∑r1
j=1 λ1je

(j−1)
1

.

.

.

e
(rm)
m +

∑rm
j=1 λmje

(j−1)
m

⎤
⎥⎥⎥⎦ = −ud − d (8)

where G#(x) represents the generalized inversion [9] of

G(x), ud ∈ R
m is a supervisor control used to attenuate

the extern disturbance d and will be decided later.
Because F(x) and G(x) are unknown vector and matrix

respectively, the above control law (7) can not be imple-
mented. Besides, there is no guarantee that uc′ satisfies the
constraints (2). Neural networks [10], [11] or fuzzy logic
systems [12–15] can be used as universal approximators
to approximate any continuous functions at any arbitrary
accuracy as long as the network is big enough or the fuzzy
rules are sufficient. In this work, in order to treat this tracking
control design problem, radial basis-function (RBF) neural
networks are used to approximate the unknown functions,
that is, fi(x), i = 1, · · · ,m, and gij(x), i, j = 1, · · · ,m are
approximated as follows:

fi(x) ≈ f̂i(x|Θfi ) = ΘT
fi
Φfi (x) i = 1, · · · ,m (9)

gij(x) ≈ ĝij(x|Θgij ) = ΘT
gij

Φgij (x) i, j = 1, · · · ,m (10)

where Θfi ∈ R
Mfi ,Θgij ∈ R

Mgij are weight vectors, and

Φfi(x) ∈ R
Mfi (x),Φgij (x) ∈ R

Mgij (x) are radial bases,

Mfi ,Mgij are the corresponding dimensions of the bases.

Denote

F̂(x|ΘF) =

⎡
⎢⎢⎣

f̂1(x)
.
.
.

f̂m(x)

⎤
⎥⎥⎦ Ĝ(x|ΘG) =

⎡
⎢⎣

ĝ11(x) · · · ĝ1m(x)
.
.
.

. . .
.
.
.

ĝm1(x) · · · ĝmm(x)

⎤
⎥⎦

(11)

In the control law design, F̂(x|ΘF) will be used as an

estimation of F(x), and Ĝ(x|ΘG) will be used as an

estimation of G(x).
Using the approximation (11) and considering the con-

straints imposed on the control inputs, we modify the control
law (7) as follows:

uc = Ĝ# (x|ΘG)
(
−F̂ (x|ΘF) + τ + ξ + ud

)
(12)

u = sat(uc) (13)

where sat(uc) represents the magnitude and rate limitations
on uc and

ξ =

⎡
⎢⎢⎣

−ξ
(r1)
11 −∑r1

i=1 λ1iξ
(i−1)
11 − ξ̇1r1 − c1r1ξ1r1

.

.

.

−ξ
(rm)
m1 −∑rm

i=1 λmiξ
(i−1)
m1 − ξ̇mrm − cmrmξmrm

⎤
⎥⎥⎦ (14)
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Fig. 1. Schematic for magnitude and rate limitations

ξ11, · · · , ξ1r1 , ξ21, · · · , ξ2r2 , · · · , ξm1, · · · , ξmrm are the
states of the following constructed auxiliary system (15)
which uses the difference of uc before and after magnitude
and rate limitations as input.

ξ̇i1 = ξi2 − ci1ξi1, · · · , ξ̇i,ri−1 = ξiri − ci,ri−1ξi,ri−1

ξ̇iri = −ciriξiri +
m∑

j=1

ĝij(x)(uj − ucj) i = 1, · · · ,m (15)

ucj is the jth element of uc, and uj is the jth element

of u. cij(i = 1, · · · ,m, j = 1, · · · , ri) are positive design

parameters. ξ is used to compensate the effect of actuator

saturation.
uc is obtained from (7) according to certainty equivalence

principle [16] which is widely used in adaptive control
schemes. uc also may not satisfy the constraints (2), hence
magnitude and rate limitations are imposed to generate signal
u which satisfies the constraints (2). u will be applied to
System (5) as the control input. The difference of uc before
and after magnitude and rate limitations are used to generate
the signal ξ which will be used in parameters update laws.
The magnitude and rate limitations on uc, i.e., sat(uc),
can always be implemented by assuming a first-order model
for the dynamics of each component of uc, for example,
u̇i = satR(ωi(satM (uci) − ui)), where ωi is a positive
constant, satR(·), satM (·) represent the rate and magnitude
functions respectively. The function

