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Abstract— A robust feedback linearization controller is pre-
sented for attitude control of an Unmanned Aerial Vehicle
(UAV). The objective of this controller is to make the roll
angle, pitch angle, and yaw angle track the given trajecto-
ries(commands) respectively. This design is developed using
dynamic inversion and extended state observer (ESO). Firstly,
dynamic inversion is used to linearize and decouple UAV attitude
system into three single-input-single-output (SISO) systems,
then three proportional-derivative (PD) controllers are designed
for these linearized systems. Extended state observers are
used to estimate and compensate unmodeled dynamics and
extern disturbances. Simulation results show that the proposed
controller is effective and robust.

Keywords— attitude control; dynamic inversion; extended state
observer; robustness.

I. INTRODUCTION

Attitude tracking is the purpose of UAV’s inner loop

control which determines the handling qualities of UAV.

The major problem in the design of attitude control system

comes from high nonlinearity and undesired strong coupling

between axes of UAV. With traditional methods it is difficult

to design high-precision attitude controller. Because of UAV’s

nonlinearity, using nonlinear method can better meet the

nature of the problem. Feedback linearization is a very

important nonlinear control method. The main idea of feed-

back linearization is to cancel system’s nonlinearity directly

using nonlinear state feedback transformation or coordinate

transformation. Dynamic inversion is one of the widely used

feedback linearization methods in engineering fields and has

been applied successfully in flight control [1], [2]. However,

to perform exact linearization, the precise system model is

needed for dynamic inversion, and this requirement usually

can not be satisfied because of the existence of unmodeled

dynamics and extern disturbances. Some robust control meth-

ods combined with dynamic inversion have been proposed in

order to improve robustness in flight control, such as neural

network [3–5], loop shaping [7], fuzzy control [6], and other

adaptive control methods. The main idea of most of these

methods is to estimate the uncertain factors and eliminate

them. Extended state observer (ESO) [8–10] can be used

to estimate uncertainties and disturbances, which is the key

part of active disturbance rejection controller (ADRC) [8–

10]. ESO takes the disturbances that can affect the system

outputs as a new state variable, and uses a special feedback

mechanism to establish the extended state. This observer

doesn’t depend on the mathematical model of disturbances.
In this work, we use the well-known dynamic inversion

combined with extended state observer to establish an attitude

controller for UAV. Simulation results are presented to show

good performance and robustness of this controller.

II. UAV DYNAMIC MODEL DESCRIPTION

The dynamic model of an unmanned aerial vehicle is as

follows [11]

φ̇ = p + tan θ(q sin φ + r cos φ) θ̇ = q cos φ − r sin φ

ψ̇ = q sin φ+r cos φ
cos θ

ṗ = (c1r + c2p)q + c3L + c4N
q̇ = c5pr − c6(p2 − r2) + c7M ṙ = (c8p − c2r)q + c4L + c9N

where c1 = (Iy−Iz)Iz−I2
xz

Σ , c2 = (Ix−Iy+Iz)Ixz

Σ , c3 = Iz

Σ ,
c4 = Ixz

Σ , c5 = Iz−Ix

Iy
, c6 = Ixz

Iy
, c7 = 1

Iy
, c8 =

Ix(Ix−Iy)+I2
xz

Σ , c9 = Ix

Σ , Σ = IxIz − I2
xz . φ, θ, ψ are roll,

pitch, yaw angles respectively. p, q, r are body-axis roll, pitch,

yaw rates respectively. L, M, N are total roll, pitch, yaw

moments produced by aerodynamic control surface or thrust

respectively. Ix, Iy, Iz are roll, pitch, yaw moments of inertia

respectively. Ixy, Ixz, Iyz are product moments of inertia.
Because of the undesired strong coupling between axes of

UAV and the existence of unmodeled dynamics and extern

disturbances, a robust attitude controller is needed to make

the UAV’s attitude track the given commands quickly and

steady.

