
 

Comprehensive Relation Modelling for Image

Paragraph Generation

Xianglu Zhu 1,2          Zhang Zhang 2,3          Wei Wang 2          Zilei Wang 1

1 Automation Department, University of Science and Technology of China, Hefei 230027, China

2 Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition,

Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

3 University of Chinese Academy of Sciences, Beijing 100864, China

 
Abstract:   Image paragraph generation aims to generate a long description composed of multiple sentences, which is different from tra-
ditional image captioning containing only one sentence. Most of previous methods are dedicated to extracting rich features from image
regions, and ignore modelling the visual relationships. In this paper, we propose a novel method to generate a paragraph by modelling
visual relationships comprehensively. First, we parse an image into a scene graph, where each node represents a specific object and each
edge denotes  the  relationship between  two objects. Second, we  enrich  the object  features by  implicitly  encoding visual  relationships
through a graph convolutional network (GCN). We further explore high-order relations between different relation features using anoth-
er graph convolutional network. In addition, we obtain the linguistic features by projecting the predicted object labels and their relation-
ships into a semantic embedding space. With these features, we present an attention-based topic generation network to select relevant
features and produce a set of topic vectors, which are then utilized to generate multiple sentences. We evaluate the proposed method on
the Stanford  image-paragraph dataset which  is currently the only available dataset  for  image paragraph generation, and our method
achieves competitive performance in comparison with other state-of-the-art (SOTA) methods.
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 1   Introduction

Image  description  is  a  crucial  task  in  the  interdiscip-

linary field of computer vision and natural language pro-

cessing, which is significant for video summarization and

support of the blind. Recently, great successes have been

achieved  in  image  captioning  with  the  development  of

deep  learning.  However,  image  captioning  methods  usu-

ally produce one sentence for a given image, missing rich

visual  contents.  To  overcome  this  shortcoming,  Johnson

et  al.[1] proposed  dense  captioning  to  generate  captions

based  on  a  set  of  detected  salient  regions.  In  this  way,

these  generated  captions  can  tell  more  details  of  an  im-

age,  but  they  are  still  independent  of  each  other,  thus

making up a set of cluttered and incoherent descriptions.

For the purpose of addressing the weaknesses of both im-

age  captioning  and  dense  captioning,  Krause  et  al.[2] in-

troduced  a  new  task  of  generating  a  paragraph  that

provides  a  coherent  natural  language  description  for  de-

scribing  fine-grained  details  of  an  image.  From  the  per-

spective  of  the  generated  descriptions  for  images,  para-

graph  generation  takes  advantage  of  the  previous  tasks

but avoids their shortcomings, which is a promising task

of image description.

60

Image paragraph generation is a very challenging task

that needs to generate multiple sentences with more than

 words.  A  single  recurrent  neural  network  generally

cannot  work  well  for  this  kind  of  long  sequence  genera-

tion  task  due  to  its  limited  capability  of  long-term  de-

pendency  modelling.  Existing  methods  for  image  para-

graph  generation  generally  decompose  a  paragraph  into

several  sentences,  which  are  generated  by  a  recurrent

neural  network (RNN) based on the corresponding topic

vectors.  Therefore,  topic  vectors  are  critical  to  the  qual-

ity  of  paragraph  generation.  Previous  methods[2−4] usu-

ally take image features as the input to a long short-term

memory  (LSTM),  which  produces  a  sequence  of  hidden

states. Then, each hidden state is transformed to the cor-

responding topic vector via a linear projection or a shal-

low neural network. These methods ignore the modelling

of  visual  relationships,  which are  very important  for  im-

age  understanding.  Although  a  recent  work[5] tries  to
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model  visual  relationships  to  produce  topic  vectors,  it

oversimplifies visual relation modelling by just fusing ob-

ject features.

Considering that a scene graph is a visually-grounded

graphical  structure  of  an  image,  where  the  nodes  depict

the  object  instances  and  the  edges  represent  their  pair-

wise relationships,  it  contains the key visual  objects  and

their  comprehensive  relations  for  paragraph  generation.

As shown in Fig. 1,  most of  the visual  objects  (e.g.,  per-

son, street, building and car) in the scene graph and their

relations  (e.g.,  cars  driving on the  street  and man walk-

ing on the street) occur in the annotated paragraph and

our  generated  paragraph.  In  particular,  several  indirect

relations in the scene graph should also be taken into ac-

count for paragraph generation, such as people walking in

front of the building.

In  this  paper,  we  propose  a  new  method  to  generate

paragraphs  by  modelling  comprehensive  visual  relation-

ships based on scene graphs. First, we build a scene graph

through  visual  relationship  detection,  and  obtain  the

visual features of the objects and their relations. Second,

by  leveraging  the  structure  of  the  scene  graph,  we  pro-

pose two graph convolutional networks (GCNs) to enrich

the visual features with contextual cues by encoding visu-

al and high-order relations. In particular, we also extract

the  linguistic  features  for  the  predicted  labels  of  the  de-

tected  objects  and  relationships  in  the  scene  graph.

Third, the enriched features are selectively fed into an at-

tention-based topic generation network, which produces a

sequence of topic vectors. With the linguistic features, the

topic  vectors  generate  a  paragraph  via  an  RNN-based

language model.

The  main  contributions  of  our  work  can  be  summar-

ized as follows:

1)  We  propose  a  novel  image  paragraph  generation

method based on scene graphs, where the visual relations

between objects  as  well  as  the  high-order  features  betw-

een visual relations are specifically explored by GCNs to

improve the quality of generated paragraphs.

2) We extract the linguistic features from the labels of

the  detected  objects  and  their  relationships  as  supple-

ments to the visual features. The multimodal features are

then  fused  via  an  attention-based  topic  generation  net-

work to generate topic vectors.

3)  We  perform  extensive  evaluations  and  ablation

studies on the benchmark of image paragraph generation

(i.e.,  the  Stanford  image-paragraph  dataset),  and  the

comparable  results  with  the  state-of-the-art  (SOTA)

methods verify the effectiveness of our model.

 2   Related work

In this section, we briefly review the literature that is

closely  related  to  the  proposed  method,  including  scene

graph parsing and image paragraph generation.

 2.1   Scene graph parsing

Similar  to  visual  relationship  detection[6–9],  scene

graph  parsing  is  a  visual  task  aiming  to  understand  a

 

(a)

(b)

(c)

A large building with bars on the windows in front of it. There arepeople walking in front of the building. There is a 

street in front of the building with many cars on it.