satR(x) =

⎧⎨
⎩

R if x ≥ R
x if |x| < R

−R if x ≤ −R
(16)

and satM (x) is defined similarly. Fig. 1 gives a visual

description for this example.
In the following, we will specify the RBF parameter

update laws for Θfi(i = 1, · · · ,m),Θgij (i, j = 1, · · · ,m)
and supervisor control ud, so that desired tracking perfor-
mance can be achieved. Applying the control law (12)-(13)
to System (5) yields

τ −Y(r) + ξ1 =F̂(x|ΘF)− F(x) +
(
Ĝ(x|ΘG)−G(x)

)
u− ud − d

(17)

where ξ1 = (−ξ
(r1)
11 − ∑r1

i=1 λ1iξ
(i−1)
11 , · · · ,−ξ

(rm)
m1 −∑rm

i=1 λmiξ
(i−1)
m1 )T .

Define the optimal approximation weight vectors for
fi(i = 1, · · · ,m), gij(i, j = 1, · · · ,m) as follows

Θ∗
fi

= arg min
Θfi

∈ΩF

[
sup

x∈Uc

|fi (x)− f̂i
(
x|Θfi

) |
]

(18)

Θ∗
gij

= arg min
Θgij

∈ΩG

[
sup

x∈Uc

|gij (x)− ĝij
(
x|Θgij

) |
]

(19)

where ΩF,ΩG,Uc denote the sets of suitable bounds
on Θfi ,Θgij , and x respectively. Θ∗

fi
(i = 1, · · · ,

m),Θ∗
gij (i, j = 1, · · · ,m) are constant vectors. The op-

timal approximations for F(x) and G(x) are denoted as

F̂(x|Θ∗
F), Ĝ(x|Θ∗

G) respectively. Define the minimum ap-
proximation error as

w
def
= F̂ (x|Θ∗

F)− F (x) +
[
Ĝ (x|Θ∗

G)−G (x)
]
u

According to neural network theory, the following as-

sumption is reasonable:

Assumption 4: The minimum approximation error is

square integrable, i.e.,
∫ T

0
wTwdt < ∞

Define the modified tracking error as

ēi
def
= yid − yi − ξi1, i = 1, · · · ,m (20)

Using the definition (20) and the optimal approximation for
F(x), G(x), (17) can be rewritten as

ē
(ri)
i +

ri∑
k=1

λik ē
(k−1)
i = f̂i

(
x|Θfi

)− f̂i

(
x|Θ∗

fi

)
− udi−di

+
m∑

j=1

(
ĝij

(
x|Θgij

)− ĝij

(
x|Θ∗

gij

))
uj + wi i = 1, · · · ,m

(21)

where udi , di, wi are the ith element of ud,d, and w, respec-

tively. Defining ēi = [ēi, · · · , ē(ri−1)
i ]T , Θ̃fi = Θ̂fi −Θ∗

fi
,

Θ̃gij = Θ̂gij − Θ∗
gij , then equations (21) can be rewritten

in the following form:

˙̄ei =Aiēi +Bi

(
Θ̃T

fi
Φfi (x)

+

m∑
j=1

(
Θ̃T

gij
Φgij (x)

)
uj − udi − di + wi

)
i = 1, · · · ,m

(22)

where

Ai =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 · · · 1
−λi1 −λi2 −λi3 · · · −λiri

⎤
⎥⎥⎥⎥⎥⎦,Bi =

⎡
⎢⎢⎢⎢⎢⎣

0
0
.
.
.
0
1

⎤
⎥⎥⎥⎥⎥⎦ (23)

Finally, for the nonlinear system (5), the following theorem

can be obtained
Theorem 1: If we select the control law (13), adopt the

following parameters update laws and udi

˙̂
Θfi =− ΓfiΦfi (x)B

T
i Piēi, i = 1, · · · ,m (24)

