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Abstract: Knowledge plays a critical role in artificial intelligence. Recently, the extensive success of pre-trained language models
(PLMs) has raised significant attention about how knowledge can be acquired, maintained, updated and used by language models. Des-
pite the enormous amount of related studies, there is still a lack of a unified view of how knowledge circulates within language models
throughout the learning, tuning, and application processes, which may prevent us from further understanding the connections between
current progress or realizing existing limitations. In this survey, we revisit PLMs as knowledge-based systems by dividing the life circle
of knowledge in PLMs into five critical periods, and investigating how knowledge circulates when it is built, maintained and used. To
this end, we systematically review existing studies of each period of the knowledge life cycle, summarize the main challenges and current

limitations, and discuss future directions!.
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1 Introduction

Fundamentally, Al is the science of knowledge — how
to represent knowledge and how to obtain and use know-
ledge.

Nilson (1974)1]

Knowledge is the key to high-level intelligence. How a
model obtains, stores, understands and applies know-
ledge has long been a critical research topic in machine
intelligence. Recent years have witnessed the rapid devel-
opment of pre-trained language models (PLMs). Through
self-supervised pre-training on large-scale unlabeled cor-
pora, PLMs show strong generalization and transferring
abilities across different tasks/datasets/settings over pre-
vious methods, and therefore have achieved remarkable
success in natural language processing(2~7..

The success of pre-trained language models has raised
great attention about the nature of their entailed know-
ledge. There have been numerous studies focusing on how
knowledge can be acquired, maintained, and used by pre-
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trained language models. Along these lines, many novel
research directions have been explored. For example,
knowledge infusing devotes to injecting explicit struc-
tured knowledge into PLMs[#10l. Knowledge probing aims
to evaluate the type and amount of knowledge stored in
PLMs' parameters 11713, And knowledge editing is dedic-
ated to modifying the incorrect or undesirable knowledge
acquired by PLMs[14-16],

Despite the large amount of related studies, current
studies primarily focus on one specific stage of knowledge
process in PLMs, thereby lacking a unified perspective on
how knowledge circulates throughout the entire model
learning, tuning, and application phases. The absence of
such comprehensive studies makes it hard to better un-
derstand the connections between different knowledge-
based tasks, discover the correlations between different
periods during the knowledge life circle in PLMs, exploit
the missing links and tasks for investigating knowledge in
PLMs, or explore the shortcomings and limitations of ex-
isting studies. For example, while numerous studies at-
tempt to assess the knowledge in language models that
are already pre-trained, there are few studies dedicated to
investigating why PLMs can learn from pure text without
any supervision about knowledge, as well as how PLMs
represent or store these knowledge. Meanwhile, many re-

1 We openly released a corresponding paper list which will be regu-
larly updated on https://github.com/c-box/KnowledgeLifecycle.
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searchers have tried to explicitly inject various kinds of
structural knowledge into PLMs, but few studies propose
to help PLMs better acquire specific kinds of knowledge
from pure text by exploiting the knowledge acquisition
mechanisms behind. As a result, related research may be
overly focused on several directions but fail to compre-
hensively understand, maintain and control knowledge in
PLMs, and therefore limits the improvements and fur-
ther application.

In this survey, we propose to systematically review
the knowledge-related studies in pre-trained language
models from a knowledge engineering perspective. In-
spired by research in cognitive sciencell”> 18] and know-
ledge engineering/!% 20, we regard pre-trained language
models as knowledge-based systems, and investigate the
life cycle of how knowledge circulates when it is acquired,
maintained and used in pre-trained models[19 201, Specific-
ally, we divide the life cycle of knowledge in pre-trained
language models into the following five critical periods as
shown in Fig.1:

* Knowledge acquisition, which focuses on the pro-
cedure of language models learning various knowledge
from text or other knowledge sources.

* Knowledge representation, which focuses on the
underlying mechanism of how different kinds of know-
ledge are transformed, encoded, and distributed in PLMs'
parameters.

* Knowledge probing, which aims to evaluate how
well current PLMs entailing different types of knowledge.

* Knowledge editing, which tries to edit or delete
knowledge containing in language models.

* Knowledge application, which tries to distill or
leverage knowledge in pre-trained language models for

Acquisition

practical application.

Application Representation

Editing Probing

Fig.1 Five critical periods in life circle of knowledge in
language models

For each of these periods, we sort out the existing
studies, summarize the main challenges and limitations,
and discuss future directions. Based on the unified per-
spective, we are able to understand and utilize the close
connections between different periods instead of consider-
ing them as independent tasks. For instance, understand-
ing the knowledge representation mechanism of PLMs is
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valuable for researchers to design better knowledge ac-
quisition objectives and knowledge editing strategies. Pro-
posing reliable knowledge probing methods could help us
find the suitable applications for PLMs, and gain insight
into their limitations, thereby facilitating improvement.
Through this survey, we are willing to comprehensively
conclude the progress, challenges and limitations of cur-
rent studies, help researchers better understand the whole
field from a novel perspective, and shed light on the fu-
ture directions about how to better regulate, represent
and apply the knowledge in language models from a uni-
fied perspective.

We summarize our contributions as follows:

1) We propose to revisit pre-trained language models
as knowledge-based systems, and divide the life cycle of
knowledge in PLMs into five critical periods.

2) For each period, we review existing studies, sum-
marize the main challenges and shortcomings for each
direction.

3) Based on this review, we discuss about the limita-
tions of the current research, and shed light to potential
future directions.

2 Overview

In this section, we present the overall structure of this
survey, describe our taxonomy shown in Fig.2 in detail,
and discuss the topics in each critical period.

Knowledge acquisition is the knowledge learning
procedure of language models. Currently, there are two
main sources for knowledge acquisition: the plain text
data and the structured data. For acquiring knowledge
from text data, LMs typically conduct self-supervised
learning on large-scale text corporal~% 6l. This survey will
focus on the methods and mechanisms of how pre-trained
language models obtaining knowledge from pure tex-
tsl21-23], For acquiring knowledge from structured data,
current researches focus on knowledge injection from dif-
ferent kinds of structured data into PLMs. The primary
categories of structured data contains entity knowle-
dgel8: 24, 25] factual knowledgel® 26-28] commonsense know-
ledgel29-3L, 32] and linguistic knowledgel33-36l. We will dis-
cuss all of them in Section 3.

Knowledge representation aims to investigate how
language models encode, store and represent knowledge in
their dense parameters. The investigation about the
knowledge representation mechanisms will aid in a better
understanding and control of knowledge in PLMs, and
may also inspire researchers for better understanding the
knowledge representation in human brains. Currently, the
strategies for knowledge representation analysis in PLMs
include gradient-based3” 28], causal inspired39, attention-
based40: 41, 121 and layer-wisell2 42. 43] methods. We will
discuss them in Section 4.