This picture is taken outside on a sunny day. There is a large building behind the street. There are cars driving on the 

street in front of the building. There is a man walking on the sidewalk. Tall lights are standing on the sidewalk.
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Fig. 1     Examples  of  a  scene  graph  and paragraphs:  (a) An  image  and  its  scene  graph;  (b) Ground-truth  of  the paragraph;  (c) Our
generated paragraph. Objects and the visual relationships in the scene graph are beneficial to generate an informative paragraph.
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visual  scene  by  recognizing  the  objects  and  detecting

their relationships. In a scene graph, an object is denoted

as a graph node with a bounding box and an object cat-

egory label,  while a relationship is denoted as a directed

edge between two objects with a relational predicate (i.e.,

subject  predicate  object).  Instead of  inferring each

object and relationship in isolation, Xu et al.[10] addressed

the problem of scene graph parsing by passing contextu-

al  information  through  a  graph  topology  and  iteratively

improving the predictions with standard RNNs. To lever-

age  the  mutual  connections  of  object  detection,  scene

graph  parsing  and  region  captioning,  Li  et  al.[11] intro-

duced a novel framework to solve the three tasks jointly

in an end-to-end manner and utilize their complementary

information for mutual improvements. Observing that the

relational  predicate is  closely related to the labels  of  the

subject  and  object,  Zellers  et  al.[12] proposed  to  predict

the  labels  of  subjects  and  objects  using  a  bidirectional

LSTM, which are then used to infer the relational predic-

ates with the prior knowledge of recurring relationships in

scene  graphs.  To  improve  the  efficiency  of  generating

scene graphs, Li et al.[13] constructed a shared representa-

tion for highly overlapped subject, object  pairs and fac-

torized the entire scene graph into subgraphs, thus signi-

ficantly reducing the redundant computation and acceler-

ating  the  inference  speed.  Woo  et  al.[14] designed  a  rela-

tional  embedding  module  to  model  interdependence

among entire  objects,  and Chen et  al.[15] learned  a  rout-

ing mechanism to explore  the relationships by propagat-

ing  messages  through  a  graph.  Li  et  al.[16] proposed  an

unbiased  graph  neural  network  with  adaptive  message

propagation to alleviate error propagation and achieve ef-

fective  context  modelling.  Different  from  traditional

methods using cross-entropy losses, Suhail et al.[17] intro-

duced a novel energy-based learning framework for effect-

ively  incorporating  the  structure  of  scene  graphs  in  the

output  space.  In  this  work,  we  adopt  [16]  to  generate

scene graphs owing to its efficiency and performance.

 2.2   Image paragraph generation

Generating an informative paragraph for an image is a

challenging  task,  since  it  not  only  needs  the  image  en-

coder to understand objects and relationships but also re-

quests  a robust natural  language model  to generate long

descriptions.  To  solve  this  problem,  Krause  et  al.[2] de-

composed  the  input  image  into  semantically  meaningful

regions of interest, and employed a hierarchical recurrent

neural  network  (HRNN)  to  generate  multiple  sentences.

The  proposed  HRNN  consists  of  SentenceRNN  and

WordRNN,  where  SentenceRNN  produces  topic  vectors

and WordRNN generates the corresponding sentences. Li-

ang  et  al.[3] built  an  adversarial  framework  containing  a

structured paragraph generator and two discriminators to

drive  model  learning.  The generator  aims to  constructed

meaningful  and coherent paragraphs,  which are  then fed

into a sentence discriminator and a recurrent topic-trans-

ition  discriminator.  The  two  discriminators  are  used  to

measure  the  plausibility  of  paragraphs  and  the  smooth-

ness  of  semantic  transition  between  different  sentences.

Chatterjee and Schwing[4] introduced coherence vectors to

guarantee a gradual transition of contextual topics. In ad-

dition,  to  generate  a  set  of  diverse  paragraphs,  Chatter-

jee and Schwing[4] formulated paragraph generation into a

variational  autoencoder  (VAE)[18] framework.  Different

from  prior  studies  that  generate  the  topic  vectors  with

SentenceRNN,  Che  et  al.[5] constructed  topic  vectors

based on relation features,  which are generated with the

visual  features  of  related  pairwise  objects,  and  Wang  et

al.[19] proposed  generating  topic  vectors  from  region  fea-

tures through convolutional layers. Melas-Kyriazi et al.[20]

applied  self-critical  training  for  this  task  and  punished

the repeated trigram when decoding into paragraphs. Zha

et  al.[21] proposed  a  context-aware  visual  policy  network

that explicitly considers the previous visual attentions as

context when generating the current visual attention. To

alleviate  the  repetitive  and  incomplete  captioning  prob-

lems,  Xu  et  al.[22] designed  an  interactive  key-value

memory-augmented attention mechanism to track the in-

formation  of  each  object.  Yang  et  al.[23] used  an  image

scene  graph  to  incorporate  rich  semantic  knowledge  and

hierarchical  constraints into the model.  Shi  et  al.[24] pro-

posed a tree-structured decoder network to better organ-

ize  visual  clues  holistically.  Xu  et  al.[25] proposed  a  re-

trieval-enhanced adversarial framework to enhance image

description generation with  retrieved candidate  captions.

Guo et al.[26] designed a visual-textual coupling model to

distill  multilayer  semantic  topics  of  a  given  image,  and

used  a  language  model  to  interpret  the  extracted  image

features and semantic topics into captions.  In this  work,

to obtain more contextual representations, we employ the

object-based GCN to encode visual relations and the rela-

tion-based GCN to encode high-order relationships. Then,

we design an attention-based topic generation network to

produce the topic vectors.

 3   Our method

t

As shown in Fig. 2, an image is first input to the scene

graph detection module which detects a scene graph and

extracts the object and relation features. These two kinds

of  visual  features  are  enriched  with  contextual  cues  by

encoding visual and high-order relations via object-based

and relation-based GCNs, respectively, which are then fed

into an attention-based topic generation network to pro-

duce  a  set  of  topic  vectors  and  attentive  weights.

Moreover, the labels of objects and visual relationships in

the detected scene graph are embedded into the linguist-

ic  features,  which  are  then  integrated  with  attentive

weights. At each time step , the attended linguistic fea-

tures  are  input  to  an  RNN to  generate  a  sentence  with
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the corresponding topic vector. After unrolling the atten-

tion-based  topic  generation  network  for  steps,  we  ob-

tain all the sentences that are orderly concatenated into a

complete paragraph. Details are presented as follows.

 3.1   Scene graph parsing

We adopt the scene graph generator in [16] to parse a

given  image  into  a  scene  graph.  First,  the  Faster  R-

CNN[27] is leveraged to produce a set of entity proposals.

