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Abstract – This paper addresses the design of a robust 
trajectory linearization control (TLC) scheme for a flexible air-
breathing hypersonic vehicle model with multiple uncertainties. 
Because of the model complexity, the flexibility effects and open-
loop behaviors are analyzed, offering insights on the vehicle 
features and guidelines for control design. Based on the analysis, 
a basic TLC frame, including an adaptive time-varying 
bandwidth algorithm, is firstly constructed. As for the inevitable 
uncertainties in hypersonic flight, a uniform nonlinear 
uncertainty model is explored which lumps all external 
disturbances and typical internal uncertainties such as 
propulsive perturbations and variations in control effectiveness 
together. Then extended state observer (ESO) technique is 
integrated into the basic TLC frame to estimate and compensate 
these uncertainties, forming a robust TLC scheme. Two flight 
cases are conducted, through which the robust scheme exhibits 
great tracking performance and uncertainty rejection ability. 

Index Terms – Trajectory Linearization Control, Flexible, 
Hypersonic Vehicle, Uncertainty, Extended State Observer 

I. INTRODUCTION

 Air-breathing hypersonic vehicles are viewed as a reliable 
and cost-effective solution to access to space routine. Since 
the 1960s, considerable efforts have been made to develop 
practical and affordable vehicles, such as NASA X-43A and 
U. S. Air Force X-51A. However, the design of robust 
guidance and control systems is still a challenging task due to 
the complex features of the vehicle dynamics [1]-[8]. 
Hypersonic flight usually covers a large flight envelope 
during which the environmental and aerodynamic 
characteristics undergo huge variations. The slender 
geometries and light structures required for these aircraft 
cause significant flexible effects. Strong interactions also exist 
among propulsion, structure, aerodynamics, and control. In 
addition, diverse uncertainties must be accommodated. 
      In recent literature, there are two dominant flexible air-
breathing hypersonic vehicle (FAHV) models: one is the first-
principle model developed by Bolender and Doman [1], the 
other is the computational fluid dynamics (CFD) based model 
of Mirmirani et al. [2]. For the first model, linear approaches 
were applied for control design in [3]-[4], while nonlinear 
methods were investigated in [5]-[6]. For the second model, 
[7] developed an adaptive linear quadratic controller, while 
[8] presented a control scheme that could suppress unknown 
or changing flexible modes online. Despite these research 
results, the design of robust control systems is still an open 
problem because of the peculiarity of the vehicle dynamics 

[6]. In this paper, we utilize the trajectory linearization control 
(TLC) [9]-[12] method to solve this problem. As a novel 
nonlinear control approach, TLC can inherently guarantee 
exponential stability of the closed-loop system along nominal 
trajectories using linear time-varying (LTV) system spectral 
theory [12]. Moreover, TLC provides a unique time-varying 
bandwidth (TVB) technique to feasibly improve the control 
performance and system robustness, which distinguishes it 
from other nonlinear control methods.  
      Uncertainties are inevitable during practical FAHV flight. 
This issue is considered in many papers [3]-[5] with varying 
levels of uncertainties. In these papers, however, uncertainties 
were only applied to test the inherent system robustness and 
no particular technique was adopted to deal with them. For a 
model based control method, in order to design a controller 
that owns the best uncertainty rejection ability, a valid 
uncertainty model is assumed to be available. Buschek et al. 
[13] presented a uniform model which could represent a large 
class of uncertainties, but it was in a simple linear form. In 
this paper, we develop a uniform nonlinear uncertainty model 
that is more realistic for FAHV. Multiple uncertainty sources 
are considered, including external disturbances such as wind 
gusts and two typical internal hypersonic effects, i.e. 
propulsive perturbations and variations in control 
effectiveness. Instead of overcoming the uncertainties by the 
inherent system robustness, we incorporate extended state 
observer (ESO) [14]-[15] into a basic TLC frame to estimate 
and compensate the uncertainties. Compared with other 
estimation techniques such as fuzzy logic and neural network, 
ESO shows multiple advantages such as high efficiency and 
satisfying flexibility. Its great simplicity can also meet the fast 
computation requirements in hypersonic missions. 

