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   Abstract—Evolutionary computation is a rapidly evolving field
and  the  related  algorithms  have  been  successfully  used  to  solve
various  real-world  optimization  problems.  The  past  decade  has
also  witnessed  their  fast  progress  to  solve  a  class  of  challenging
optimization  problems  called  high-dimensional  expensive  prob-
lems  (HEPs).  The  evaluation  of  their  objective  fitness  requires
expensive  resource  due  to  their  use  of  time-consuming  physical
experiments or computer simulations. Moreover, it is hard to tra-
verse the huge search space within reasonable resource as  prob-
lem  dimension  increases.  Traditional  evolutionary  algorithms
(EAs) tend to fail to solve HEPs competently because they need to
conduct  many such expensive  evaluations  before  achieving  satis-
factory  results.  To  reduce  such  evaluations,  many  novel  surro-
gate-assisted  algorithms  emerge  to  cope  with  HEPs  in  recent
years. Yet there lacks a thorough review of the state of the art in
this  specific  and important  area.  This  paper  provides  a  compre-
hensive  survey  of  these  evolutionary  algorithms  for  HEPs.  We
start with a brief introduction to the research status and the basic
concepts of HEPs. Then, we present surrogate-assisted evolution-
ary  algorithms  for  HEPs  from  four  main  aspects.  We  also  give
comparative results of some representative algorithms and appli-
cation examples. Finally, we indicate open challenges and several

promising directions to advance the progress in evolutionary opti-
mization algorithms for HEPs.
    Index Terms—Evolutionary  algorithm  (EA), high-dimensional
expensive problems (HEPs), industrial applications, surrogate-assisted
optimization.
  

I.  Introduction

%

MANY  real-world  complex  engineering  optimization
problems require the computationally expensive evalua-

tion of objective and constraint functions, such as trauma sys-
tem  optimization [1],  optimal  traffic  signal  timing [2],  aerial
vehicle  design  optimization [3].  Among  many  reasons  that
lead to such expensive evaluations are 1) a problem involves
complex physical and chemical processes; 2) a problem needs
time-consuming  computer  simulations  or  other  complicated
analysis  tools,  e.g.,  finite-element  analysis [4].  For  such
expensive  problems,  a  single  fitness  evaluation  may  cost
hours, days, and even weeks [5], bringing tremendous compu-
tational or physical resource burden for traditional algorithms.
Moreover, with the advent of big data era, a great deal of opti-
mization  problems  usually  involve  hundreds  or  even  thou-
sands  decision  variables,  i.e.,  high-dimensional  problems,
leading to a phenomenon called “curse of dimensionality”. In
other  words,  search  space  size  exponentially  increases  with
problem size (mainly the number of  decision variables),  pos-
ing a great challenge to traverse the whole search space within
reasonable  time.  Moreover,  as  problem  dimension  increases,
their characteristics may change and interactions among deci-
sion variables become more complicated [6]. As a result, local
optimal  regions  increase  as  well,  making  conventional  opti-
mization algorithms more likely to fall into local optima. The
resulting  problems  are  named  high-dimensional  expensive
problems  (HEPs)  in  this  survey  paper,  a  rather  popular  and
challenging research direction from both academia and indus-
try.  Since  these  problems  may  not  have  exact  math  expres-
sions or extremely complex ones, exact solution methods tend
to  become  helpless.  Intelligent  optimization  methods,  espe-
cially  nature-inspired  evolutionary  optimization  methods,
have  become the  dominant  ones  to  solve  HEPs  and  received
more  and  more  attention  since  two  decades  ago  as  shown in
Fig. 1. We use the following keywords to search IEEE Xplore
and  Scopus:  high-dimensional  expensive  optimization,  high-
dimensional  expensive  evolutionary  algorithm,  and  high-
dimensional  expensive  problem.  It  is  clearly  seen  that  the
number  of  published papers  on  HEPs increases  nearly  100
every  5  years,  which  confirms  it  as  a  promising  research
direction.  Although  several  survey  papers  on  evolutionary
computation  for  expensive  optimization  problems  have  been
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published [7]−[13],  their  algorithms  mainly  focus  on  expen-
sive  problems  with  less  than  30  dimensional  decision  vari-
ables.  Moreover,  a  crescent  number  of  papers  focusing  on
both  high-dimensional  decision  variables  (30  and  higher
dimension)  and  computationally  expensive  evaluations  have
been researched recently.  Their  solutions  are  extremely  chal-
lenging but critically important in many practical applications.
It is in great demand to write a specific survey paper to evalu-
ate  them  in  this  increasingly  important  area.  Therefore,  this
work tries to do so to benefit the HEP community.
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Fig. 1.     The number of papers related to HEPs.
 