Knowledge probing aims to evaluate how well cur-
rent PLMs entailing specific types of knowledge. Cur-
rently, two primary strategies are used to probe the
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Fig. 2 Typology of knowledge life circle in big language models

knowledge in PLMs: 1) Prompt-based probing, which
then
using these natural language expressi-

usually constructs knowledge-instructed prompt,
query PLMs
onslll; 44746, 76] For example, querying PLMs with “The
capital of France is _.” to evaluate whether PLMs have
stored the corresponding knowledge (France, capital,
Paris). Meanwhile, to improve PLMs' performance, a
series of studies devote to optimizing prompts in both dis-
cretel851 and continual spacel2754. Despite the widely
application of prompt-based probing, lots of studies also
point out that there still exist some pending issues such
as inconsistent[5%; 56, 58, 77 inaccuratel52 57, 8 and unreli-

ableP” ™ and question the quantity results of prompt-
based probing. 2) Feature-based probing, which normally
freezes the parameters of original PLMs, and evaluates
PLMs on probing tasks based on their internal repr-
esentation or attention weights. We categorize existing
feature-based probing studies into classifier-based prob-
ingl12 0, 42, 59] and classifier-free probing(6% 61 according to
whether an additional classifier is introduced. Since most
methods
data, the main shortcoming of feature-based probing is

introduce additional parameters or training

whether the results should attribute to knowledge in
PLMs or probing task learned by additional probes. We

@ Springer
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will discuss them in Section 5.

Knowledge editing aims to modify the incorrect
knowledge or delete the undesirable information in PLMs.
Because of inevitable mistakes learned by PLMs and the
update of knowledge, reliable and effective knowledge
editing approaches are essential for the sustainable ap-
plication of PLMs. Current approaches include con-
strained fine-tuningl4, memory-based(64-66] meta learn-
ing inspired[!5: 16, 67] and location-based methods/38 39, We
will discuss them in Section 6.

Knowledge application aims to distill or leverage
specific knowledge from PLMs to benefit further applica-
tions. Currently, there are two main kinds of application
paradigms for knowledge in PLMs: 1) Language models
as knowledge bases (LMs-as-KBs), which regards lan-
guage models as dense knowledge bases that can be dir-
ectly queried with natural language to obtain specific
types of knowledgelll; 48, 57, 80-83]  And we provide a com-
prehensive comparison between structured knowledge
bases and LMs-as-KBsB2 from four aspects, including
construction, coverage, interaction and reliability; 2) Lan-
guage models for downstream task, which directly uses
PLMs entailing specific kinds of knowledge in down-
stream NLP tasks via fine-tuningl68-71] prompt-learn-
ingl ® 6 73] and in-context learningl® 7 75l We will discuss
them in Section 7.

3 Knowledge acquisition

During the knowledge acquisition period, pre-trained
language models learn knowledge from different know-
ledge sources. In this section, we categorize and describe
knowledge acquisition strategies according to knowledge
sources, and then discuss the future directions.

3.1 Learning from text data

Currently, pre-trained language models usually ac-
quire various knowledge from pure text through self-su-
pervised learning on a large-scale text corpus. In this sec-
tion, we will first introduce several widely used learning
objectives(84 851 and then discuss the learning mechan-
isms behind them.

Causal language modeling aims to autoregress-
ively predict the next token in the input sequence, which
is the most popular pre-training tasks[ 6 86, 87 and has
demonstrated excellent effectiveness in capturing context
dependency and text generation paradigms. One limita-
tion of causal language modeling is unidirectional, which
can only capture contextual information from left to
right.

Masked language modeling aims to mask some
tokens in the input randomly, and then predict the
masked token conditioned on the rest of sequence® 3. Un-
like causal language modeling, which can only obtain in-
formation in a unidirectional manner, masked language
modeling can capture contextual information from both
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left-to-right and right-to-left directions.

Seq2seq masked language modeling uses an en-
coder-decoder architecture for pre-training, which first
feeds the encoder with masked sequence, and the decoder
is supposed to predict the masked tokens autoregres-
sivelyl4 881,

Denoising autoencoder first corrupts the input se-
quence with randomly mask symbols, then feed the input
into a bidirectional encoder, and the likelihood of the
whole original input is calculated with an auto-regressive
decoderl(7].

Although PLMs are pre-trained without any supervi-
sion from external knowledge sources, they have been
shown to capture a diverse range of knowledge within
their parameters, such as linguistic knowledgel!2: 13, 41, 42,
59, 90, 91 semantic knowledgel% 92 93] and world know-
ledgel49: 76, 94-95]

Intuitively, PLMs learn such knowledge because they
can abstract, generalize and store the implicit knowledge
in the text through self-supervised learning. Unfortu-
nately, the underlying mechanism of how and why PLMs
acquire or forget knowledge still remains to be explored.
And it will be valuable to understand the behaviors of
PLMs and inspire better knowledge acquisition strategies.

To understand the underlying mechanisms, some stud-
ies dive into the dynamics of LMs’ pre-training procedure.
Many researchers study the training dynamics of neural
networks. For example, Achille et al.l%] try to figure out
whether there exist critical periods in the learning pro-
cess of neural networks. Liu et al.23 devote to finding a
mathematical solution for the semantic development in
deep linear networks. Other studies!l9; 101 analyze the
training dynamics of LSTM!02 with techniques such as
SVCCAL03],

While most existing studies focus on neural networks
with relatively simple architectures, only a few studies
consider knowledge in large-scale pre-trained language
models. Chiang et al.l2l] first systematically investigate
the knowledge acquisition process during the training of
ALBERT!4, Specifically, they study the syntactic know-
ledge, semantic knowledge, and world knowledge develop-
ment during pre-training, and find that the learning pro-
cess varies across knowledge, and having more pre-trained
steps could not necessarily increase the knowledge in
PLMs. Pérez-Mayos et al.22] investigate the effect of the
size of the pre-trained corpus on the syntactic ability of
the RoBERTal¥l model, and find that models pre-trained
on more data typically contain more syntactic knowledge
and perform better in related downstream tasks. Liu et
al.[23] also investigate the knowledge acquisition process of
RoBERTall on various knowledge. And find that com-
pared with linguistic knowledge which can be learned
quickly and robustly, world knowledge is learned slowly
and domain-sensitively.

3.2 Learning from structured data

Apart from acquiring knowledge from pure text,
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PLMs can also acquire knowledge by injecting explicit
structured knowledge into them. In this section, we re-
view these studies according to the category of struc-
tured knowledge sources.

Entity knowledge. To learn entity knowledge expli-
citly, lots of studies propose entity-guided tasks for lan-
guage model pre-training. For example, Sun et al.l’l and
Shen et al.[195] use entity-level masking to enhance lan-
guage models, which first recognize named entities in a
sentence, and then all the sub-words within an entity are
masked and predicted at once. Xiong et al.24 present re-
placed entity detection, which randomly replaces the
named entities in a sentence with another mention of the
same entity or other entities of the same type, and LMs
are supposed to determine which entities are replaced.
Yamada et al.[196 treat words and entities as independ-
ent tokens, and conduct mask language modeling separ-
ately to learn both contextualized word representation
and entity representation. Févry et al.[l%7 combine the
mention detection and entity linking pre-training object-
ives with mask language modeling to match the entities
in text with specific entity memories. In addition to the
entity mentions themselves, researchers have also intro-
duced other meta-information such as entity description
to further assist the entity knowledge learning/108: 109, An-
other efficient way to enrich PLMs' text representation
with entity knowledge is utilizing word-to-entity atten-
tionl25, 106]

Factual knowledge. In structured knowledge bases,
factual knowledge is generally represented as triples (sub-
ject entity, relation, object entity). For a long time, re-
searchers have been dedicated to aiding PLMs to acquire
more factual knowledge to perform better on down-
stream tasks. On the one hand, introducing knowledge
graph embedding into the pre-training procedure could be
effective. Zhang et al.l’) propose an aggregator to com-
bine the corresponding knowledge embedding of the entit-
ies in text and token embedding. Wang et al.26l co-train
mask language modeling and knowledge graph embed-
ding objectives, which could produce both informative
text and knowledge embedding. On the other hand, some
studies propose designing factual knowledge-guided auxil-
iary tasks. Wang et al.2”l add an adapter to infuse know-
ledge into PLMs without updating the original paramet-
ers. The adapter is trained with predication prediction to
determine the relation type between tokens. Qin et al.[l10]
propose the entity discrimination tasks to predict the ob-
ject entity given subject entity and relation, as well as re-
lation discrimination tasks to predict the semantic con-
nection between relation pairs. Banerjee and Barallllll
directly pre-train language model on the knowledge
graph, the model is given two elements of a knowledge
triple to predict the rest one. Liu et al.28] argue that in-
corporating a whole knowledge base into PLMs might in-
duce the knowledge noise issue, and propose to learn from
a specific sub-graph related to each input sentence.