To sum up, in this paper we design a robust TLC scheme 
for FAHV under multiple uncertainties. It incorporates a basic 
TLC frame (including an adaptive TVB algorithm) with ESO 
technique. In addition, a uniform uncertainty model is 
proposed for convenience of controller synthesis. 

II. VEHICLE MODEL DESCRIPTION AND ANALYSIS

A. Vehicle Model 
The vehicle studied in this paper is the model developed 

by Bolender and Doman [1] for the longitudinal dynamics of a 
FAHV. Flexibility effects are included by modeling the 
fuselage as two cantilever beams clamped at the center of 
gravity, rather than a single free-free beam as done in [3]. This 
vibrational model captures the inertial coupling between the 



rigid-body states and the flexible states, resulting in a system 
that is more complex to control [1]. Assuming a flat Earth and 
normalizing the vehicle to unit depth, the longitudinal sketch 
of the vehicle is illustrated in Fig. 1, and the equations of 
motion are written as [5] 
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This model is composed of five rigid-body state variables 
[ , , , , ]Tx V h Q� �� , where , , , ,V h Q� �  are the velocity, flight-

path angle, altitude, angle of attack, and pitch rate, 
respectively. It also includes four flexible states 

[ , , , ]T
f f a a� � � � �� � � which correspond to the first generalized 

elastic deformations and their derivatives of the forebody 
(denoted with subscript f ) and aftbody (denoted with 
subscript a ). The outputs to be controlled are selected as 

[ , ]Ty V h� . The elevator deflection e� and the fuel 
equivalence ratio �  construct the control inputs [ , ]T

eu � �� ,
which indirectly affects the vehicle states through the lift L ,
drag D , thrust T , pitching moment M , and the generalized 
forces fN  and aN . Readers may refer to [5] for a full 
description of the model variables. 

The aforementioned forces and moments are complex 
nonlinear functions of the vehicle states and control inputs. 
Therefore, [5] developed a curve-fitted model (CFM) to 
approximate these forces and moments, which is described as 
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The coefficients are expressed as 
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where 2=0.5q V� denotes the dynamic pressure. The air 
density � is modeled as 0 0= exp (- / )h h� � , and the actuators 
are modeled as first-order low-pass filters with certain gains. 
Limits on the control inputs are set as 

-15deg 15deg, 0.1 1.2e� �� � � �  (10) 
B. Flexibility Effects Analysis

�

e�

Fig. 1 Geometry of the hypersonic vehicle model. 
The slender geometries and light structures of FAHV 

cause significant flexibility effects that severely affect the 
aerodynamics of the aircraft. Three factors that determine the 
ith flexible mode effects are the frequency i
 , damping ratio 

i	 , and mode shape i� . Here, for all modes the damping ratio 
is constant 0.02i	 �  as done in [3]-[4], which indicates a 
severe mode vibration condition. The other two factors, 
however, need to be carefully analyzed. Particularly, the fuel 
is consumed during hypersonic flight, which has a significant 
impact on the structural dynamics. In the following analysis, 
we will find out how the mode shape and frequency change 
with four different fuel levels. The corresponding vehicle 
mass densities are listed in Table I.  

In the nominal case (Case 1), mode shapes for the first 
three flexible modes are shown in Fig. 2a. It is seen that, as 
the fuselage is modeled as two cantilever beams clamped at 
the center of gravity (55 ft away from the nose), the 
displacement and rotation there are zero. This is different from 
the free-free model in [3].  Fig. 2b shows the second mode 
shape with mass density ranging from 300 slugs/ft to 150 
slugs/ft. As a general rule, the displacement increases as the 
mass density decreases, resulting in changes of the vehicle 
dynamics. Besides the second mode shape, all other mode 
shapes lead to the same rule. This means lighter vehicle 
structures or more fuel consumption cause larger flexibility 
effects. As for the mode frequency, similar analysis indicates 
that increased mass density leads to decreased flexible mode 
frequencies. If the decreasing flexible frequencies approach to 
the natural frequency of the rigid body, significant coupling 
occurs and the vehicle dynamics become more complex. 