The  detected  entity  proposals  are  fed  into  a  multistage

graph network to obtain a context-aware representation.

The network adopts directed edges to model different in-

formation  flows  between  entity  and  relationship  propos-

als  as  a  bipartite  graph,  and  an  adaptive  message

propagation strategy based on relation confidence estima-

tion to reduce the noise in context modelling. Finally, the

refined  entity  and  predicate  representations  are  used  to

predict their categories with linear classifiers.

⟨ ⟩

During the process of constructing the scene graph for

an  image,  plenty  of  contextual  cues  for  understanding

visual contents are available. For instance, the object fea-

ture for each proposal can be obtained by projecting the visu-

al representation of the corresponding region from 4 096-d

to 1 024-d. For a pair of related objects, we learn the rela-

tion  feature  of  a  triplet subject-predicate-object  based

on the features of the subject, the object and the bound-

ing  box  enclosing  the  relationship.  In  addition  to  the

aforementioned  visual  cues,  the  labels  of  the  object  cat-

egories  and  the  relationships  play  the  role  of  attributes

and provide abundant textual information, which are pro-

jected into the linguistic feature via an embedding layer.

Furthermore,  based  on  the  structure  of  the  scene

graph,  we  build  two  GCNs  (i.e.,  the  object-based  GCN

and relation-based GCN) to enrich the visual representa-

tions  with  high-order  information,  which  draws  inspira-

tion  from  [28].  The  object-based  GCN  takes  the  object

features as nodes and models the visual relations with the

edges  in  the  original  scene  graph.  Then,  we  switch  its

nodes  and  edges  to  obtain  the  relation-based  GCN,  as

shown in Fig. 3,  where  the  nodes  denote  the  visual  rela-

tions  and  the  edges  model  the  high-order  relations

between  objects.  The  details  are  shown  in  Sections  3.2

and 3.3.

 3.2   Modelling visual relations between ob-
jects

N

I O = {oi}Ni=1

oi ∈ RDo Do

i

Gobj = (O, Eobj)

O
Eobj

Gobj

Suppose that we detect  region proposals in an im-

age ,  and extract the set of object features 

from the bounding boxes, where  denotes the -

dimensional visual feature of the -th object proposal. To

implicitly encode visual  relationships into the object fea-

tures, we build a graph  according to the

structure of the generated scene graph, where  denotes

the  object  features  and  denotes  the  set  of  semantic

connections between the related objects. Based on the to-

pology  of  the  graph ,  we  employ  a  GCN  to  update
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Fig. 2     Architecture of our method. Scene graph detection module parses an image into a scene graph and produces the visual features
of the objects and their relationships, which are enriched through two GCNs. Enriched visual features are then fed into the paragraph
generation module to generate a paragraph with the aid of the linguistic features.
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oi

oi

the  node  representations  via  message  passing.  In  this

way, the object feature  can be iteratively improved by

incorporating the neighboring object features. In particu-

lar, the iteration process of  is formulated as

oti = ρ(W o
s o

t−1
i +

∑
oj∈Eoi

Wot−1
j + b) (1)

ρ Eoi

oi W o
s ∈ RDo×Do W ∈ RDo×Do

b

where  is the ReLU activation function.  denotes the

set of neighbours of .  and 

are  transformation  matrices  for  the  node  itself  and  the

neighbors, respectively.  represents the bias vector.

W {Wk}Kk=1

K

oi
oj W1 W2

oi

{Wk}Kk=1

{Wk}Kk=1 {Wk′}4k′=1 W1

W2 W3 W4

Furthermore,  to  take  full  advantage  of  the  predicted

labels  of  the  visual  relationships,  we  extend  the  trans-

formation matrix  with a set of weights  where

 denotes  the  number  of  relational  predicates.  In  this

way,  we  can  select  the  corresponding  weight  depending

on  the  predicate  of  the  relationship  when  we  update 

using the neighboring node  (e.g.,  for “on”,  for

“eating”). In this way,  is enhanced to be a more con-

textual visual  representation with the information of  the

relationships.  However,  there  is  a  “long-tail”  phenomen-

on in  the  frequency distribution of  the  relational  predic-

ates. For example, the predicates “on” and “has” appear

frequently  compared  with  “carrying”  and  “eating”.

Moreover,  it  costs  much  storage  capacity  to  update  the

nodes  with .  To  mitigate  the  imbalance  of  the

frequency  distribution  of  the  predicates  and  reduce  the

storage capacity of the iteration process for the nodes, we

divide these predicates into four classes: Geometric (e.g.,

above, behind, under), Possessive (e.g., has, part of, wear-

ing),  Semantic  (e.g.,  carrying,  eating,  using)  and  Misc

(for, from, made of) based on their property following[12].

The  updated  frequency  distribution  of  the  predicates  is

presented in Table  1.  Then,  the transformation matrices

 can be updated as , i.e.,  for Geo-

metric,  for Possessive,  for Semantic,  for Misc.

Thus, the iteration process is updated as follows:

oti = ρ(W o
s o

t−1
i +

∑
oj∈Eoi

g(oi, oj)Wcls(oi,oj)o
t−1
j + bcls(oi,oj))

(2)

g(oi, oj) = σ(W̃cls(oi,oj)[oi, oj ] + b̃cls(oi,oj)) (3)

cls(oi, oj)

oi, oj) [·, ·]
where  denotes  the  class  of  the  predicate

between  the  pairwise  objects  ( ,  and  is  the

concatenating  function.  Moreover,  when  aggregating  the

g(oi, oj)

σ

W̃cls(oi,oj) ∈ R2Do×Do

b̃cls(oi,oj) ∈ RDo

representations  of  the  neighboring  nodes,  we  set  an

elementwise  gate  to  reduce  redundant  infor-

mation  as  shown  in  (3),  where  is  the  logistic  sigmoid

function.  is  the  transformation

matrix and  is the bias vector.

{o′i}Ni=1

After  all  the  nodes  are  updated according to  (2)  and

(3), the object features are enriched by implicitly encod-

ing  the  visual  relationships  between  the  objects,  which

are denoted as .