Moreover, Soares et al.ll!2] propose to learn relational
knowledge solely from entity-link text through “match-
ing in the blank” objective, which first replaces the entit-
ies in text with blank symbols and then brings the rela-
tion representations closer when they have the same pair
of entities.

Commonsense knowledge. One of the most com-
mon strategies for PLMs learning commonsense know-
ledge is converting the knowledge to natural language ex-
pressions before learning. Bosselut et al.29 Guan et
al.BY, Shwartz et al.l'3] first transfer the commonsense
knowledge triples to natural language with prompt, then
pre-train LMs on these knowledge-augmented data. Ye et
al.30] post-train LMs on commonsense QA datasets cre-
ated by AMS (align, mask, select). Ma et al.32l trans-
form structured commonsense knowledge into natural lan-
guage questions for model learning.

Linguistic knowledge. By designing the correspond-
ing pre-training tasks, PLMs could also learn linguistic
knowledge explicitly, such as sentiment knowledgel33, 114],
lexical knowledgel34 35 115 syntax knowledgell0 35 36, etc.
For example, to equip LMs with sentiment knowledge, Ke
et al.33 first label each word with a POS tag and senti-
ment polarity, and then incorporate both the word-level
and sentence-level sentiment label with the mask lan-
guage modeling objective. Similarly, Tian et al.l'l4 first
mine sentiment knowledge from unlabeled data based on
pointwise mutual information (PMI), and then conduct
pre-training tasks such as sentiment masking, sentiment
word prediction and word polarity prediction with these
sentiment information. As for lexical knowledge, Lauscher
et al.4 first acquire word similarity information from
WordNet/!16] and BabelNet[!!7, and then add word rela-
tion classification tasks in addition to BERT's original
pre-training tasks. Levine et al.['1] also introduce the lex-
ical information from WordNet and add a masked-word
prediction task. To incorporate dependency knowledge
with PLMs, Song et al.l!l8 construct a dependency mat-
rix for attention alignment calibration and a fusion mod-
ule to integrate dependency information. Explicitly learn-
ing syntax knowledge also raises the researchers’ atten-
tion, Sachan et al.l0] investigate infusing syntax know-
ledge by either adding a syntax-GNN on the output of
transformers or incorporating with text embedding using
attention. To further capture the syntax knowledge, Bai
et al.30l use multiple attention networks, with each one
encoding one relation from the syntax tree.

3.3 Discussions and future work

As we mentioned above, there have been extensive
studies for better knowledge acquisition of language mod-
els, and most of them focus on infusing existing struc-
tured knowledge sources into PLMs. The learning from
text data methods can be easily scaled, and the know-
ledge sources are easily obtained. But the underlying
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mechanism is still mostly unclear, the knowledge acquisi-
tion process is implicitly and thus is hard to control, and
may lead to inconsistent prediction, undesirable bias and
unforeseen risks. The learning from structured data meth-
ods can explicitly inject knowledge into PLMs, but are
limited by the cost, domain, scale and quality of know-
ledge sources. Furthermore, since the knowledge injec-
tion methods are often specialized to specific kinds of
knowledge, it is often difficult to extend or produce new
knowledge.

Furthermore, because all knowledge in PLMs are im-
plicitly encoded as parameters, it is often very difficult to
control and validate the knowledge acquisition process.
There are also several studies such as retrieval-based
PLMs, focusing on retrieving related knowledge or con-
text to enhance original PLMs[119121] rather than inject-
ing knowledge into PLMs' parameters.

Several future directions of knowledge acquisition in
PLMs may lie in: 1) For the knowledge acquisition from
existing structured knowledge sources, it is critical to de-
velop universal knowledge injection methods which can
uniformly injecting different types of knowledge from dif-
ferent knowledge sources, and ensure continuous learning
and avoid catastrophic forgetting in the meantime. 2) For
the knowledge acquisition from pure text data, it is help-
ful to fully understand the underlying mechanism of
knowledge learning in PLMs, and develop effective know-
ledge learning algorithms which can learn specific know-
ledge from text data in a controllable and predicable way.
3) Furthermore, it is also important to build comprehens-
ive benchmarks for investigating and assessing the know-
ledge acquisition process of PLMs.

4 Knowledge representation

Knowledge representation studies investigate how pre-
trained language models encode, transform and store the
acquired knowledge. In PLMs, knowledge is encoded to
dense vector representations and held in their distributed
parameters, but how each kind of knowledge is encoded,
transformed, and stored into the parameters is still un-
clear and needs further investigation. Currently, a few
studies have investigated the knowledge representation in
language models, and we will first review these studies ac-
cording to their analysis techniques.

4.1 Analyzing knowledge representations
in PLMs

Currently, the analyzing approaches for knowledge
representation in PLMs can be classified into four cat-
egories: gradient-based, causal-inspired, attention-based
and layer-wise methods. The first three methods aim to
locate specific knowledge in PLMs' corresponding neur-
ons or attention heads, and the layer-wise methods hypo-
thesize that knowledge is represented in different layers of
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PLMs.

Gradient-based. Dai et al.3¥ first introduce the
concept of knowledge neurons, which are neurons in
transformer(122] related to certain factual knowledge. Spe-
cifically, they hypothesize the knowledge neurons are loc-
ated in feed-forward networks, which are considered as
key-value memories”. Then by feeding the LM with
knowledge-expressing prompts such as “Michael Jordan
was born in [MASK]”, the corresponding knowledge neur-
on is identified as the neurons in the feed-forward net-
works with higher attribution scores, which are calcu-
lated based on integrated gradients.

Causal-inspired. Meng et al.9 identify knowledge
neurons as the neuron activations in transformers that
have the strongest causal effect on predicting certain fac-
tual knowledge. Such neurons are located through a caus-
al mediation analysis. Specifically, they calculate the
causal effect on factual prediction by comparing probabil-
ity variation of object prediction between the clean and
corrupted token embedding. Their experiments also
demonstrate that the mid-layer feed-forward modules
play a decisive role in factual knowledge representation.