TABLE I MASS DENSITIES UNDER VARYING FUEL LEVELS
Fuel level Case 1 Case 2 Case 3 Case 4 

Mass (slugs/ft) 300 250 200 150 
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Fig. 2 Mode shapes: a. the first three mode shapes in nominal case; b. the 
second mode shape with varying mass densities. 



C. Open-loop Analysis
FAHV exhibits complex time-varying coupling effects not 

only between the rigid and flexible states, but also between 
the aerodynamics and environment. A key factor that affects 
the vehicle feature is the dynamic pressure q , which 
influences all the forces and moments. For this reason, an 
open-loop analysis is conducted with q ranging from 2000 psf 
to 500 psf. We trim the vehicle at each q level, and then 
linearize it at the trim conditions. Fig. 3 shows how the poles 
and zeros of the linearized system migrate as q changes. As 
expected, three poles corresponding to the phugoid and 
altitude modes are near the origin. The two complex conjugate 
pairs correspond to the flexible dynamics. The pair of poles 
and zeros that appear to be symmetric about the imaginary 
axis correspond to the rotational dynamics (the angle of attack 
and pitch rate). There is an unstable pole, which complicates 
the control design. As the dynamic pressure decreases, both 
the positive and negative poles migrate to the origin. This is 
reasonable because with a smaller q all forces and moments 
decrease. On one hand, it makes the unstable dynamics much 
milder; on the other hand, it yields a larger oscillation in the 
stable dynamics. Finally, the positive zero indicates a 
nonminimum phase behavior, which stems from the coupling 
of the elevator to the lift and drag forces. This phenomenon 
was also reported in [5] and [6], where an additional canard 
was therefore added to deal with it.  

III. ROBUST SCHEME DESIGN

In this section, the robust scheme is designed for FAHV. 
The starting point is to decompose the equations of motion 
into functional subsystems. Based on the time-scale separation 
theory, the vehicle dynamics are divided into five subsystems, 
i.e. the velocity, altitude, flight-path angle (FPA), angle of 
attack (AOA), and pitch rate subsystems. Five subsystem 
controllers are designed correspondingly. The overall scheme 
is depicted in Fig. 4, where the virtual control inputs are 
drawn as dashed lines. Feedback lines are omitted for 
simplicity. Fig. 5 shows the structure of each robust controller, 
which mainly consists of a basic TLC frame and an ESO. The 
TLC frame contains a pseudo-inversion and a stabilizing 
controller, constructing a basic control law; the ESO estimates 
the uncertainties to form a compensation control law. 
A. Basic TLC Frame Design

Mostly, the control objective is to design a control law that 
drives the system output to track a nominal output trajectory. 
In TLC frame, the original system is firstly linearized along 
the nominal trajectory, thus the tracking problem is cast into a 
regulation problem for the error dynamics along the nominal 
trajectory. Asymptotic tracking can then be achieved by 
combining a feed-forward pseudo inversion of the nominal 
model and a feedback stabilizer of the linearized tracking 
error dynamics, as shown in the dashed box of Fig. 5.  
A.1  TLC for the Velocity Subsystem

In view of the force expressions in (8)-(9), the velocity 
dynamics (1) can be rewritten as an affine form:  

V V VV f g u� ��  (11) 
where 
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Denote the nominal velocity to be tracked as V , and replace 
V by V in Vf and Vg , yielding Vf and Vg correspondingly. 
Assume Vg is invertible. Then a nominal control law Vu can
be obtained by the pseudo inversion: 

1( )V V Vu g V f�� ��  (12) 

Here V� is generated by a command processor as shown in 
Fig. 5. Another effect of this command processor is to make 
the given command more realizable. In this paper, the 
command processor is designed by the arranged transient 
process (ATP) technique [14]-[15]. The detail of ATP is 
omitted here to avoid clouding the primary ideas of this paper. 