 3.3   Modelling high-order relations

⟨ ⟩
vs vo

vu

r r = vs⊗
vo ⊗ vu

R = {ri}Mi=1 I ri ∈ RDr

Dr M

Considering  that  visual  relations  usually  appear  in

paragraphs,  we  devise  relation  features  based  on  scene

graph  representation.  As  illustrated  in Fig. 4,  for  a  rela-

tion instance woman-play-football , the visual features of

the subject box “woman” , the object box “football” 

and the union box  are first extracted from the corres-

ponding  regions,  and  then  multiplied  to  obtain  the  rela-

tion  feature  in  an  elementwise  manner  (i.e., 

).  In  this  way,  we  obtain  the  set  of  relation  fea-

tures  from an image ,  where  rep-

resents  the -dimensional  relation  feature  and  de-

notes the number of related object pairs.
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Fig. 4     Illustration of generating relation features

 

⟨ ⟩ ⟨
⟩
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Grel = (R, Erel) R = {ri}Mi=1

Erel

We  observe  that  there  are  high-order  relations

between different visual relations. For example, as shown

in Fig. 2, man-feeding-horse  is  related  to man-holding-

bucket  because the reason that the man is  carrying the

bucket is to feed the horse. However, the high-order rela-

tions are not always meaningful. For example, as seen in

Fig. 2, man-wearing-glasses  and man-holding-bucket

are related to the same object “man”, but there is no se-

mantic  association  between them.  To model  the  implicit

and  complex  high-order  relations,  we  construct  another

graph ,  where  denotes  the

nodes and  denotes the edges connecting two relevant
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Node-edge

Switching

Object-based GCN Relation-based GCN
 

Fig. 3     Illustration of node-edge switching
 

 

Table 1    Frequency distribution of predicates, which is drawn
from [12]

Classes Examples # Predicates #Instances

Geometric Above, behind, under 15 228 K (50.0%)

Possessive Has, part of, wearing 8 186 K (40.9%)

Semantic Carrying, eating, using 24 39 K (8.7%)

Misc For, from, made of 3 2 K (0.3%)
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r1 = ⟨s1, p1,
o1⟩ r2 = ⟨s2, p2, o2⟩ s p o

{s1, o1}∩{s2, o2} ̸= ∅
r1

r2

Grel

relationships.  Specifically,  for  two  relations 

 and  ( , ,  denote subject, predicate,

object, respectively), if the two sets ,

we consider that there is a high-order relation between 

and ,  and  use  an  undirected  edge  to  connect  them.

Thus,  these visual  relations can be enriched through the

graph structure of  by using a GCN, which is formu-

lated as

rti = ρ(W r
s r

t−1
i +

∑
rj∈Eri

W rrt−1
j + br) (4)

Eri

ri W r
s ∈ RDr×Dr W r ∈ RDr×Dr

br

where  denotes the set of neighboring visual relations

of .  and  represent  trans-

formation matrices.  is the bias vector.

As  discussed  above,  some  relations  connected  by  the

edges are actually not relevant at the semantic level. To

measure the relevance of the two connected relations, we

design  an  edgewise  gate  unit  to  compute  a  scale  factor

based  on  the  corresponding  relation  features.  Similar  to

graph attention networks[29], we incorporate the gate into

the GCN as follows:

rti = ρ(W r
s r

t−1
i +

∑
rj∈Eri

α(ri, rj)W
rrt−1

j + br) (5)

α(ri, rj) =
relu(β([ri, rj ]))∑

rj′∈Eri
relu(β([ri, rj′ ]))

(6)

β(·) [·, ·]
α(ri, rj)

rj ri

Grel

{r′i}Mi=1

where  denotes  a  linear  function  and  means  the

concatenating  operation.  is  an  edgewise  gate  to

control  the  information  flow  from  to .  In  this  way,

the model learns to focus on potentially important edges

that  contain  meaningful  high-order  relations.  Conse-

quently,  after  updating  all  the  nodes  of  with  the

relevant  relations  via  the  GCN  as  in  (5)  and  (6),  the

enhanced relation features denoted as  are encoded

with  the  implicit  high-order  contextual  information

between the visual relations.

 3.4   Paragraph generation

{o′i}Ni=1

{r′j}Mj=1

t

Based  on  the  enriched  visual  features  and

, paragraphs are generated via the caption genera-

tion module. Drawing inspiration from [2–5], the caption

generation  module  is  constructed  based  on  hierarchical

RNN. Concretely, at each time step , a high-level RNN

(i.e., SentenceRNN) outputs two vectors: topic vector and

sentence  state.  The  topic  vector  is  fed  into  a  low-level

RNN (i.e., WordRNN) to generate the corresponding sen-

tence.  The  sentence  state  is  used  to  decide  whether  to

generate the next sentence or not. Therefore, the genera-

tion of topic vectors is crucial for the quality of the final

paragraphs.

To produce informative topic vectors, we take the en-

{o′i}Ni=1 {r′j}Mj=1

{o′i}Ni=1 {r′j}Mj=1

t

v = [ō, r̄] ō = 1
N

∑N
i=1 o

′
i r̄ =

1
M

∑M
j=1 r

′
j v

hp
t−1

riched visual features  and  as inputs to the

SentenceRNN.  Moreover,  since  the  multiple  sentences  of

a  paragraph  usually  describe  different  visual  contents  of

an image, the corresponding topic vectors are supposed to

focus on specific regions of interest. To this end, an atten-

tion  mechanism  is  employed  to  select  the  relevant  fea-

tures  from  and .  As  shown  in  the Fig. 5,

the topic generation network is composed of two LSTMs:

attention-LSTM and topic-LSTM. Attention-LSTM is re-

sponsible for outputting the attentive weights for the en-

riched  visual  features,  and  topic-LSTM  is  in  charge  of

producing topic vectors as well as predicting the state of

generating sentences. Concretely, at each time step , we

concatenate the mean-pooled object and relation features

as  a  vector ,  where  and 

. Then, vector  is concatenated with the previ-

ous hidden state  of the topic-LSTM. Finally, the at-

tention-LSTM  takes  the  concatenated  vector  as  input,

and outputs the attentive weights for the object and rela-

tion  features.  In  particular,  the  updating  process  of  the

attention-LSTM is formulated as follows:

ha
t = f(W1[v, h

p
t−1]) (7)

ha
t W1

[v, hp
t−1]

f(·)

where  is  the hidden state of  the attention-LSTM. 

is the matrix for transforming the concatenation .

 is  the updating function within the attention-LSTM
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Fig. 5     Overview  of  the  attention-based  topic  generation
network. At each time step  , one of the LSTMs is used to output
the  attentive  weights  for  the  enriched  object  and  relation
features via an attention mechanism, while  the other LSTM  is
responsible for predicting the topic vector and the sentence state
with the attended features.
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ha
tunit. Based on the output , the attention distributions

over the object and relation features are calculated as

ao
t,i = W o

a (tanh(W
o
v o

′
i +W o

hh
a
t )) (8)

ao
t,i = softmax(ao

t,i) (9)

ar
t,j = W r

a (tanh(W
r
v r

′
j +W r

hh
a
t )) (10)

ar
t,j = softmax(ar

t,j) (11)

ao
t,i ar

t,j o′i
r′j t W o

a W r
a W o

v W r
v W o

h

W r
h

where  and  denote the attentive weights of  and

, respectively at time step . , , , ,  and

 are the transformation matrices.