Attention-based. In addition to the feed-forward
layers, the attention heads are also be considered as rep-
resentations which may encode the knowledge-related in-
formation. Clark et al.l40] Htut et al.[4ll investigate the
linguistic knowledge encoded in attention heads, and find
that while some individual attention heads are associated
with specific aspects of syntax, the linguistic knowledge is
distributed and represented by multiple attention heads.
Lin et al.l2 find that PLMs' attention weights could en-
code syntactic properties such as subject-verb agreement
and reflexive dependencies, and higher layers represent
these syntactic properties more accurately.

Layer-wise. Lin et al.'2l conduct a layer-wise prob-
ing for linguistic knowledge, which trains a specific classi-
fier for each layer, and find that the lower layers encode
the positional information of tokens, and higher layers en-
code more compositional information. Liu et al.42 ana-
lyze the layerwise transferability of PLMs on a wide
range of tasks and find that the middle layers usually
have better performance and transferability. Wallat et
al.123] propose to probe the captured factual knowledge
with LAMA[! of each layer in PLMs, and find that a sig-
nificant amount of knowledge is stored in the intermedi-
ate layers. Juneja and Agarwal3 also conduct a layer-
wised factual knowledge analysis based on knowledge
neuron8l, and demonstrate that most relational know-
ledge (e.g., Paris is the capital of “some nation”.) can be
attributed to the middle layers, which would be refined
into facts (e.g., Paris is the capital of France.) in the last
few layers.

4.2 Discussions and future works

The above studies reach some consensus about know-
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ledge representation in PLMs, including: 1) Factual
knowledge can be associated with feedforward modules in
middle or higher layers. 2) Linguistic knowledge is dis-
tributed and represented in multiple attention heads,
while a single attention head can only associate with a
specific aspect of linguistics. 3) The lower layers of PLMs
often encode the coarse-grained and general information
of knowledge, while the fine-grained and task-specific
knowledge are mostly stored in higher layers. These find-
ings are valuable for us to understand knowledge repres-
entation in language models but are also limited to specif-
ic knowledge types or model architectures. Therefore, the
knowledge representation in PLMs is still an open prob-
lem which needs further exploration.

In the future, several directions of knowledge repres-
entation in PLMs may lie in the following: 1) Because
knowledge representation is a long-standing concern in
cognitive science, neuroscience, psychology, and artificial
intelligence, it is helpful to borrow ideas from other re-
lated areas and design cognitively-inspired analysis meth-
ods. 2) Current knowledge representation studies in
PLMs mostly focus on a specific type of knowledge and
often result in local and specific conclusions. It is import-
ant to comprehensively investigate different types of
knowledge together, e.g., compare the differences and
commonalities of knowledge representations of different
knowledge types, pretraining tasks, or model architec-
tures, and come up with more universal and insightful
conclusions.

5 Knowledge probing

Knowledge probing aims to assess how well pre-

trained language models entail different kinds of know-
ledge. A comprehensive and accurate assessment of
PLMs' knowledge can help us identify and understand
language models’ capabilities and deficiencies, allow a fair
comparison between LMs with different architectures and
pre-training tasks, guide the improvement of a specific
model, and select suitable models for different real-world
scenarios. In this section, we will first introduce existing
benchmarks for knowledge probing, then introduce the
representative prompt-based and feature-based probing
methods and analyze their corresponding limitations, and
discuss future directions.

5.1 Benchmarks for knowledge probing

To assess the knowledge in PLMs, lots of benchmarks
have been proposed to probe various knowledge con-
tained in PLMs, for example, linguistic knowledgel!2: 59, 91,
93, 124]  syntactic knowledgell3: 40, factual knowledgelll: 44
45, 125]  commonsense knowledgel46: 76], etc. Table 1 sum-
marizes several representative knowledge probing bench-
marks.

5.2 Prompt-based knowledge probing

Prompt-based probing is one of the most popular ap-
proaches for knowledge probing. To evaluate whether
LMs know a specific knowledge such as the birthplace of
Michael Jordan, we could query LMs with knowledge

?  where

queries such as “Michael Jordan was born in .
“was born in” is a prompt for a specific type of know-

ledge. As shown in Table 1, prompt-based probing has

Table 1 Summary about some representative knowledge probing benchmarks

Method Benchmarks

Knowledge type

Formulation

LM diagnostics[®3]

Linguistic

Text filling

BLiMP[124] Linguistic Sentence scores comparison
LAMAII] Factual, commonsense
X-FACTRM Factual, multilingual

Prompt-based Multilingual LAMA[125]

Bio LAMALS]

Factual, multilingual

Factual, biological

Text filling

CAT46]

NumerSensel®7]

Commonsense

Commonsense, numerical

Sentence scores comparison text filling

oLMPICSK7] Reasoning Multiple choices
Open sesamel!2] Linguistic Diagnostic classifier and attention
LKTM2] Linguistic Token or token pair labeling
NPI probel91 Linguistic Probing classifier

Feature-based Edge probel?!

MDL probel27]

Linguistic, semantic

Linguistic

Edge probing

Minimum description length

Structural probell3]

Syntactic

Structural probing

Physical commonsensel76]

Commonsense, physical

Probing classifier
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been widely used in benchmarks such as LAMAL,
oLMpicsl47l, LM diagnostics[®3l, BIG-bench[128], etc.

For prompt-based probing, the main challenge is how
to design effective prompts which are suitable for differ-
ent kinds of knowledge and different PLMs. In the follow-
ing, we will introduce the typical prompt types for know-
ledge probing and discuss their limitations.

5.2.1 Prompt development

Handcraft prompt. Early methods often manually
write prompts for different kinds of knowledge. There are
two primary advantages of manually created prompts:
the readability without the need of any other resources or
training. For example, LAMA[I! manually creates one
cloze-style prompt for each relation, which is used to
probe the factual knowledge in language models. CAT46]
reframes the instances in existing commonsense datasets
into paired sentences with task-specific prompts, and de-
termines whether PLMs contain specific commonsense
knowledge by comparing the sentence scores, e.g.,
“money can be used to buy cars” VS. “money can be
used to buy stars”. oLMpicsl47l converts the probing tasks
for reasoning ability into multi-choice questions with
manually created prompts, and compare the LMs' prob-
ability of candidate choices.

Optimized discrete prompt. Despite the men-
tioned advantages, Jiang et al.8l argue that handcraft
prompts could be sub-optimal. Therefore, a series of stud-
ies have been proposed to optimize the prompts in a dis-
crete space so that PLMs could achieve better perform-
ance. Jiang et al.l*8] propose a mining-based method in or-
der to find prompts with higher performance from text
corpus. They first retrieve potential prompts which con-
tain both the subject and object entity, then select
prompts using a validation dataset. Davison et al.[9 se-
lect prompt from a handcrafted candidate set according
to the log-likelihood calculated by LMs. Haviv et al.[0]
propose a paraphrasing-based method, where each query
is first reframed by a trained rewriter and then fed into
PLMs. Shin et al.5l propose an automatic prompt gener-
ation method based on gradient-guided search, where a
prompt is iteratively updated from “[MASK]” token by
maximizing the label likelihood of training instances.

Continual prompt. Although the prompts gener-
ated by Shin et al.l’l] are discrete text, they are very diffi-
cult to be understood by humans. Therefore, several stud-
ies directly search better-performed prompts on continu-
al space rather than confining to discrete space, i.e., rep-
resenting prompts as dense vectors. Continual prompts
have shown good performance for knowledge probing, and
further extensions include handcraft prompts initializa-
tionl2, adding continual prompts on both input and
transformer blocksl®3 or adding LSTM layers above the
input embeddingsP4.