˙̂
Θgij =− ΓgijΦgij (x)B

T
i Piēiuj , i, j = 1, · · · ,m (25)

udi =
1

2ρ2i
ēTi PiBi, i = 1, · · · ,m (26)

then the following H∞ tracking performance can be ob-
tained:∫ T

0
ēTQēdt ≤ ēT (0)Pē(0) +

m∑
i=1

Θ̃T
fi
(0)Γ−1

fi
Θ̃fi (0)

+

m∑
i=1

ρ2i

∫ T

0
�2i dt+

m∑
i,j=1

Θ̃T
gij

(0)Γ−1
gij

Θ̃gij (0)

(27)

where Γfi(i = 1, · · · ,m),Γgij (i, j = 1, · · · ,m) are positive
definite diagonal matrices to be designed, ρi(i = 1, · · · ,m)
are positive constant to be designed, ē = [ēT1 , · · · , ēTm]T ,

	i
def
= −di + wi, Q = diag(Q1, · · · ,Qm) and Qi ∈

R
m×m(i = 1, · · · ,m) are arbitrary symmetric positive

definite matrices, P = diag(P1, · · · ,Pm) and Pi(i =
1, · · · ,m) are the symmetric positive definite solution of the
following Lyapunov equations

PiAi +AT
i Pi = −Qi (28)

3538



Proof: Define the Lyapunov function Vi for the ith sub-
system.

Vi =
1

2
ēTi Piēi +

1

2
Θ̃T

fi
Γ−1
fi

Θ̃fi +
1

2

m∑
j=1

Θ̃T
gij

Γ−1
gij

Θ̃gij (29)

The time derivative of Vi is

V̇i =
1

2

(
ēTi AT

i Piēi + ēTi PiAiēi

)
+ Θ̃T

fi
ΦF(x)B

T
i Piēi

+
m∑
i=1

Θ̃T
gij

ΦG(x)BT
i Piēiuj+

+
1

2
(−udi + �i)(B

T
i Piēi + ēTi PiBi)

+ Θ̃T
fi
Γ−1
fi

˙̃Θfi +
m∑

j=1

Θ̃T
gij

Γ−1
gij

˙̃Θgij

≤− 1

2
ēTi Qēi +

1

2
�i(B

T
i Piēi + ēTi PiBi)

− 1

2ρ2
ēTi PiBiB

T
i Piēi

≤− 1

2
ēTi Qēi +

1

2
ρ2i �

2
i

(30)

The following inequality can be obtained from (30)

1

2
ēTi Qēi ≤ −V̇i +

1

2
ρ2i �

2
i (31)

Integrating both sides of the above inequality yields

1

2

∫ T

0
ēTi Qēidt ≤Vi(0) +

ρ2i
2

∫ T

0
�2i dt (32)

Giving Lyapunov function V =
∑m

i=1 Vi and according to

the definition of Vi, (27) is obtained. This completes the

proof. �
Corollary 1: For the ith subsystem of (22), it is assumed

that
∫ T

0
d2i dt < ∞. If the control law (13) and the param-

eter update laws (24)-(25) are adopted, then the following

statements hold:

i) the closed loop system is stable and the modified steady

tracking error satisfies limt→∞ ēi = 0, i.e., limt→∞ |yid(t)−
yi(t)− ξi1(t)| = 0

ii) A bound of the transient tracking error will be given
by

‖ei‖22 ≤
ēTi (0)Piēi(0) + Θ̃T

fi
(0)Γ−1

fi
Θ̃fi (0) + ρ2i

∫ T
0 �2i dt

λmin(Qi)

+

∑m
j=1 Θ̃

T
gij

(0)Γ−1
gij Θ̃gij (0)

λmin(Qi)
+

1

2κi
‖

m∑
j=1

ĝij(x)Δuj‖22
(33)

where κi is a positive constant to be defined later.
Proof: From (30), it can be obtained that V̇i ≤

− 1
2λmin(Qi)‖ēi‖2+ 1

2ρ
2
i 	

2
i , where λmin(Qi) represents the

minimum eigenvalue of matrix Qi. V̇i is negative whenever

‖ēi‖ ≥ ρi|�i|√
λmin(Qi)

. Hence the modified tracking error (20)

will stay in the region ‖ēi‖ ≤ ρi|�i|√
λmin(Qi)

. Obviously ē2i ≤
‖ēi‖2 ≤ −2V̇i+ρ2

i�
2
i

λmin(Qi)
, hence

∫ T

0
ē2i dt ≤

2Vi(0) + ρ2i
∫ T
0 �2i dt

λmin(Qi)
(34)

Assumption 4 implies
∫ T

0
w2

i dt < ∞, then
∫ T

0
	2i dt =∫ T

0
(wi − di)

2dt < ∞. (34) means ēi ∈ L2. According to

Barbalat lemma, limt→∞ ēi = 0. This proves the statement

i).