The rest of the paper is organized as follows. We present the
basic  concepts  of  HEPs  in  Section  II.  Section  III  describes
surrogate-assisted evolutionary algorithms for HEPs from four
main  aspects,  i.e.,  surrogate  selection,  model  construction,
model  management  and base  optimizers.  Section  IV presents
comparative  results  of  representative  algorithms  and  applica-
tion  examples.  Section  V  gives  open  challenges  and  several
promising  directions  of  HEPs.  Section  VI  draws  conclusions
on this topic.  

II.  High-Dimensional Expensive Problems

High-dimensional  expensive  problems  (HEPs)  are  those
whose objective functions take much time or resource to eval-
uate  and generally  consist  of  high-dimensional  decision vari-
ables.  Maximization  problems  can  be  mathematically  solved
by  transforming  them  into  minimization  ones.  Therefore,  we
take  minimization  problems  as  HEP  examples  in  this  paper.
They can be formally expressed as
 

min f (x)

s.t. x̌ ≤ x ≤ x̂
(1)

x = (x1, x2, . . . , xD) ∈ RD

f (·)
RD

x̌ x̂ x
f (·)

f (·)

where  denotes a vector containing D
decision variables,  represents an objective function, D is
the problem dimension,  is the feasible solution space, and

 and  are  the  lower  and  upper  bounds  of ,  respectively.
When  is  a  simple  mathematical  function  or  model,  its
computational  cost  is  limited.  When  represents  a  physi-
cal model, complex system, sophisticated design, and simula-
tion model, its computational cost can be tremendously expen-
sive.  There  is  no  formal  definition  of  high  dimension,  i.e.,
how high is high. After reviewing papers dedicated for HEPs,
we find that most of them test their problems with dimensions
varying  from  30  to  200.  Therefore,  we  regard  optimization

problems as high-dimensional expensive problems when D is
over 30 in this paper, which is consistent with other papers.

In reality,  many optimization problems are subject to some
complex linear/non-linear constraints instead of the relatively
simple one in (1). A general form can be expressed as
 

min f (x)

s.t.
≤
H(x) ≤ 0
=

H(x) = 0 (2)
≤
H(x)

=

H(x)

{ f1(x), f2(x), . . . , fm(x)} m ≥ 2
m ∈ {2,3}

m > 3

where  is a set of inequality constraints, and  is a set
of  equality  ones.  A  common  way  to  deal  with  constrained
problems  is  to  use  a  penalty  function  to  represent  any  viola-
tion  of  such  constraints,  therefore  converting  a  constrained
one into a non-constrained one [14].  Also,  Lagrangian multi-
pliers or fuzzy logic can be adopted to handle constraints [15].
Readers can find more details in [16]. We may also develop a
multi-objective or many-objective HEPs if we extend a single
objective function into a number of conflicting functions, i.e.,
min  with .  The  resulting  prob-
lems are called multi-objective HEPs if , and many-
objective ones if  [17], [18].

HEPs  are  attracting  more  and  more  attention  from  both
academia and industry. Bayesian optimization using Gaussian
Process,  also  known  as  efficient  global  optimization,  has
gained  some  success  in  the  field  of  expensive  problems
[19]−[21].  However,  as  mentioned  in [22],  Gaussian  Process
based Bayesian Optimization is rather challenging to deal with
high-dimensional  problems.  Moreover,  evolutionary  algo-
rithms,  as  powerful  global  optimizers,  have  been  widely
investigated  to  solve  such  challenging  problems.  Therefore,
we  focus  on  using  evolutionary  algorithms  (EAs)  to  solve
HEPs in this survey paper.  

III.  Evolutionary Algorithms for High-Dimensional
Expensive Problems

Surrogate-assisted evolutionary algorithms (SAEAs) are the
mainstream  methods  to  deal  with  expensive  optimization
problems [23]−[25].  With  the  idea  of  using  computationally
cheap  surrogate  models  to  replace  part  of  truly  expensive
models for fitness evaluations, SAEAs are able to solve com-
putationally  expensive  problems  satisfactorily  with  limited
resource,  such  as  integrated  circuit  design [26],  neural  archi-
tecture search [27],  and trauma system deployment [28].  The
basic framework of SAEAs is illustrated in Fig. 2. Obviously,
the  main  difference  between  conventional  EAs  and  SAEAs
rely on fitness evaluations. As seen in Fig. 2, SAEAs can take
advantages  of  surrogate  models  constructed  based  on  some
pre-processed historical  data  to  approximate  the  true  models.
Then,  surrogate  models  can  be  adopted  to  pre-screen  candi-
date solutions with the aim to reduce unnecessary use of truly
expensive  models.  In  other  words,  only  those  solutions  pre-
dicted as promising ones consume highly expensive computa-
tional/physical  resource  while  others  are  assisted  by  cheap
surrogate models.