To design the stabilizing controller, system (11) is first 
augmented with integral action for disturbance 
accommodation and performance enhancement. Defining the 
augmented state [ , ]T

Vx Vdt V� � yields the augmented system 

as
[ , ] [0, ]T T

V V V Vx V f g u� ��  (13) 
Stabilizing feedback control is implemented by first defining 
the velocity tracking error as V V Ve x x� � where 

[ , ]T
Vx Vdt V� � is the nominal state, and then linearizing the 

tracking-error system along the nominal state. The linearized 
LTV tracking error system is written as 

Pole-Zero Map

Real Axis

Im
ag

in
ar

y 
Ax

is

-4 -3 -2 -1 0 1 2 3 4
-25

-20

-15

-10

-5

0

5

10

15

20

25
2000 psf
1500 psf
1000 psf
500 psf

Decreasing dynamic pressure

Flexible
effects

Fig. 3 Pole-zero map with varying dynamic pressure.

cV

ch
c� c� cQ e�

�

Fig. 4 Overall control scheme. 

cy uy� u� totalu

comu�
y

sensey

�

Fig. 5 Structure for each robust controller. 



 ( ) ( )V V V V Ve A t e B t u� �� �  (14) 
where 

00 1
( ) , ( ) ,

0 /V V V V V
VD

A t B t u u u
gVSC m�
� �� �

� � � �� �� ��� � � �
�

Select the feedback control law as 
� �1 2( ) ( ), ( )V V V V V Vu K t e k t k t e� ��  (15) 

where 1 2( ), ( )V Vk t k t are the control gains. Then assume the 
desired closed-loop system matrix ( )VcA t as

1 2

0 1
( )

( ) ( )Vc
V V

A t
t t� �

� �
� � �� �� �

LTV PD-spectral theory [12] is adopted to assign the desired 
dynamics as 

2
1

2

( ) ( )

( ) 2 ( ) ( ) / ( )
VnV

V V Vn Vn Vn

t t

t t t t

� 


� 	 
 
 


� ��
�

� ��� �
 (16) 

Then according to V V V VcA B K A� � , the control gains are 
computed as 

1 1 2 2( ) ( ), ( ) ( ) /V V V V Dk t t k t t VSC m� � �� � � � �
and the feedback control law (15) is obtained. 

The total TLC control law of the velocity subsystem is 
V V Vu u u� � �  (17) 

In (16), the constant damping ratio V	 and time-varying 
bandwidth ( )Vn t
 are the direct parameters to be tuned. To 
improve the control performance, we design an adaptive TVB 
algorithm for ( )Vn t
 , which is addressed later. 
A.2  TLC for Other Subsystems

Control design for the velocity subsystem exhibits a 
standard TLC design procedure, which can be concluded into 
six steps: a) write the original dynamics into an affine form; b) 
calculate the pseudo inversion control law; c) augment the 
original dynamics with integral actions; d) linearize the 
tracking-error system along nominal trajectories; e) assign the 
desired closed-loop dynamics with PD-spectral theory and 
obtain the stabilizing control law; f) add the pseudo inversion 
control and the stabilizing control to form the total control 
law. These six steps can be similarly applied to other four 
subsystems. Due to page limitation, detailed design procedure 
is omitted here. Note that some subsystems cannot be directly 
written into affine forms, thus approximation must be made. 
The flexible effects are included in the pitch rate subsystem, 
thus are well suppressed by the robust scheme. 
A.3  Adaptive TVB Algorithm

As stated in the open-loop analysis, the dynamic pressure 
q has a great impact on the vehicle characteristics. In large 
velocity or altitude maneuvers, q may experience huge 
variations. To enhance the system robustness and tracking 
performance, we design an adaptive TVB algorithm as 

0 0( ) /n nt q q
 
�  (18) 
where 0n
 and 0q are the bandwidth and dynamic pressure at 
an initial trim condition. The physical interpretation of (18) 
lies in that, with an increasing dynamic pressure all forces and 

moments increase, which makes all flight dynamics change 
faster, thus the relative bandwidth should be increased; and 
vice versa. With the stability analysis in [10], it can be proved 
that TVB algorithm (18) can overcome a larger disturbance 
and yield a smaller tracking error. 