5.2.2 Limitations of prompt-based probing

Although prompts have been widely used to probe the

knowledge in PLMs, there are still lots of pending issues
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unresolved, which make the probing results unstable and
the assessment of knowledge in PLMs unreliable.

Inconsistent. Prompt-based probing have been
shown often result in inconsistent results due to prompt
selection, instance verbalization, negation, etc. Firstly,
Elazar et al.l’] find semantically equivalent prompts may
result in different predictions, Cao et al.58l further find
that PLMs would prefer specific prompts with the same
linguistic regularity with the pre-training corpus, such a
prompt preference will significantly affect the probing res-
ults, and result in inconsistent comparisons between
PLMs. Besides prompts, the instance verbalization pro-
cess also leads to inconsistent predictions. For example,
when we ask BERT “The capital of the U.S. is [MASK]”,
the answer is Washington, but when we replace the U.S.
with its alias America, the prediction will change to
Chicago. In addition, PLMs also exhibit inconsistency
when facing negationl% 7. For instance, PLMs would
generate highly similar predictions between a fact (“Birds
can fly”) and its incorrect negation (“Birds cannot
fly”)55l. Jang et al.'7] conduct the negation experiments
on PLMs of varying sizes and various downstream tasks,
and find that not only PLMs cannot well understand neg-
ation prompts, but also show an inverse scaling law.

Inaccurate. The performance of PLMs under prompt-
based probing may also be overestimated. Poerner et
al.[®8 find that many samples in the probing datasets
could be easily “guessed” by only relying on the surface
form association. For example, the object entity is a sub-
string of the subject entity (e.g., “Apple Watch is pro-
duced by Apple”). Furthermore, the training dataset for
prompt optimization may correlate with probing dataset,
which results in spurious correlationsl52l and the perform-
ance improvements may come from these spurious correl-
ations. Cao et al.’b7 also find that many prompts with
better performance are prompts which over-fit to answer
distributions, rather than a better semantic description of
the target relation.

Unreliable. To reach a faithful probing result, it is
essential to understand why PLMs make a specific predic-
tion. However, studies find that PLMs do not always
make predictions based on specific knowledge. In that
case, the knowledge probing results could be unreliable.
Cao et al.b7 find that the prompts but not the answers
dominate the prediction distribution of PLMs, resulting
in severely prompt-biased probing conclusions. Li et al.[™]
conduct a causal-inspired analysis and find that PLMs’
predictions rely more on words that are close in position
and frequently co-occur, rather than those related to
knowledge.

Bias analysis. While lots of studies conduct empiric-
al experiments on the biases in prompt-based probing,
few have investigated the source and interpretation of
these biases. Several studies employ causal analysis for bi-
as analysis, which has been widely used to identify un-
desirable biases and fairness concerns[!29-133. Cao et al.[58l
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propose a causal analysis framework to identify, inter-
pret and eliminate biases that exist in prompt-based
probing with a theoretical guarantee. Similarly, Elazar et
al.134 also propose a causal framework to estimate the
causal effects of the data statistics in training corpus on
the factual predictions of PLMs. Finlayson et al.[!3%] ap-
ply causal mediation analysis to investigate the syntactic
agreement mechanisms in PLMs.

5.3 Feature-based knowledge probing

Feature-based knowledge probing is also widely used
to probe the knowledge in PLMs, where the parameters
of original PLMs are frozen, and the probing tasks are ac-
complished based on the internal representation or atten-
tion weights produced by PLMs. In this section, we intro-
duce and discuss the feature-based probing approaches.
5.3.1 Classifier-based probing

Classifier-based probing trains a classifier to predict
specific knowledge properties on the top of the fixed
PLMs, and assesses the effectiveness of PLMs using the
classifier’s performancel®]. Such approaches are first pro-
posed to evaluate the linguistic properties (e.g., morpho-
logical, syntactic) associated with static embeddings[136, 137
and have been widely used to probe the linguistic know-
ledgell2, 59, 40, 42, 13] and semantic knowledgel% 92. 138, 42] ip
PLMs. Popular classifiers include linear classifier, logist-
ics regression, multi-layer perceptron, etc.

5.3.2 Classifier-free probing

Since the results and conclusions of classifier-based
methods are dependent on the training quality and selec-
tion of the classifier, some studies have developed feature-
based probing approaches without an additional classifier.
For example, Wu et al.lf0l propose perturbed masking,
which calculates an impact matrix through a two-stage
perturbation, where the matrix captures the impacts of a
token on the prediction of another token, and is further
used for the syntactic probe. Zhou and Srikumar(®!l intro-
duce DirectProbe, which directly probes the geometric
properties of PLMs' representation without an additional
classifier. Clark et al.l*?] probe syntactic knowledge in lan-
guage models by investigating the attention weights
without a classifier, e.g., analyzing the most attended
word of the given token.

5.3.3 Limitations of feature-based probing

There are two main limitations of current feature-
based probing approaches(62 63|, The first limitation con-
cerns the attribution of results, which is originally poin-
ted out by Hewitt and Manning/!3l. While most probes in-
troduce additional training data and parameters, it's diffi-
cult to attribute evaluation results to the knowledge in
PLMs, or the probe itself, which may learn to perform
the probing task. The second limitation pertains to the
inconsistency between different probe designs for the
same type of knowledge. There are various probe selec-
tions for each kind of knowledge, but the probe results
between simple probes like linear classifier or complex

probes could be inconsistent.
5.4 Discussions and future works

With the growing scale and abilities of big language
models, the comprehensive, accurate and reliable meas-
urements of the actual knowledge and capabilities of LMs
become increasingly important. However, the accurate,
robust and reliable probing approach is still an open
problem. Firstly, as we discussed above, both prompt-
based probing and feature-based probing have their own
limitations, which might result in unreliable or even con-
tradicting conclusions. Secondly, most existing bench-
marks are specialized to specific knowledge types and spe-
cific model architectures.

In the future, the main directions of knowledge prob-
ing may lie in: 1) Comprehensive benchmark construc-
tion. As we demonstrate in Table 1, current knowledge
probing benchmarks are mostly too specialized, which
may lead to inconsistent, biased or unreliable results.
Therefore, it is critical to build a comprehensive and un-
biased benchmark. 2) Debiased probing approaches. Cur-
rently, prompt-based probing is the dominant knowledge
probing methods due to its simplicity. However, there
still exist lots of issues in prompt-based probing. There-
fore, the design of unbiased datasets and better probing
frameworks is another useful direction worth investigat-
ing.

6 Knowledge editing

Knowledge editing is the process which modifies the
stored knowledge in pre-trained language models, either
by replacing it with new knowledge (e.g., changing the
current prime minister of the UK to Rishi Sunak) or by
removing it entirely (e.g., some personal privacy informa-
tion). There are two primary motivations for editing
knowledge in language models: 1) Even the state-of-the-
art language models (e.g., ChatGPT?2) could learn lots of
incorrect knowledge; 2) Many facts are time-sensitive, re-
quiring regular updates to their corresponding knowledge.

Unfortunately, editing knowledge in PLMs poses signi-
ficant challenges. Firstly, naive solutions such as retrain-
ing are often impractical due to the massive size of large-
scale language models. Secondly, due to the black box
and non-linear nature of PLMs, any minor modification
might result in a significant undesirable change in model
predictions. As a result, it can be challenging to precisely
edit the target knowledge.