For the proof of the statement ii), let ξi
def
=

(ξi1, · · · , ξiri)T , and Δuj = uj − ucj . Defining Vξi =
1
2ξ

T
i ξi, then we have

V̇ξi =

ri−1∑
j=1

ξij(ξi,j+1 − cijξij)− ciriξ
2
iri

+ ξiri

m∑
j=1

ĝij(x)Δuj

≤−
ri−1∑
j=1

c̄ijξ
2
ij + (1− ciri )ξ

2
iri

+

(∑m
j=1 ĝij(x)Δuj

)2

2

≤− κi

ri∑
j=1

ξ2ij +

(∑m
j=1 ĝij(x)Δuj

)2

2

(35)

where c̄i1 = ci1 − 1
2 , c̄ij = cij − 1(j = 2, · · · , ri − 1), κi =

min{c̄ij(j = 1, · · · , ri − 1), ciri − 1}. Parameters cij(j =
1, · · · , ri) are chosen to make κi > 0.

Integrating both side of the inequality (35) yields

‖ξi‖22 =

∫ ∞

0
ξi

T (t)ξi(t)dt ≤
(Vξi (0)− Vξi (∞))

κi

+
1

2κi
‖

m∑
j=1

ĝij(x)Δuj‖22
(36)

Setting ξi(0) = 0, then Vξi(0) = 0, and

‖ξi‖2 ≤ 1√
2κi

‖
m∑

j=1

ĝij(x)Δuj‖2 (37)

It is straightforward that

‖ei‖22 = ‖yid(t)− yi(t)‖22 ≤ ‖yid(t)− yi(t)− ξi1(t)‖22 + ‖ξi(t)‖22
(38)

Substituting (34) and (37) into (38) yields

‖ei‖22 ≤ 2Vi(0)

λmin(Qi)
+

ρ2i
λmin(Qi)

∫ ∞

0
�2i (t)dt+

1

2κi
‖

m∑
j=1

ĝij(x)Δuj‖22
(39)

According to the definition of Vi, (33) is obtained. The

statement ii) holds. �
Remark 1: According to Theorem 1, the ith subsystem

achieves a H∞ tracking performance with a prescribed

disturbance attenuation level ρi, i.e., the L2 gain from wi

to the extended tracking error ēi must be equal or less than

ρi.
Remark 2: Because design parameters are chosen to make

Ai a Hurwitz stable matrix, there exists unique symmetric

positive definite matrix Pi satisfying Lyapunov equation

(28).

Remark 3: If the reference signals yid, i = 1, · · · ,m,

are chosen small, then there may be no actuator sat-

uration on the signal uc obtained by certainty equiva-
lence principle, i.e. Δu = u − uc = 0, and the ob-

tained controller becomes an approximate nonlinear dy-

namic inversion controller. In this situation, ξi1 = 0.

limt→∞ |yid(t)−yi(t)−ξi1(t)| = limt→∞ |yid(t)−yi(t)| =
0, that means every output will track their reference sig-

nal asymptotically. If Δu �= 0 but ‖Δu‖ → 0 as

t → ∞, then limt→∞ V̇ξi ≤ limt→∞
( − κi

∑ri
j=1 ξ

2
ij +
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Fig. 2. The overall structure of adaptive H∞ tracking control scheme

(
∑m

j=1 ĝij(x)Δuj)
2

2

)
= limt→∞ −κi

∑ri
j=1 ξ

2
ij ≤ 0. Therefore

ξi1 → 0 as t → ∞, and limt→∞ |yid(t) − yi(t) − ξi1(t)| =
limt→∞ |yid(t) − yi(t)| = 0. This implies that if the signal

uc has no saturation or uc is not saturated as t → ∞, then

the desired H∞ tracking performance is ensured.