As shown in Fig. 3, q significantly affects the rotational 
dynamics. Thus this adaptive TVB algorithm is primarily 
applied to the angle of attack and pitch rate subsystems. 
B. Uncertainty Modeling 

Recall the force/moment expressions (8)-(9). Three 
variables that primarily determine the forces and moments are 
the flight state � and the control inputs e� and � , so 
sensitivities to variations of these variables become three 
primary internal uncertainty sources. Meanwhile, external 
disturbance such as wind gusts should also be considered. For 
the rigid body, all these uncertainties can be represented by 
this nonlinear uncertain model 
 ( , ) ( , , ) ( , , )i ex f x u f x u t f x u t� �� � ��  (19) 
where ( , )x f x u�� , 5x ! , represents the nominal dynamics 
(1)-(5), while ( , , ), ( , , )i ef x u t f x u t� � denote the total internal 
and external uncertainties, respectively.  

Denote the total number of internal uncertainty cases as 
n� .Then ( , , )if x u t� can be expressed as 
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Here, lk� denotes the uncertainty level. Constant vectors 
4 1

kA #
�  ! and 3 1

kB #
�  ! are chosen to “pick out” the 

matched uncertainty source and the disturbed dynamics. 
4 3

1F # ! describes how the three primary internal uncertainty 
sources affect the four forces/moments, while 5 4

2F # ! tells 
how the four forces/moments affect the five rigid-body states. 
Both 1F  and 2F have fixed forms which are separately derived 
from the force/moment expressions (8)-(9) and the equations 
of motion (1)-(5). They are expressed as 
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For example, M� in 1F  describes how the variation of �
affects the pitching moment M , while MQ in 2F tells how the 
disturbed M affects the pitch rate Q . According to (8)-(9) 
and (1)-(5), they are calculated as  

2 3 22 3 2
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( ) /M k k yyQ e e I� ��  (24) 



Expressions of other elements are omitted for brevity. 
FAHV utilizes scramjet propulsion system which is highly 

integrated into the airframe. This results in an increased 
sensitivity to variations in angle of attack. Subsequently, the 
pitching moment is affected, leading to significant disturbance 
to the pitch rate dynamics. This effect is taken as internal 
uncertainty in the pitching moment sensitivity to angle of 
attack variations. Accordingly, we set the constant vectors as 

1 1[0,0,0,1] , [1,0,0]T TA B� �� � to pick out M� and MQ as
expressed in (23)-(24) to model this propulsive perturbation. 

Besides the propulsion uncertainty, another internal 
uncertainty lies in the control effectiveness variations, which 
are modeled as uncertainties in pitching moment sensitivity to 
elevator deflection and in thrust sensitivity to fuel equivalence 
ratio. These two uncertainties are included by separately 
setting 2 [0,0,0,1] ,TA� � 2 [0,1,0]TB� � and 3 [0,0,1,0] ,TA� �

3 [0,0,1]TB� � .
As for the external uncertainty ( , , )ef x u t� , it may results 

from wind gusts or other environmental uncertainties. For 
demonstration, it is chosen as sine wave signals [4] 

( , , ) [2sin , 5cos , 0.3sin , 0.3sin , 0.02sin  ]T
ef x u t t t t t t� �  (25) 

C. Extended State Observer Design
Perturbation analysis shows that the basic TLC frame can 

guarantee local exponential stability only when perturbation is 
limited in a specified range [10]. To enhance the system 
robustness, nonlinear ESO [14] is integrated with the basic 
TLC frame for uncertainty compensation. The core idea of 
ESO is to take all internal and external uncertainties modeled 
above as a new extended state, and then establish a state 
observer to estimate these uncertainties. 

Assume the disturbed velocity dynamics are written as 
+V V V VV f g u� � ��  (26) 

with V� denotes the total uncertainty. Let 1 2,V V Vx V x� � � ,
where 2Vx is an extended state. Suppose =- ( )V Vw t�� with 

( )Vw t unknown but bounded. Then (26) can be written as a 
second-order extended system: 

1 2 2+ , ( )V V V V V V Vx f g u x x w t� � � �� �  (27) 
An ESO is established for (27) as 
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where 1 1V V Vz z x� �� denotes the estimation error, Viz is the 
estimation value of Vix , and Vi� is the observing gain, 