III. DYNAMIC INVERSION AND EXTENDED STATE

OBSERVER

A. Dynamic Inversion
Consider the multivariable affine nonlinear system with

state vector x ∈ R
n, input vector u ∈ R

m, and output vector

y ∈ R
m described by following equations

ẋ = f(x) +
m∑

i=1

gi(x)ui � f(x) + G(x)u (1)

y = h(x) (2)

where f, g1, · · · , gm are smooth vector fields in an open set

of R
n, G(x) = (g1(x), · · · , gm(x)) is a n × m matrix,

h(x) = col(h1(x), · · · , hm(x)) is a smooth m-vector.
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Let Lfhi stand for Lee derivative of hi along the vector

field f and Lk
fhi stand for taking k times iteration Lee

derivative of hi along the vector field f . Considering the i-th
output of the above affine nonlinear system, differentiating

with respect to time, we get ẏi =
∑n

j=1
∂hi

∂xj
ẋj . Substituting

the i-th equation of (1) into it yields

ẏi =
n∑

j=1

∂hi

∂xj
fj(x) +

m∑
k=1

n∑
j=1

∂hi

∂xj
gjk(x)uk

= Lfhi(x) +
m∑

k=1

Lgk
hi(x)uk

If
∑m

k=1 Lgk
hi(x)uk equals to zero, that is u doesn’t appear

in ẏi, then differentiating ẏi with respect to time successively

until the input appears in the derivative expression, we get

y
(γi)
i = Lγi

f hi(x) +
m∑

k=1

Lgk
Lγi−1

f hi(x)uj

where γi is the smallest times we must derivative the expres-

sion until the input appears in y
(γi)
i . Then we can rewrite the

output equation (2) as follows [1], [12]

y(γ) = A(x) + B(x)u (3)

where

y(γ) =

⎛
⎜⎜⎝

y
(γ1)
1

.

.

.

y
(γm)
m

⎞
⎟⎟⎠ A(x) =

⎛
⎜⎜⎝

Lγ1
f h1

.

.

.
Lγm

f hm

⎞
⎟⎟⎠

B(x) =

⎛
⎜⎜⎝

Lg1Lγ1−1
f h1 . . . LgmLγ1−1

f h1

.

.

.
.
.
.

.

.

.

Lg1Lγm−1
f hm . . . LgmLγm−1

f hm

⎞
⎟⎟⎠

Therefore, the decoupling and linearizing control law can be

set as

u = B†(x)(v − A(x)) (4)

where B†(x) is the pseudo-inversion of matrix B(x), v is

the pseudo-input. Substituting (4) into (3) yields y(γ) = v.

However, the system equation (3) is only an approximation

of the actual nonlinear system. Supposing the real model of

the system is described by y(γ) = F̂ (x, u), then it can’t be

decoupled and linearized exactly by the control law û =
B†(x)(v − A(x)). Letting Δ(x, û) = F̂ (x, û) − (A(x) +
B(x)û), then y(γ) = F (x, û) + Δ(x, û). Δ(x, û) stands for

unmodeled dynamics or extern disturbances.

The effect of Δ(x, û) to system needs to be estimated

and eliminated. ESO is suitable to play this role, which

can be used to deal with unmodeled dynamics and extern

disturbances [8–10].
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Fig. 1. Block diagram of attitude controller based on dynamic inversion
and ESO

B. Extended State Observer

Consider a second order SISO system

ÿ = f(t, y, ẏ, w) + bu

where f represents the real system dynamics, w represents

the unmodeled dynamics and disturbances. Letting x3 �
f(t, y, ẏ, w) and ẋ3 = a(t), we call x3 an extended state

of this system. Then the system can be described as⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2

ẋ2 = x3 + bu
ẋ3 = a(t)
y = x1

(5)

A nonlinear observer of the from

⎧⎪⎪⎨
⎪⎪⎩

e = z1 − y
ż1 = z2 − β1e
ż2 = z3 − β2fal(e, α1, δ) + bu
ż3 = −β3fal(e, α2, δ)

(6)

can be designed for system (5), where

fal(e, α, δ) �
{ |e|αsign(e) |e| > δ

e
δ1−α |e| ≤ δ

δ > 0, 0 < α < 1

If the parameters α1, α2, β1, β2, β3, δ are properly choosed,

then this observer can estimate real-time values of

x1(t), x2(t) and the extended state x3(t) of system (5),
that is, z1(t) → x1(t), z2(t) → x2(t), z3(t) → x3(t). This

observer is called the extended state observer (ESO) [8–10] of

system (5). If f(t, y, ẏ, w) = f0(t, y, ẏ, w) + f1(t, y, ẏ, w),
where f0 and f1 are the known and unknown parts of f
respectively, then f1 can be estimated as f1 = z3 − f0.