Remark 4: The bound for ‖yid(t) − yi(t)‖2 is an ex-

plicit function of the design parameters. According to the

statement ii), this bound depends on the initial estimate

errors Θ̂fi(0), Θ̂gij (0)(j = 1, · · · ,m). The effects of initial

estimate errors on this bound can be decreased by increas-

ing the values of the diagonal adaptation gain matrices

Γfi ,Γgij (j = 1, · · · ,m) and by choosing positive definite

symmetric matrix Qi with larger minimum eigenvalue. On

the other hand, the effects of extern disturbances and Δu on

the transient performance can be reduced by decreasing ρi
and increasing κi.

Remark 5: Parameters λij , i = 1, · · · ,m, j = 1, · · · , ri
should be selected such that Ai(i = 1, · · · ,m) are Hurwitz

stable. Parameters cij , i = 1, · · · ,m, j = 1, · · · , ri should

be selected such that κi > 0(i = 1, · · · ,m).
Based on the previous analysis, the design procedure for

the adaptive H∞ tracking control scheme in Fig.2 is given

as follows:

Step 1: Select the radial bases Φfi(x)(i = 1, · · · ,m),
Φgij (x)(i, j = 1, · · · ,m).

Step 2: Select the parameters λij(j = 1, · · · , ri, i =
1, · · · ,m), cij(j = 1, · · · , ri, i = 1, · · · ,m), and ρi(i =
1, · · · ,m). Select the parameter update gain matrices

Γfi(i = 1, · · · ,m),Γgij (i, j = 1, · · · ,m).
Step 3: Set ξij(0) = 0, and construct the auxiliary system

(15).

Step 4: Select Qi(i = 1, · · · ,m) and solve Lyapunov

equations (28) to get Pi.

Step 5: Obtain the control law (12)-(13) and the parameter

update laws (24) and (25).

Remark 6: Although the true value of G(x) may be in-

vertible, the estimate matrix Ĝ(x|ΘG) may become singular

during the adaptive process, so Moore-Penrose generalized

matrix inverse [9] of Ĝ(x|ΘG) is used in Step 5.

IV. NUMERICAL EXAMPLE

In this section, we apply the controller to control a
nonlinear system with input magnitude and rate limitations.
The dynamic model of this nonlinear system is as follows

ẋ1 = −(x1 + x2
2) + 10u1 + sin2(x2)u2 + 0.2d1(t)

ẋ2 = −x2
1 + x2

1u1 + u2 + 0.2d2(t)

y1 = x1 y2 = x2

(40)

where u1, u2 are control inputs and have the limitations

|ui| ≤ 5, |u̇i| ≤ 10, i = 1, 2, and d1(t), d2(t) are uniformly

distributed random noise in [0, 1]. x1(0) = 1, x2(0) = 0. The

reference trajectories y1d = sin(t), y2d = cos(t) are used in

this computer simulation.
Obviously, the relative degree of the plant (40) is r1 =

r2 = 1. Rewrite the plant (40) as[
ẏ1
ẏ2

]
=

[
f1
f2

]
+

[
g11 g12
g21 g22

] [
u1

u2

]
+ 0.2

[
d1
d2

]

where f1 = −(x1 + x2
2), f2 = −x2

1, g11 = 10, g12 =
sin2(x2), g21 = x2

1, g22 = 1.

According to the design procedure, the H∞ tracking

design is given as follows
Step 1: We choose a 11-dimensional Gauss radial base for

approximating f1, i.e.,

Φf1 (x) =

[
exp

(
−‖x− c1‖2

b21

)
, · · · , exp

(
−‖x− c11‖2

b211

)]T

where x = (x1, x2)
T , ci(i = 1, · · · , 11) are the center of

the radial base, and are chosen as c1 = [−2,−2]T , c2 =
[−1.6,−1.6]T , c3 = [−1.2,−1.2]T , c4 = [−0.8,−0.8]T ,

c5 = [−0.4,−0.4]T , c6 = [0, 0]T , c7 = [0.4, 0.4]T ,

c8 = [0.8, 0.8]T , c9 = [1.2, 1.2]T , c10 = [1.6, 1.6]T ,

c11 = [2, 2]T , bi = 1, i = 1, · · · , 11. The radial bases for

f2, g11, g12, g21, g22 are chosen the same as f1.