1, 2.i � fal is a nonlinear function of Vz� , expressed as [14] 
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where ,V V� � are constants with 0V� % and 0 1V�& & . By 
properly choosing the parameters 1V� , 2V� , V� , and V� , we 
have 1Vz V' , 2V Vz '� . Then a compensation control law 
is obtained as 

1
2Vcom V Vu g z��  (30) 

This together with the basic TLC control law (17) produces 
the final robust control law for the velocity subsystem: 

V V V Vcomu u u u� � ��  (31) 

IV. SIMULATIONS

To illustrate the effectiveness of the proposed robust TLC 
scheme, two representative flight cases for this FAHV are 
studied: a climbing maneuver at constant dynamic pressure 
(Case 1) and a climbing maneuver with longitudinal 
acceleration using separate reference commands for altitude 
and velocity (Case 2) [6]. Parameters for ATP and the basic 
TLC frame are given in Table II. Parameters for ESO are all 
set as 1 2 15i i� �� � , 0.5i� �  , 0.01i� � , , , , ,i V h Q� �� ,
which shows great parameter adaption property.  

In Case 1, the altitude command is given to let the vehicle 
climb from 85000 ft to 95000 ft, whereas the velocity 
command is generated by solving the air density model to 
maintain constant dynamic pressure at 2000 psf. Under no 
uncertainty, robust tracking results are depicted in Fig. 6. Both 
velocity and altitude trajectories are tracked well. Note that 
the response of the altitude exhibits a typical undershoot 
behavior due to the nonminimun phase feature as predicted in 
the open-loop analysis. To make the test more demanding, 
uncertainties are added next. Propulsive perturbations and 
variations in control effectiveness are included with 40% 
uncertainty, while external uncertainty is considered as (25). 
In this case both the basic TLC frame and the robust TLC 
scheme with ESO compensation provide stable tracking 
results, as shown in Figs. 7a and 7b, although the basic TLC 
frame exhibits a large tracking error in the velocity response. 
Increasing the external uncertainty in the pitch rate dynamics 
to 0.05sin t  yields comparison results in Figs. 7c and 7d. The 
basic TLC frame completely loses its control ability while the 
robust scheme still performs well due to ESO. The actual 
uncertainties in velocity and pitch rate dynamics and the 
corresponding estimated values are shown in Fig. 8, where the 
excellent estimation ability of ESO is exhibited. 

Case 2 considers a more aggressive maneuver where the 
velocity and altitude commands are independently given as 
1000 ft/s and 12000 ft, respectively. Uncertainties are set as 
the same with those in the first case. The robust tracking 
results are depicted in Fig. 9. Although the dynamic pressure 
exhibits a slightly large decrease, which may significantly 
affect the vehicle characteristics as shown in Fig. 3, the 
velocity and altitude tracking still remain excellent. The 
internal states such as the angle of attack chatter due to the 
uncertainties, but they all stay in admissible ranges. 

TABLE II CONTROL PARAMETERS
Parameter Value Parameter Value Parameter Value 

rV 0.15 �V 0.02 �V 0.7 
rh 1 �h 0.02 �h 0.7 
r� 0.001 �� 0.05 �� 1
r� 0.05 �� 0.25 �� 0.7 
rQ 0.5 �Q 1 �Q 0.7 



V. CONCLUSIONS

Robust control design is a fundamental issue for FAHV 
with multiple uncertainties. In this work, comprehensive 
flexibility effects and open-loop behavior analysis for the 
vehicle model are conducted, offering a better understanding 
of the complex vehicle features. For controller design, a 
robust control scheme that integrates a basic TLC frame and 
the ESO technique is proposed. Furthermore, a uniform 
nonlinear uncertainty model is developed, which can represent 
all external disturbances and typical internal uncertainties 
such as propulsive perturbations and variations in control 
effectiveness. Comparison simulation demonstrates the great 
tracking performance and uncertainty rejection ability of the 
proposed robust control scheme. 
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Fig. 6 Robust tracking results in Case 1 with no uncertainty. 
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Fig. 7 Comparison simulations with different uncertainty levels in Case 1. 
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Fig. 8 Actual uncertainties and their estimated values by ESO in Case 1. 
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Fig. 9 Robust tracking results in Case 2 with uncertainties.
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