To promote the development of relevant studies, De
Cao et al.l%l formulate three desiderata for knowledge
editing methods: 1) Generality: The method is able to
edit the language models already pre-trained without the
need for specialized re-training. 2) Reliability: The
method is supposed to successfully edit knowledge re-

2 https://openai.com/blog/chatgpt/
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quired modification while not influencing the rest of
knowledge in LMs. 3) Consistency: The modification
should be consistent across paraphrases with equivalent
semantics (e.g., Michael Jordan was born in [MASK]. VS.
The birthplace of Michael Jordan is [MASK].) and relev-
ant knowledge required modification accordingly (e.g.,
Rishi Sunak becomes the prime minister of the UK. VS.
Liz Truss is not the prime minister of the UK.).

In this section, we divide current strategies for know-
ledge editing into four categories and the summary of
comparisons between these approaches is shown in Table 2.
In the following, we will describe and discuss these meth-
ods.

6.1 Constrained fine-tuning

The naive solution to edit knowledge in a PLM is to
re-train it using the updated training dataset, but such a
naive solution is computationally expensive and may be
impractical because PLMs are involved. Therefore, a bet-
ter solution is to fine-tune PLMs only on a small subset
which only contains the target samples. However, such a
method may suffer from catastrophic forgetting, and af-
fects the rest knowledge which is not intended to be ed-
ited. Therefore, Zhu et al.l'4 propose to modify the know-
ledge in PLMs with constrained fine-tuning, specifically,
they use an L2 or Lo normalization to constrain the
parameters change of models. Furthermore, they find that
only fine-tuning the initial and final layers while keeping
the rest of the model frozen yields better performance
than finetuning the whole model. However, in deep neur-
al networks like PLMs, even a minor change of the para-
meters could change the model’s predictions on a lot of
samples. Therefore, such methods could potentially affect
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other knowledge stored in PLMs which is not required

modification.
6.2 Memory-based editing

Instead of directly modifying parameters of PLMs, an-
other natural solution is to maintain a knowledge cache
which stores all new knowledge, and replace the original
predictions when an input hits the cache. However, a
symbolic knowledge cache may suffer from robustness is-
sues, i.e., the inputs with the same meaning can differ in
natural language expressions, therefore they may result in
different predictions. To address this problem, Mitchell et
al.04 propose a memory-based approach for knowledge
editing. Specifically, the model contains five modules: an
edit memory that stores the modified knowledge, a classi-
fier, a counterfactual model, and the frozen original lan-
guage model. Given an input, the classifier determines
whether it hits a sample in the edit memory, and the
counterfactual model’s prediction will overrule the origin-
al language model’s prediction if it hits a memory cache.
This method is effective but does not actually edit the
knowledge encoded in the parameters of language models,
thus cannot benefit downstream tasks. Meanwhile, Dong
et al.l66] add additional trainable parameters in the feed-
forward module of PLMs, which are trained on a modi-
fied knowledge dataset while the original parameters are
frozen. They also demonstrate that the modified know-
ledge could benefit related QA tasks. Moreover, Madaan
et al.[% introduce the users’ feedback for PLMs’ error cor-
rection. Specifically, they maintain a memory of models’
mistake and users’ feedback, which enhance the model to
produce updated prompt and avoid similar mistakes.

Table 2 Comparisons between existing knowledge editing approaches. “Online edit” refers to quickly editing an individual target
knowledge. “Batch edit” refers to editing a set of target knowledge simultaneously. “Downstream benefit” refers to the potential
for the modified knowledge to be utilized by the edited language model for downstream tasks. “Unforeseen side effects” refers
to the impact of knowledge editing on the language model beyond the modification of target knowledge.

Approach K:];);\;lg;itge Training required  Online edit Batch edit Downstream benefit Unforeseen side effects
Constrained tuning
FTM4 Factual YES NO YES Potential YES
Memory-based
SERACI64] Factual, QA YES YES YES NO NO
MEM-PROMPTI63] Linguistic, ethics NO YES YES Potential Unlikely
CALINET!I66] Factual YES NO YES Potential YES
Meta-learning
KNOWEDITOR!5] Factual YES YES YES Potential YES
MEMDL6] Factual YES YES YES Potential YES
Locate and edit
Knowledge neuronl38] Factual NO YES NO NO YES
ROMEBY Factual NO YES NO Potential Possible
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6.3 Meta-learning-based editing

Sinitsin et al.[140] first propose editable training to con-
duct model editing based on meta-learning, which aims to
train the model parameters to suit model editing. By con-
straining the training objective, the editing procedure
could be accomplished under k gradient step while ensur-
ing reliability, locality, and efficiency. However, such a
method is not practical for pre-trained language models
since it requires expensive specialized retraining. A differ-
ent strategy is to utilize a hyper network, which uses one
network to generate the weights of another networkIl4l],
De Cao et al.l'%, Hase et al.l’7 train a hyper-network to
predict the parameter changes for each data point, with
the constraint of editing target knowledge without affect-
ing others. Although computationally efficient, Mitchell
et al.ll6l argue that this method fails to edit very large
models, and propose model editor networks with gradi-
ent decomposition (MEND). Specifically, by decompos-
ing the gradient of standard fine-tuning into a low-rank
form, they could train multiple MLPs to generate local
model parameter changes, without damaging models’' pre-
dictions on unrelated knowledge. Experiments show that
MEND can be applied to large pre-trained models for fast
model editing. One limitation of existing meta-learning-
based methods is that their robustness and generaliza-
tion are still questionable, as they ensure locality by con-
straining the parameter space change or the predictions
on specific datasets. In that case, the knowledge that re-
quires no modifications or the knowledge that is related
to edited knowledge but not paraphrasing could also be
incorrect.

6.4 Locate and edit

Based on the assumption that “knowledge is locally
stored in PLMs”, the “locate and edit” strategy first loc-
ates the parameters corresponding to specific knowledge,
and edit them by directly replacing with updated ones.
This approach is also introduced in Section 4.1. Dai et
al.B8 present a case study of factual knowledge editing in
PLMs with corresponding knowledge neurons. By dir-
ectly modifying the value of knowledge neurons, they
achieve knowledge editing with a relatively low but non-
trivial success rate. Although the editing procedure is
straightforward once the corresponding knowledge neur-
on is located, this method has not proved its effective-
ness on large-scale editing or the effects of unrelated
knowledge. Similarly, Meng et al.39 first connect the
knowledge required modification with a key-value pair in
one of the middle MLP layers, and modify the corres-
ponding knowledge by directly updating the key-value
pair. Since these methods are based on the locality hypo-
thesis of factual knowledge, which has not been widely
confirmed yet, the changes in certain parameters may af-
fect irrelevant knowledge and lead to unexpected results.

6.5 Discussions and future works

To utilize pre-trained language models as a sustain-
able knowledge resource, the precise, effective, reliable
and consistent knowledge editing is essential. However, as
discussed above, all current editing methods have their
own limitations. Therefore, it is worthwhile to enhance
current methods and develop new knowledge editing
strategies.