Usually the unknown parts are unmodeled dynamics or

extern disturbances, which can be dynamically estimated and

compensated by ESO.

IV. UAV ATTITUDE CONTROLLER DESIGN

Now consider the attitude control problem described in

section II. The block diagram of our proposed attitude

controller is described in Fig.1. Letting

x = col(φ, θ, ψ), y = x, u = col(L, M, N) (7)
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and differentiating y with respect to time twice, we get

ÿ = A(x) + B(x)u

where A(x) = col(a1, a2, a3),

B(x) =

⎛
⎝ c3 + c4 cos φ tan θ c7 sin φ tan θ c4 + c9 cos φ tan θ

−c4 sin φ c7 cos φ −c9 sin φ
c4 cos φ sec θ c7 sin φ sec θ c9 cos φ sec θ

⎞
⎠

The expressions of a1, a2, a3 are omitted because of their

complexity. Choosing u = û = B†(x)(v − A(x)), then

ÿ = v (8)

It can be clearly seen that system (7) has been linearized and

decoupled into three SISO systems, which are simple to deal

with.
However, because of the existence of unmodeled dynamics

and extern disturbances in system model, the real system

under the control û is

ÿ = v + Δ(x, û) (9)

where Δ(x, û) stands for unmodeled dynamics and extern

disturbances. System (8) also can be viewed as three SISO

systems with disturbances. Supposing the attitude commands

are given by (φc, θc, φc), we design three proportional-

derivative (PD) controllers for each SISO channel of system

(8), that is, we set pseudo-input v as

v =

⎛
⎝ v1

v2

v3

⎞
⎠ =

⎛
⎝ kp1(φc − φ) − kd1φ̇

kp2(θc − θ) − kd2θ̇

kp3(ψc − ψ) − kd3ψ̇

⎞
⎠

Then (9) becomes

φ̈ = kp1(φc − φ) − kd1φ̇ + Δ1(x, û)
θ̈ = kp2(θc − θ) − kd2θ̇ + Δ2(x, û)
ψ̈ = kp3(ψc − ψ) − kd3ψ̇ + Δ3(x, û)

(10)

Because of the similarity in the form of the three systems in

(10), we just take the first equation of (10) into consideration.

Viewing φc as the control input and letting x1 = φ, x2 =
φ̇, x3 = −kp1φ − kd1φ̇ + Δ1(x, û), ẋ3 = a(t), the first

equation of (10) can be expressed as follows⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2

ẋ2 = x3 + kp1φc

ẋ3 = a(t)
y = x1

According to (6), an extended state observer (ESO) for this

system can be designed as follows⎧⎪⎪⎨
⎪⎪⎩

e = z1φ − y
ż1φ = z2φ − β1e
ż2φ = z3φ − β2fal(e, α1, δ) + kp1φc

ż3φ = −β3fal(e, α2, δ)

If the parameters are choosed appropriately, then z1φ(t) →
x1(t), z2φ(t) → x2(t), z3φ(t) → x3(t). We can get an

estimate of Δ1(x, û)

Δ1(x, û) = z3φ + kp1φ + kd1φ̇
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Fig. 2. Attitude angle response of single channel without unmodeled
dynamics. Attitude angle command θc is a square wave with amplitude
10deg and frequency 0.1Hz, φc = 0deg, ψc = 0deg.