{ao
t,i}Ni=1 {ar

t,j}Mj=1

õt =
∑N

i=1 a
o
t,io

′
i

r̃t =
∑M

j=1 a
r
t,jr

′
j

Depending  on  these  two  sets  of  normalized  attention

distributions  and , the object and rela-

tion features are aggregated into the attended visual fea-

tures,  which  are  calculated  as  and

. Furthermore, we concatenate the atten-

ded visual features and the output of the attention-LSTM

as  a  vector,  which  is  then  projected  as  the  input  of  the

topic-LSTM.  The  updating  procedure  of  topic-LSTM  is

thus formulated as follows:

hp
t = g(W2[õt, r̃t, h

a
t ]) (12)

hp
t

g(·) W2

hp
t

pt

hp
t

Tt

where  is  the  output  of  the  topic-LSTM,  whose

updating  function  is  denoted  as .  is  a  transform-

ation  matrix.  Next,  the  hidden  state  is  utilized  to

predict  a  probability  distribution  over  the  two  states

“CONTINUE”  and  “STOP”  with  a  logistic  classifier.

When  the  probability  of  “CONTINUE”  exceeds  that  of

“STOP”,  WordRNN  will  continue  to  generate  the  next

topic  vector,  and  vice  versa.  Then,  we  reuse  to

produce  the  topic  vector  via  two  fully  connected

layers.

eo

To generate a detailed paragraph relevant to semant-

ic  concepts  of  an  image,  we  leverage  the  linguistic  fea-

tures to help word generation. As discussed in Section 3.1,

the  linguistic  features  are  generated  by  encoding  the  la-

bels of the object categories and the relationships via an

embedding layer. Specifically, the label of the object cat-

egory is first converted into a one-hot vector  and then

embedded by a linear mapping as follows:

êo = Wembedeo (13)

Wembed

⟨ ⟩

where  is an embedding matrix. Since the labels of

visual  relations  usually  contain  multiple  elements  (e.g.,

man-drinking-water ),  the  corresponding  linguistic  fea-

ture is calculated by summarizing the embedding vectors

of all the elements:

êr =

K∑
k=1

Wembedek (14)

K ek k

⟨
⟩ e1 e2 e3

{ao
t,i}Ni=1

{ar
t,j}Mj=1

ẽot =
∑N

i=1 a
o
t,iêo ẽrt =

∑M
j=1 a

r
t,j êr t

Tt

where  denotes the number of elements, and  is the -

th element in the label of a visual relation (e.g., for man-

drinking-water , ,  and  are “man”, “drinking” and

“water”, respectively). We perform language attention on

the  embedding  vectors  to  selectively  aggregate  the

linguistic  features.  Since  the  labels  are  semantically

related  to  the  object  or  relation  features,  we  thus  reuse

the  corresponding  attentive  weights  and

 to obtain the two integrated embedding vectors

 and  at  time  step  of

the topic-LSTM. Therefore, the topic vector  is updated

as

T ′
t = WTTt +W o

e ẽ
o
t +W r

e ẽ
r
t (15)

WT W o
e W r

ewhere ,  and  are the transformation matrices.

T ′
t

T ′
t

⟨ ⟩

Given the updated topic vector , WordRNN is cap-

able  of  generating  the  corresponding  sentence.  The  first

and second inputs  to  WordRNN are  the  topic  vector 

and the START  token, respectively, and subsequent in-

puts  are  learned  embedding  vectors  for  the  words.  Dur-

ing  the  updating  procedure  of  WordRNN,  each  hidden

state  is  used  to  predict  a  distribution  over  the  words  in

the  vocabulary.  After  all  the  words  of  every  sentence

have  been  generated,  the  sentences  are  concatenated  to

form an orderly paragraph.

 3.5   Loss function

(x, y) x

y

y S

i Ni

S

{pi}Si=1

pi,j j

i

Consider  pairs  of  training  data ,  where  is  an

image and  is  a ground-truth paragraph description for

that image. Suppose that  consists of  sentences, with

the -th sentence having  words. In the training stage,

we unroll SentenceRNN for  time steps and predict a set

of distributions  over the states of generating sen-

tences (i.e., {CONTINUE, STOP}), which is then used to

calculate  a  binary  cross-entropy  sentence-level  loss.

WordRNN  produces  the  distribution  for  the -th

word  of  the -th  sentence,  which  is  used  to  calculate  a

cross-entropy word-level loss:

lsentence =

S∑
i=1

ls(pi, I[i = S]) (16)

lword =
S∑

i=1

Ni∑
j=1

lw(pij , yij) (17)

ls(·) lw(·) I[·]
yij j

i

where  and  are two cross-entropy functions. 

denotes the indicator function.  is the -th word of the

-th sentence.

To  alleviate  the  mismatch  problem  between  training

and testing, we use a popular reinforcement learning (RL)

loss[23],  which has been proven to be efficient and effect-

ive training the paragraph generator:
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lpara = −Epij∼y′ [r(y′; y)] (18)

r

y′ y

where  is  the  CIDEr[30] metric  between  the  generated

paragraph  and ground-truth paragraph .

∑S
i=1 a

o
i,n ≈ 1

∑S
i=1 a

r
i,m ≈ 1 n = 1,

2, · · · , N m = 1, 2, · · · ,M

Moreover, to encourage the model to pay attention to

every object and relationship of the image when generat-

ing  all  the  topic  vectors,  we  devise  two  penalties  to  en-

courage  and  where 

 and :

lpenalty =

N∑
n=1

(1−
S∑

i=1

ao
i,n)

2 +

M∑
m=1

(1−
S∑

i=1

ar
i,m)2. (19)

We combine the word-level, sentence-level, paragraph-

level losses and the penalties on the attentive weights as

the final training loss of our model:

l(x, y) = lword + λslsentence + λalpara + λplpenalty (20)

λs λa λpwhere ,  and  are the scale factors.

 4   Experiments

In  this  section,  we  first  introduce  the  dataset  and

evaluation metrics used in our experiments, then present

extensive  ablation  studies  on  our  model,  and  finally  re-

port our results and comparisons with other methods.