Step 2: Select the coefficients λ11 = 5, λ21 = 5. Now

A1 = [−5]1×1, A2 = [−5]1×1, B1 = B2 = [1]1×1.

Select the coefficients c11 = 5, c21 = 5. Choose ρ1 =
ρ2 = 0.5 and the parameter update gain matrices Γf1 =
Γf2 = diag(10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10), Γg11 =
Γg12 = Γg21 = Γg22 = diag(5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5)

Step 3: Set ξ11(0) = 0, ξ21(0) = 0, and construct
following auxiliary system

ξ̇11 = −c11ξ11 + ĝ11(u1 − uc1) + ĝ12(u2 − uc2)

ξ̇21 = −c21ξ21 + ĝ21(u1 − uc1) + ĝ22(u2 − uc2)

Step 4: Select Q1 = [10]1×1 and Q2 = [10]1×1. Solving

Lyapunov equation (28), we obtain P1 = P2 = [1]1×1.
Step 5: Set the parameters update laws as

˙̂
Θf1 = −Γf1Φf1 (x)B

T
1 P1ē1,

˙̂
Θf2 = −Γf2Φf2 (x)B

T
2 P2ē2,

˙̂
Θg11 = −Γg11Φg11 (x)B

T
1 P1ē1u1,

˙̂
Θg12 = −Γg12Φg12 (x)B

T
1 P1ē1u2,

˙̂
Θg21 = −Γg21Φg21 (x)B

T
2 P2ē2u1,

˙̂
Θg22 = −Γg22Φg22 (x)B

T
2 P2ē2u2

The supervisory control are chosen as ud1 = 1
2ρ2

1
ēT1 P1B1,

ud2 = 1
2ρ2

2
ēT2 P2B2. The initial values for Θfi(0)(i = 1, 2)

and Θgij (0)(i, j = 1, 2) are chosen as uniformly distributed

pseudorandom numbers in interval [0, 1].
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According to (12), uc1 and uc2 will be obtained. u1, u2

will be calculated as u̇1 = sat10(20.5sat5(uc1)− u1), u̇2 =
sat10(20.5sat5(uc2)− u2).

Simulation results are presented in Fig. 3 to Fig. 8.

Fig. 3 shows the curves of output y1(t) and its reference

trajectory. Fig. 4 shows the curves of output y2(t) and its

reference trajectory. Curves in Fig. 5 describe the tracking

errors. These simulation curves indicate that the outputs

track their reference values well, and the effects of ap-

proximation error and extern disturbance on tracking errors

are effectively attenuated. The control signals u1(t), u2(t)
and their derivatives u̇1(t), u̇2(t) are given in Fig. 6. It is

observed that the control signals u1(t) and u2(t) satisfy

their limitations. Fig. 7 shows the signals uc1(t), uc2(t)
obtained by certainty equivalence principle. Obviously they

do not satisfy the control input limitations. Fig. 8 shows

the signals Δu1(t),Δu2(t). These curves in Fig. 8 tell

us that Δu1(t),Δu2(t) tend to zero soon as time goes.

Hence yi(t), i = 1, 2 asymptotically tend to yid(t), i = 1, 2.

These results indicate that the proposed adaptive controller

is effective.

V. CONCLUSIONS

In this work, an adaptive controller based on adaptive

radial basis neural network is proposed for a class of

nonlinear MIMO systems with control input magnitude and

rate limitations to achieve the desired disturbance attenuation

in the presence of extern disturbance. An auxiliary system

is constructed to compensate the effects of actuator mag-

nitude and rate limitations. Supervisory controls are used to

attenuate the effects of extern disturbance and approximation

so as to achieve a desired level disturbance attenuation

tracking performance. The closed loop tracking performance

is analyzed. The bound of tracking error is given in terms

of design parameters. The proposed controller can generate

control signals satisfying their constraints and guarantee a

desired closed loop performance. Simulation results illustrate

the effectiveness of the proposed controller.
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