In the future, several useful directions of knowledge
editing may lie in: 1) Broader range of target know-
ledge. As shown in Table 2, current studies mostly focus
on the editing of factual knowledge, which is relatively
easy to formalize and evaluate. In the future, researchers
could explore the editing methods towards other kinds of
knowledge, and develop universal approaches which can
edit all kinds of knowledge in the same way. 2) Compre-
hensive evaluation. Currently, most knowledge editing
studies are evaluated using metrics such as editing suc-
cess rate on target knowledge, predictions invariance rate
on unrelated knowledge for assessing generality, and ac-
curacy on paraphrases of target knowledge for assessing
consistency. However, we find that these metrics are lim-
ited to comprehensively evaluate the knowledge editing
capability of different approaches. For instance, most
evaluations only sample unrelated knowledge from the
same distribution of target knowledge. However, the in-
fluence of a knowledge edit could be much broader, e.g.,
affecting the performance on downstream tasks or the
knowledge from other distributions and categories. In ad-
dition, as mentioned in Mitchell et al.l'6l, most studies
measure the consistency of samples generated through
back translation, which ignores the knowledge affected by
knowledge editing except the paraphrases, e.g., the coun-
try with the largest population would be affected by the
population modification of the countries. Therefore, it is
important to design comprehensive benchmark which can
better assess the capabilities of editing strategies. 3)
More effective editing approaches. Ideally, a know-
ledge editing approach should satisfy the desiderata of
generality, reliability and consistency, and can handle
large-scale and individual knowledge editing tasks with
high efficiency. To this end, we may borrow ideas from
other fields, such as meta-learning, continual learning,
and life-long learning. Furthermore, it is useful to con-
nect knowledge editing studies with knowledge represent-
ation studies (Section 4).

7 Knowledge application

Knowledge application studies how to effectively dis-
till and leverage the knowledge in PLMs for other applic-
ations. Specifically, we divide knowledge applications in-
to two categories: language models as knowledge bases
and language models for downstream tasks, and in follow-
ing we describe them in detail.
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7.1 Language models as knowledge bases

The impressive performance of large-scale pretrained
language models, as well as the potentially enormous
amount of implicitly stored knowledge, raises extensive
attention about using language models as an alternative
to conventional structured knowledge bases (LMs-as-
KBs)l11, 48, 57, 80-83],

Unfortunately, along with the promising advantages
and potentials compared with structured knowledge
bases, there also exist intrinsic flaws for language models
as knowledge basel®?, which are summarized in Table 3.
In following we describe them in detail.

Table 3 The comparisons between conventional structured
knowledge bases and using language models as knowledge bases
(LMs-as-KBs). Part of this table is inspired by Razniewski et
al.[82] The advantages are marked in bold. From the table, we can
easily find that although LMs-as-KBs are more advantageous on
construction and coverage, the critical current limitations of
interaction and reliability significantly hinder its real-word
applications, and far from substitution of structured knowledge
bases.

Perspectives Structured KB LMs-as-KBs

Construction

Ontology/schema Pre-defined

Open-ended @

Process Pipline End-to-end @

Human effort Data annotation

Self-supervised @

Expert knowledge Common Not required @
Coverage
Domain Constrained Open @
Amount Limited Potential
Knowledge fusing Complex Easy @
Interaction
Query Structured Natural language @
Prediction Deterministic @ Probabilistic
Rejection Yes @ Hard
Editing Easy @ Limited
Reliability
Ambiguity Low (©) High
Correctness Relatively high @ Questionable

Current practicality Limited yet

Extensive @

Construction procedure is one of the biggest advant-
ages of LMs-as-KBs compared with structured KBs. Con-
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structing large-scale structured KBs such as Freebasell42]
and Wikidatall43l often requires extremely complex
pipelines[!ll, e.g., ontology construction, knowledge ac-
quisition, knowledge verification, knowledge fusion, know-
ledge storage, and knowledge population. Such a com-
plex pipeline involves lots of NLP techniques, including
ontology engineering, entity linking, entity recognition,
relation extraction, entity matching and so on. And each
technique requires corresponding expert knowledge, su-
pervised data and human efforts. Moreover, due to the
pipeline nature, error propagation is always a critical is-
sue.

In contrast, the knowledge of language models can be
easily learned from pure text using self-supervised learn-
ing, without any explicit supervision signal (Section 3.1).
Furthermore, the construction procedure is end-to-end,
therefore no ontology engineering, expert knowledge, or
human annotations are needed.

Coverage is another big advantage of LMs-as-KBs.
Traditional structured KBs are often limited by its pre-
defined schemas, and the difficulty of acquiring know-
ledge further limits their coverage. In comparison, by dir-
ectly representing knowledge in parameters, there is no
schema limitations for LMs-as-KBs. And all knowledge is
learned from un-annotated text corpus, therefore the
knowledge coverage is mostly only determined by the
coverage of pre-training corpus.

The above advantages make LMs-as-KBs an ex-
tremely attractive and promising idea. However, there are
also some intrinsic flaws which hinder LMs from fully
substituting structured KBs.

Interaction with structured KB and LMs-as-KBs are
quite different. Structured KBs often use structural
querying methods such as SPARQLI[!44, e.g., querying the
birthplace of Michael Jordan using (Michael Jordan,
Birthplace,?). In the case of language model-based KBs,
the queries are mostly natural language expressions such
as “The birthplace of Michael Jordan is [MASK]”.

Compared with structural queries, natural language-
based queries are more natural and friendly for users.
However, structured KBs can return deterministic an-
swers (e.g., Brooklyn), but LM-based KBs can only gen-
erate candidates with different probabilities (e.g., (Brook-
lyn, 0.8)). The probabilistic predictions may be incorrect,
inconsistent and confusing. Furthermore, structured KBs
can identify the queries they cannot answer, but current
LM-based KBs can hardly reject the queries it cannot an-
swer, thus resulting in the knowledge hallucination prob-
lem. Concretely, if we query some knowledge that is not
stored in a structured KB, the answer could be blank
when no tuples are matched. However, no matter what
we ask, language models will always “guess” the answers,
even such knowledge is never learned by LMs. Although
there are some naive solutions to this problem such as re-
jecting answers with a low probability, this is still an
open problem currently.
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Finally, it is difficult to edit knowledge in LM-based
KBs, as discussed in Section 6. In comparison, it is easy
to add, modify and delete knowledge in structured KBs.

Reliability is another concern for LMs-as-KBs. The
first problem is ambiguity. In structured KBs, all entities
and facts have their own IDs (e.g., Q89 for Apple the
fruit and Q312 for Apple Inc. in Wikidata), therefore
there is no ambiguity problem. However, in LM-based
KBs, all pieces of knowledge are represented as natural
language expressions and will therefore suffer from the
ambiguity problem of natural language. For example, do
“U.S.A” and “America” represent the same entity in a
language model? Previous studies have observed that
such verbalization requirements will result in prompt
preference bias and instance verbalization bias in LMs-as-
KBsP8l. The consistency of predictions is another draw-
back of LMs-as-KBs, i.e., a LM-based KB may return dif-
ferent answers to the semantically equivalent queries.
downstream

7.2 Language models for

tasks

Besides using language models as knowledge bases, the
knowledge in PLMs can also benefit many downstream
tasks in different ways. Fig.3 shows three main paradi-
gms and we describe them in detail.