 4.1   Dataset and evaluation metrics

Dataset:  We  conduct  experiments  on  the  Stanford

image-paragraph dataset[2], which is the only generally ac-

knowledged  benchmark  for  the  task  of  generating  image

paragraphs.  The  dataset  consists  of  19 551  images  from

MS  COCO[31] and  Visual  Genome[32],  where  each  image

has been annotated with a human-labelled paragraph de-

scription containing 67.5 words on average. Following the

experimental  protocol  of  [2],  we  divide  this  dataset  into

14 575 training, 2 487 validation,  and 2 489 testing  im-

ages.

n

F

Evaluation metrics. We adopt six widely used lan-

guage  generation  metrics:  BLEU-1,  BLEU-2,  BLEU-3,

BLEU-4[33],  METEOR[34],  and  CIDEr[30] to  evaluate  our

model. BLEU is a popular metric for machine translation

evaluation  that  computes  an -gram based  precision  for

the  candidate  sentence  with  respect  to  the  references.

METEOR  returns  its  judgment  of  the  generated  sen-

tences  by  computing  the -measure  based  on  matches,

and CIDEr provides evaluation based on consensus.

 4.2   Implementation details

N = 50

M = 20

In  our  experiments,  we  extract  the  visual  features

from  the  scene  graph  using  the  top  objects  and

 relations.  The  dimensions  of  the  original  object

and  relation  features  are 4 096,  which  are  then  trans-

formed  into 1 024 via  a  linear  projection.  The  linguistic

features  have  the  same  dimension  as  the  word  embed-

ding vectors, which is set to 300. The embedding layer is

initialized  with  global  vectors  (GloVe)[35],  and  then

trained under our loss.  Two LSTMs of the topic genera-

tion  network  have  a  single  layer  with  512  dimensions,

while  WordRNN  adopts  two  LSTM  layers.  In  addition,

the weights of our linear layers are initialized using Kaim-

ing initialization[36].

λs λa λp

In  the  training  stage,  we  train  our  network  for  25

epochs using the Adam optimizer[37].  The initial  learning

rate is set to 0.001, and the batch size is set to 128. In-

stead  of  decaying  the  learning  rate  at  regular  intervals,

we change it depending on the performance (e.g., the av-

erage  of  METEOR and CIDEr scores)  on the  validation

set. In particular, the learning rate is decayed only when

the performance stops improving for 5 epochs. According

to the validation set performance, ,  and  are set to

5, 1 and 1, respectively.

p(STOP)

p(CONTINUE)

Smax

⟨ ⟩
Nmax
Smax Nmax

At the inference time,  SentenceRNN keeps producing

topic vectors until the stopping probability  ex-

ceeds  the  continuing  probability  or  the

number  of  sentences  reaches  the  threshold ,

whichever comes first.  Based on the produced topic vec-

tors,  WordRNN  samples  the  words  using  beam  search

(beam size  = 7)  and stops  when END  token is  met  or

after  words.  In  our  experiments,  we  set  the  para-

meters  to 6 and  to 30.

 4.3   Ablation studies

In this  section,  we perform extensive ablation studies

on  our  method,  including  the  components  of  our  model,

the GCN used to update the object features, the manner

of  generating  the  relation  feature,  the  size  of  the  beam

search decoder and the hyperparameters of the loss func-

tion.
 4.3.1   Contributions of model components

To demonstrate the effectiveness of each component in

our model, we design a baseline “OBJ” that only uses the

object features to generate paragraphs without the GCNs

and  the  attention  mechanism.  The  analysis  is  also  per-

formed on  the  benchmark,  as  shown in Table  2.  We re-

port the results of the baseline in the first row. Based on

the  baseline,  we  use  the  object-based  GCN  (denoted  as

GCN-O)  to  enrich  the  object  features  and  add  the  rela-

tion  features,  which  are  referred  to  as  “OBJ+GCN-O”

and “OBJ+REL”, respectively. The corresponding results

show  a  certain  amount  of  improvements  over  the  per-

formance  of  the  baseline  at  all  the  six  metrics,  which

demonstrates  that  GCN-O  and  the  relation  features  are

both  beneficial  to  obtaining  more  contextual  representa-

tions  for  generating  paragraphs.  Then,  we  use  the  rela-

tion-based GCN (denoted as GCN-R) to enrich the rela-

tion  features,  and  the  results  (“OBJ+REL+GCN-R”)

show  that  GCN-R  is  also  beneficial  to  our  model  com-

pared  to  the  previous  row.  Next,  the  “OBJ+REL+
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GCNs” model uses GCN-O and GCN-R to enrich the ob-

ject  and  relation  features,  which  further  verifies  the  ef-

fectiveness  of  the  GCNs.  By  introducing  the  attention-

based  topic  generation  network,  the  “OBJ+REL+GCNs+
ATT” model  obtains  successive  improvements  on  all  six

metrics  compared  to  the  previous  model.  Finally,  the

comparison between the “Ours” and “OBJ+REL+GCNs+
ATT” models (especially 1.31% improvement on CIDEr)

indicates that the linguistic features are helpful for gener-

ating more informative paragraphs.
 4.3.2   Comparison of variant GCNs

As  mentioned  in  Section  3.2,  we  employ  a  modified

GCN to  update  the  object  features  via  message  passing.

Compared  to  the  general  GCN,  the  modified  GCN used

in our model adds an elementwise gate to reduce redund-

ant  information  and  multiple  weights  according  to  the

classes  of  the  predicates.  To  verify  the  effectiveness  of

these  two  components,  we  first  remove  the  multiple

weights  from  the  GCN  (i.e.,  all  the  nodes  are  trans-

formed by using a common weight), and the correspond-

ing model is denoted as “GCN-O w/o weights”. We fur-

ther remove the gate from the GCN, and the update rules

of  nodes  can  be  formulated  as  (1).  The  corresponding

model is denoted as “w/o gate”.