Suppose the required damping and the frequency of φ channel

are ξ1, ω1 respectively. If we set v1 = kp1(φc −φ)− kd1φ̇−
Δ1(x, û) instead of v1 = kp1(φc−φ)−kd1φ̇ and choose PD

gains as kp1 = ω2
1 , kd1 = 2ξ1ω1, then the closed loop transfer

function of the first SISO system of system (9) becomes
φ
φc

= ω2
1

s2+2ξ1ω1s+ω2
1

. This is a second order system that has

the desired frequency and damping. We design corresponding

ESO for the other two SISO systems respectively to estimate

the unmodeled dynamics and extern disturbances

Δ2(x, û) = z3θ + kp2θ + kd3φ̇

Δ3(x, û) = z3ψ + kp3ψ + kd3ψ̇

where z3θ, z3ψ are the output of corresponding ESO. kp2,
kp3, kd2, kd3 also can be choosed as kp2 = ω2

2 , kd2 =
2ξ2ω2, kp3 = ω2

3 , kd3 = 2ξ3ω3, where ξ2, ω2 are the desired
frequency and dumping of θ channel respectively and ξ3, ω3
are the desired frequency and dumping of ψ channel respec-
tively. We also set v2 = kp2(θc −θ)−kd2θ̇−Δ2(x, û), v3 =
kp3(ψc − ψ) − kd3ψ̇ − Δ3(x, û). Finally, under the control

of v1, v2, v3, system (7) is equivalent to φ
φc

= ω2
1

s2+2ξ1ω1s+ω2
1

,

θ
θc

= ω2
2

s2+2ξ2ω2s+ω2
2

, ψ
ψc

= ω2
3

s2+2ξ3ω3s+ω2
3

. The real control

can be expressed as follows⎛
⎝ L

M
N

⎞
⎠ = B†(x)(v − A(x)) = B†(x)

⎡
⎣

⎛
⎝ ω2

1φc − z3φ

ω2
2θc − z3θ

ω2
3ψc − z3ψ

⎞
⎠ − A(x)

⎤
⎦

V. SIMULATION RESULT

In this section, some examples of attitude tracking are

given to demonstrate the proposed method. Suppose the three

channels of UAV have the same frequency and damping

requirements ω = 4 rad/s, ξ = 0.8. The aerodynamic control

surfaces that provide moments are modeled as first-order

inertial systems. Set kp1 = kp2 = kp3 = 42, kd1 = kd2 =
kd3 = 2∗4∗0.8. The parameters of three ESOs can be set to

be the same, that is, β1 = 100, β2 = 3000, β3 = 5000, δ =

852852852852852852
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Fig. 3. Attitude angle response of three channels without unmodeled
dynamics. Attitude angle command φc = 10deg, θc = −10deg, ψc =
10deg.
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Fig. 4. Attitude angle response and control moment with unmodeled
dynamics. Attitude angle command φc = 10deg, θc = −10deg, ψc =
10deg.

0.1, α1 = 0.9, α2 = 0.3. Fig.2 and Fig.3 are obtained in

the situation of no unmodeled dynamics. In this situation,

the response of the controller with ESOs and without ESOs

are nearly the same. Fig.2 shows the attitude angle response

of single channel, where the attitude angle command θc is

a square-wave with amplitude 10deg and frequency 0.1Hz,

φc = ψc = 0. From these response curves, we can see that

the pitch angle θ tracks the command quickly and steady

without overshot, and the other two attitude angles hold

on 0deg. Fig.3 shows the attitude angle response of three

channels, where the attitude angle command φc = 10deg,

θc = −10deg, ψc = 10 deg. It can be seen that individual

angle command can be well tracked in each channel. The

nonlinear system is fully decoupled.

However, if there exist unmodeled dynamics in system

model, the importance of ESO is demonstrated. Fig.4 gives us

an example, which is obtained in the presence of unmolded

dynamics by more than 10% perturbation in each moment

of inertia of UAV. The dash lines show the attitude response

without using ESOs to estimate and compensate model errors.

The solid lines show the attitude response with model errors

estimating and compensating using ESOs. It is obvious that

the effects of the controller with ESOs are much better

than that without ESOs. The controller with ESO has robust

performance.

VI. CONCLUSIONS

An attitude controller for UAV using dynamic inversion

and extended state observer is presented. This controller uses

dynamic inversion to linearize UAV’s dynamic equation. The

unmodeled dynamics and extern disturbances are estimated

and compensated using extended state observer. Numerical

simulations are performed for an UAV. Simulation results

show that the proposed controller is effective and robust.
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