7.2.1 Fine-tuning

Fine-tuning is a common way to leverage knowledge
in language models, which learns to distill and leverage
knowledge by further tuning PLMs using task-specific
datasets. Firstly, implicitly learned knowledge from text
has been recognized as one of the main reasons for PLMs'
remarkable performance and strong generalization ability
across so many NLP tasksl68-71. Secondly, many studies
have shown that injecting knowledge into language mod-
els can lead to better performance on downstream tasks.
For instance, the integration of entity knowledge into
pre-trained language models (PLMs) has shown potential
for improving the performance of various language under-
standing tasks (Sun et al.l¥l; Shen et al.[10%); Similarly, in-
corporating factual knowledge into PLMs has been found
to enhance their performance in tasks such as relation ex-
traction and entity typing, etc.[% 26-28]; Furthermore, the
incorporation of linguistic knowledge with PLMs has
demonstrated performance improvements on benchmarks
such as GLUEI0, 36, 115],

7.2.2 Prompt learning

Prompt-based learning is another way to leverage the
knowledge in PLMs for downstream tasks. For example,
to classify the sentiment polarity of the sentence “Best
movie ever.”, we can add a prompt and transform the in-
.. And the polarity
can be determined by comparing the PLMs' prediction
probability between candidate answers “good” and “bad”.
By selecting appropriate prompts, PLMs have been
shown competitive zero-shot performance on some down-
stream tasks without any supervised trainingl® ¢ 73,

put into “Best movie ever. It is

Because handcraft prompts often suffer from unstable
performance across different prompts and cannot utilize
the information from supervised data, many prompt op-
timization approaches have been proposed to acquire bet-
ter-performing prompts(™l, such as paraphrasing4s 50],
gradient-based search®, model generation145, know-
ledge enhanced[!46], etc. Furthermore, prompt-tuning,
which adds some trainable vectors to the inputs as con-
tinuous prompts, while keeping the parameters of LMs
freezing, has achieved competitive performance with fine-
tuningl®3 54 148 149] Ip addition to optimizing single
prompts, ensembling[48: 1501 compositing/!5l, or decoup-
ling(152] multiple prompts could also improve model perform-
ance. Moreover, prompt has also been applied to data
augmentation153, domain adaptation[!54, debiasing[!5]
and so on.

More recently, instruction-tuning, which pretrains
LMs on a wide range of datasets given the natural lan-
guage description of tasks as instructions, has achieved
significant performance and generalization ability im-
provements of language modelsl86; 156-158],

7.2.3 In-context learning

Applications. Currently, the parameters of PLMs
have been scaled to 175B (e.g., GPT-3[l, OPTI],
BLOOMS3) or even larger (e.g., PaLM[I0) making the
computational expense of fine-tuning and prompt-tuning
infeasible for most researchers. Therefore, tuning-free in-
context learning has become one of the most popular ap-
proaches to apply the knowledge in large-scale PLMs in
downstream tasks[l6ll. For instance, for the sentiment
classification task, in-context learning will first sample
several demonstrations, such as (what a horrible meal,
negative), and combine them with the original query. In
this way, the input becomes “What a horrible meal. It is
bad. [SEP] Best movie ever. It is _.” The provided
demonstrations offer extra information about the task
and enable PLMs to utilize the analogy ability to predict
the correct answer. Incontext learning has achieved good
performance on lots of downstream tasks such as lan-
guage understanding(6: 74 162-164]  data generation/165-167],
or reasoning[168-170],

Bias problem. One drawback of in-context learning
is the bias problem, i.e., the performance is sensitive to
demonstration selections, demonstration orders, label dis-
tribution of demonstrations and prompt selection, etc.[™
75, 171] Therefore, to achieve better performance of in-con-
text learning, Zhao et al.[™¥l first propose to estimate the
biases by feeding the model with an uninformative input
(e.g., [MASK] or N/A), and then calibrate the prediction
probabilities uniformly distributed for eliminating the
models’ bias towards specific answers. For demonstration
selection, Gao et al.45 Liu et al.l'"!l propose to select
demonstrations that are semantically close to the input
query. Rubin et al.ll7 train a dense retriever on LM-
scored datasets to select demonstrations. Su et al.173] in-

3 https://huggingface.co/bigscience/bloom
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Fine-tuning

[ I really feel sorry for him.

Prompt learning

[ What a grand party. Itis . =

In-context learning

[ What a grand party. Itis .

Parties are used for happy.
Sorry often cause sadness.
Happy is antonym of sad.

& .
s75¥

Knowledgeable PLMs
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[ Label: 0 ]—[ Negative ]
Happy ]—[ Positive ]
[ Happy J—[ Positive ]

Fig. 3 The primary paradigms that apply the knowledge in PLMs to downstream tasks

troduce a graph-based selection method to ensure the
demonstration’s diversity and representativeness. For
demonstration sort, Lu et al.l”d first construct a develop-
ment dataset by sampling from language models, and
then use entropy-based metrics to determine the optimal
demonstration permutation. For prompt selection, Gao et
al.l45] use a language model to generate candidate
prompts and select ones with better performance on the
development set.

Mechanism. Although in-context learning has been
widely applied on various downstream tasks, its underly-
ing mechanism is still unclear. Reynolds and McDonell(72
find that zero-shot prompting sometimes can signific-
antly outperform in-context learning, and argue that the
additional demonstrations do not help PLMs to learn a
new task, but rather locate the task they have already
learned. Cao et al.l’’l investigate the in-context learning
for knowledge probing, and find that the demonstrations
can only provide type-level guidance but not factual in-
formation. Min et al.® find that randomly replacing the
demonstrations’ labels hardly affects the performance,
and show that the effectiveness of in-context learning re-
lies more on the label space and input distribution restric-
tion provided by demonstrations rather than the precise
input label mapping. Chan et al.[126] find that only when
the data includes both burstiness and large-scale of rarely
occurring classes, in-context learning capability can
emerge in transformer model. von Oswald et al.[!39 in-
vestigate the connections between in-context learning and
gradient descent, and demonstrate the similarity between
in-context learning and the gradient-based few-shot learn-
ing.

7.3 Discussions and future works

Leveraging knowledge in PLMs is both promising and
challenging. On the one hand, it is obvious that the large
amount of implicit knowledge stored in PLMs will bene-
fit different downstream tasks. On the other hand, all
current application paradigms have their own limitations.
For instance, the consistency and reliability of LMs-as-

@ Springer

KBs hinder PLMs to replace structured KBs. Moreover,
fine-tuning, prompt learning and in-context learning
methods often suffer from catastrophic forgetting, compu-
tational cost, inconsistent and unstable predictions, so-
cial bias, etc.

To address these challenges, several main future direc-
tions of knowledge application may lie in the following:
1) For LMs-as-KBs, we need to propose specific pre-train-
ing approaches to address current shortcomings in con-
sistency and reliability. 2) For LMs for downstream tasks,
we suggest explore more application strategies, such as
new tuning-free methods to address the computational
cost issue and black-box tuningl47] methods to tune pre-
trained language models without access to their paramet-
ers.

8 Conclusions

In this survey, we conduct a comprehensive review
about the life circle of knowledge in pre-trained language
models, including knowledge acquisition, knowledge rep-
resentation, knowledge probing, knowledge editing and
knowledge application. We systematically review related
studies for each period, discuss the advantages and limit-
ations of different methods, summarize the main chal-
lenge, and present some future directions. We believe this
survey will benefit researchers in many areas such as lan-
guage models, knowledge graph, knowledge base, etc.
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