We conduct experiments for these models and present

the results in Table 3. From Table 3, we observe that the

multiple weights bring 0.45%, 0.33%, 0.2%, 0.11%, 0.11%

and 0.39% on all the metrics by comparing the results of

“Ours”  and  “GCN-O  w/o  weights”,  and  the  results  of

“GCN-O w/o weights”  increase  0.54%,  0.1%,  0.18% and

0.14%  on  BLEU-1,  BLEU-2,  METEOR,  CIDEr  com-

pared to the results of “w/o gate”. These comparison res-

ults show that the gate and multiple weights are benefi-

cial to generating better paragraphs. In addition, we also

remove  the  gate  from GCN-R (the  relation-based  GCN)

and the results (“GCN-R w/o gate”) drop 0.36%, 0.27%,

0.13%,  0.07%,  0.15%  and  0.43%  on  BLEU-{1,  2,  3,  4},
METEOR  and  CIDEr  compared  to  “Ours”,  which  fur-

ther verifies the effectiveness of the gate for GCN.
 4.3.3   Comparison with other relation features

vs vo vu

vs vo vu

vs vo vu

There  is  no  doubt  that  the  relation  features  play  an

important role in image paragraph generation. As shown

in Fig. 4,  we  denote  the  features  of  the  subject,  object,

and  union  area  as ,  and ,  respectively.  Then,  we

multiply them in an elementwise manner to obtain the re-

lation feature, which is denoted as CRM-MUL. To verify

the  effectiveness  of  this  method,  we  design  two  other

methods  of  generating  the  relation  feature  for  comparis-

on. The first model uses the sum of ,  and  as the

relation  feature,  which  is  denoted  as  CRM-SUM.  The

second model generates the relation feature by concaten-

ating ,  and , which is denoted as CRM-CC.

To perform ablation analysis on the different manners

of  generating  relation  features,  we  present  the  results  of

the three models  (CRM-SUM, CRM-CC, CRM-MUL) in

Table  4.  It  is  obvious  that  our  model  CRM-MUL  has

achieved better performance than CRM-SUM and CRM-

CC  on  the  six  language  metrics.  These  comparison  res-

ults demonstrate that multiplying the features of the sub-

ject,  object and union area is  an effective way to obtain

the relation feature.
 4.3.4   Sensitivity analysis of beam size

As mentioned in Section 4.2, the beam search decoder

is adopted to generate image paragraphs at the inference

time. To study the sensitivity of our model to beam size

(i.e., the size of candidate sentences), we conduct experi-

ments  on  the  benchmark  dataset  by  varying  the  beam

size  from  2  to  9.  As  presented  in Fig. 6(a),  the  experi-

mental  result  for  CIDEr  increases  as  the  beam  size  in-

creases  from  2  to  7.  Compared  to  the  result  of  “beam

 

Table 2    Ablations of our method

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr

OBJ (baseline) 39.99 25.73 16.25 9.79 16.94 29.37

OBJ+GCN-O 41.79 26.84 17.03 10.32 17.45 29.24

OBJ+REL 42.18 27.02 17.14 10.46 17.60 29.47

OBJ+REL+GCN-R 42.87 27.43 17.32 10.55 17.71 29.75

OBJ+REL+GCNs 43.43 27.72 17.51 10.63 17.78 29.91

OBJ+REL+GCNs+ATT 43.57 27.95 17.67 10.75 17.95 30.33

+ Linguistic feature (Ours) 43.81 27.98 17.69 10.78 17.94 31.64
 

 

Table 3    Ablations of GCN

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr

Ours 43.81 27.98 17.69 10.78 17.94 31.64

GCN-O w/o weights 43.36 27.65 17.49 10.67 17.83 31.25

w/o gate 42.82 27.55 17.49 10.65 17.65 31.11

GCN-R w/o gate 43.45 27.71 17.56 10.71 17.79 31.21
 

X. Zhu et al. / Comprehensive Relation Modelling for Image Paragraph Generation 377 

 



size = 2”, our model increases CIDEr by 1.34% when the

beam size is set to 7. We can conclude that beam size has

an  effect  on  the  performance  of  our  model.  In  addition,

from the  figure,  we  find  that  the  result  degrades  with  a

large  beam  size.  This  phenomenon  has  also  appeared  in

other work[38].
 4.3.5   Three hyperparameters of loss

λs

λs

λs

λs = 5

We first study the value of  by varying it from 1 to

9  at  intervals  of  1.0,  as  presented  in Fig. 6(b).  It  is  cru-

cial  to select a suitable  because it  directly affects the

number of sentences composing the generated paragraph.

From Fig. 6(b),  we  observe  that  our  model  achieves  the

best  performance  on  CIDEr  when  is  set  to  5.  There-

fore, we select  as the best choice.

λa λp

λa λp

λa = 1 λp = 1

lpara lpenalty

lpara
lpenalty

We  also  perform  sensitivity  analyses  on  and 

used in the loss function. Concretely, we conduct experi-

ments on the benchmark dataset by changing  and 

as  [0,  0.5,  1,  2],  and  report  the  results  in Fig. 6(c).  It  is

obvious  that  our  model  achieves  the  best  results  at

 and . Furthermore, our model achieves bet-

ter  results  at  0.5,  1  and  2  compared  to  the  result  at  0,

which  shows  that  and  of  the  loss  function

work well. In addition, the comparisons between the res-

ults  at  1  and  2  indicate  that  the  overweight  and

 adversely affect model training.

 4.4   Comparison with the state-of-the-art
(SOTA)

In  this  section,  we  show  the  quantitative  results  on

the benchmark in Table 5 and some qualitative results in

Fig. 7. As shown in Table 5, we evaluate our method on

the benchmark, and compare it with several recent meth-

ods. Our approach shows comparable performance to the

state-of-the-art  methods on the scores  of  BLEU-{1,  2,  3,

4}.  In  particular,  our  model  achieves  a  better  CIDEr

score than a majority of previous methods (e.g., a retriev-

al-enhanced  adversarial  training  with  dynamic  memory-

augmented  attention  for  image  paragraph  captioning

(RAMP)[25] and  a  visual-textual  coupling  model

(VTCM)[26]),  except hierarchical  scene graph encoder-de-

coder (HSGED)[23]. The reasons why our model performs

worse  than  HSGED  are  analysed  as  follows.  First,

HSGED  integrates  attribute  information  (such  as  color)

into features,  which requires  extra  labelled training data

to  train  the  model  to  detect  the  attributes  of  objects.

Second,  HSGED  constructs  a  subgraph  for  each  object,

and  incorporates  such  subgraphs  into  embeddings  by  a

graph  neural  network  (GNN).  However,  the  subgraph-

level  embedding  undoubtedly  requires  many  computa-

tions,  thus  leading  to  a  longer  runtime.  Third,  to  im-

prove  the  quality  of  the  generated  paragraphs,  HSGED

adopts  two  reinforcement  learning  (RL)  based  losses

(while  we  only  use  one  RL  based  loss),  which  may  in-

crease  the  difficulty  of  model  training.  Therefore,  com-

pared to HSGED, our method does not need extra know-

ledge  (attribute  labels)  and  adopts  GCNs  to  make  the

model more efficient.

As seen in Fig. 7, we also present some qualitative res-

ults.  Our  results  are  close  to  the  ground-truth  and  give

good  descriptions  for  the  visual  contents  of  the  images.

We  also  list  the  corresponding  paragraphs  generated  by

the baseline, which is mentioned in Section 4.3.1. It is ob-

vious  that  our  model  generates  more  comprehensive  and

richer  paragraphs  than  the  baseline.  For  example,  given

the first figure, our model describes the helmet while the

baseline misses it. For the third figure, our model gives a

detailed description of the color of the zebras and the dis-

tribution  of  the  trees.  However,  in  the  corresponding

paragraph  produced  by  the  baseline,  the  description  of

the zebras is very simple, and trees are mistaken as grass.

It  is  worth  noting  that  our  model  does  not  handle
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Table 4    Performance comparison with the different relation features

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr

CRM-SUM 42.60 27.28 17.25 10.49 17.57 30.07

CRM-CC 43.05 27.56 17.44 10.59 18.15 30.97

CRM-MUL (Ours) 43.81 27.98 17.69 10.78 17.94 31.64
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crowded scenes well. For example, the second example of

Fig. 7 contains  many persons,  which are  detected by the

scene graph detection module.  In this  case,  our model  is

attracted  by  these  people  and  uses  redundant  sentences

 

In the middle of a pine tree forest, a

skier flies in the sky doing a trick.

His skis are black , yellow and red

and are high up in the air. His poles

are also yellow and black. The skier

is wearing tan ski pants and a red

and white ski jacket. His gloves, hat,

goggles and backpack are all black.

The white snow is falling around him.

Ground truth Ground truth Ground truth Ground truth

There are many people sitting

on a beach on a clear, blue sky

day. There are three boats

sitting in the water. One boat is

yellow, while the other two are

smaller and white. There are 

various different umbrellas

shading the people from the

sun. Behind the sandy beach

there are many green, lively

trees. Some people are riding in

a boat. Some are sunbathing

and some are standing in the

area between the water and

sand.

Four zebras are standing in a

field. The zebras are black and

white. Some of the zebras′
heads are down as they are

grazing on grass .The grass on

the field is a yellowish-green

color and it is short. Behind the

zebras are trees growing

densely, then another field,

where the grass is a darker

green color, then another dense

forest.

There are many people riding

bikes on a street. One of the

bikes has a brown box on the

back of it. The people are

stopped at two red lights on the

road. Large white buildings

surround the people. Part of a

white sky can be seen in

between the buildings. Also, a

tall black pole is standing near

two buildings.
A man is skiing down a hill. The

ground is covered with snow. The

person is wearing a red jacket and a

black helmet. The snow is white and

the sky is grey.

Our model

A person is skiing down the snow.

This is a ski slope. He is also

wearing a red jacket. The snow is

densely.

Baseline

This photo is taken outside on a

cloudy day. There are people

walking on the sidewalk in front

of the building. There is a man in

a white shirt standing next to the

bicycle. There is a man walking

down the sidewalk in front of the

building. There are many people

standing on the side of the street.

Our model

Our model

Our model

This is a picture of a beach. The

water is light blue in color.

There are people standing next

to the water looking at the boats.

There is a small boat in the

water with people standing on it.

The sky is blue and clear.

There are brown and white

zebras standing in a field. The

zebras are grazing on the grass

on the left side of the image.

There are a bunch of trees and

small bushes in the back of the

field that is green. There are a

lot of trees in the background

along with a forest in the

distance. 
People are walking along the

street with a yellow light. There

appears to be two men riding

bikes. Many bikes are on the

road.

Baseline

Baseline Baseline

A large sail boat is in the water

They have white caps on the

front of the boat. The sky above

the boat is blue with a few white

clouds.

There are zebras in a field.The

grass is green. The grass are

very tall. The animals are

grazing in a field.

Fig. 7     Qualitative results of our method. We mark more information in red compared to the baseline.
 

 

Table 5    Comparisons with the SOTA models on the benchmark

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr

Regions-hierarchical[2] (CVPR 2017) 41.9 24.11 14.23 8.69 15.95 13.52

RTT-GAN[3] (ICCV 2017) 42.06 25.35 14.92 9.21 18.39 20.36

DC with VAE[4] (ECCV 2018) 42.38 25.52 15.15 9.43 18.62 20.93

PG with VRD[5] (ACM MM 2018) 41.74 24.94 14.94 9.34 17.32 14.55

SCST with penalty[20] (EMNLP 2018) 43.54 27.44 17.33 10.58 17.86 30.63

CAVP[21] (TPAMI 2019) 42.01 25.86 15.33 9.26 16.83 21.12

IMAP[22] (COLING 2020) 44.45 27.93 17.14 10.29 17.36 24.07

HSGED[23] (ACM MM 2020) 44.51 28.69 18.28 11.26 18.33 36.02

S2TD[24] (ACM MM 2021) 44.47 27.38 16.87 10.17 17.64 24.33

RAMP[25] (Knowledge-based systems 2021) 45.27 28.60 17.63 10.48 17.49 23.22

VTCM-Transformer[26] (IJCV 2022) 40.93 25.51 15.94 9.96 16.88 26.15

Ours 43.81 27.98 17.69 10.78 17.94 31.64

Human[2] 42.88 25.68 15.55 9.66 19.22 28.55
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to describe them. This causes the model to ignore the de-

scriptions of other objects and relationships. Therefore, in

future work, we need to further reduce or merge the sim-

ilar  proposals  generated  by  the  scene  graph  detection

module  in  crowded  environments.  In  addition,  we  also

need a stronger attention mechanism to select salient ob-

jects  to  generate  the  most  important  descriptions  of  the

picture.

 5   Conclusions

In  this  work,  we  have  proposed  a  novel  paragraph

generation  network  that  comprehensively  models  visual

and  high-order  relationships.  To  enrich  the  visual  fea-

tures  extracted  from  the  scene  graph  of  an  image,  we

build two graphs according to the structure of the scene

graph,  which  aim to  update  the  object  and relation  fea-

tures  with  contextual  information  using  GCNs.  Then,

these enhanced representations are selectively fed into the

attention-based topic generation network to produce top-

ic  vectors,  which  are  taken  as  input  to  the  natural  lan-

guage  model  to  generate  multiple  sentences  composing

the  final  paragraph.  We  empirically  evaluate  our  model

on the benchmark of  image paragraph generation,  which

has  achieved  comparable  performance  with  the  state-of-

the-art methods.
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