Although SAEAs have gained some success in dealing with
small-scale  expensive  problems  (less  than  30  decision  vari-
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ables),  their  performance  degrade  to  some  extent  when  han-
dling  high-dimensional  problems  (especially  those  with  100
and  higher  dimensional  decision  variables)  due  to  exponen-
tially  expanded search space.  To be specific,  the  inefficiency
of  conventional  SAEAs  coping  with  HEPs  can  be  attributed
to: 1) dimensionality sensitivity of surrogates; 2) difficulty of
surrogate  construction;  3)  indetermination  of  model  manage-
ment  strategy;  4)  low efficiency  of  base  optimizers.  When  it
comes  to  high-dimensional  expensive  problems,  some  surro-
gate-assisted  algorithms  have  been  elaborated  designed  to
adapt to high-dimensional decision variables (shown in Table I).
Therefore,  we review a  series  of  SAEAs dedicated  for  HEPs
from  above-mentioned  four  issues,  namely  surrogate  selec-
tion,  surrogate  construction,  surrogate  management,  and base
optimization  algorithms  to  investigate  which  strategy  they
adopt for these challenging problems, as shown in Fig. 3.  

A.  Model Selection
Generally,  machine  learning  methods  which  are  possessed

with  prediction  ability  can  be  adopted  to  train  approximate
models, such as Gaussian process (GP) [29], radial basis func-
tion  (RBF) [27], [49],  and  random  forest  (RF) [28],  mostly
used in recent  papers.  We introduce some representative sur-
rogates and analyze their strengths and weaknesses for model-
ing in the high-dimensional space.

1) Global Surrogates: A GP model,  also known as a Krig-
ing model, can be used to approximate an unknown function.
Compared  with  other  surrogate  models,  GP can  provide  pre-
diction  information  as  well  as  uncertainty  information,  i.e.,
variance  values,  which  is  beneficial  to  enhance  surrogate
accuracy  by  investigating  less  explored  areas [29].  However,
both time complexity and model accuracy of GP construction

are  sensitive  to  problem  dimensionality.  As  problem  size
increases, large-scale training samples are required to train the
hyperparameters  of  the  GP,  which  inevitably  exacerbates
computational  burden.  Moreover,  the  approximation  uncer-
tainty  provided  by  GP  becomes  less  reliable  on  high-dimen-
sional  space.  The  commonly-used  infill  criteria  of  GP  that
considers  performance-based  and  uncertainty-based  informa-
tion  simultaneously  tends  to  lose  efficacy.  To  overcome  the
above-mentioned  challenges  encountered  by  high-dimen-
sional  GP  models,  some  researchers  try  to  construct  them  in
the  relative  low-dimensional  space  assisted  by  some  dimen-
sion reduction tools, such as Sammon mapping [61]. Liu et al.
[29] adopt  Sammon mapping  as  a  dimension  reduction  tech-
nique  to  transform  the  training  data  to  a  lower  dimensional
space and then conduct GP modeling in the reduced space. In
this  way,  modeling  in  the  shrunken  space  can  enhance  the
model  accuracy  significantly  as  well  as  reduce  the  computa-
tional consumption greatly, which is rather attracting for HEP
community [36].  Moreover,  Cai et  al. [39] propose  a  simpli-
fied  GP  model  by  considering  every  correlation  parameter
allocated  with  the  same  weight,  which  can  significantly
relieve  computational  burden  yet  sacrifice  model  accuracy.
Overall, some useful neighbour information can be inevitably
lost during the mapping or simplified process, which is harm-
ful for the final optimization performance.

2)  Radial  Basis  Function  (RBF): Radial  basis  function
(RBF)  takes  advantage  of  a  weighted  sum  of  several  basis
functions with the aim to approximate the search space as far
as  possible.  The  history  of  RBF  as  an  interpolating  method
can  be  tracked  back  to  1971  when  it  was  investigated  to
approximate  irregular  data [62].  Since  then,  RBF  are  widely
adopted  as  surrogate  models  for  approximation  in  various
fields. For example, Li et al. [63] propose a three-level RBF-
assisted  algorithm  to  solve  computationally  expensive  prob-
lems,  where  RBF  models  are  adopted  for  global  surrogate,
local  surrogate  and  local  search,  respectively.  According  to
the  recent  research [64],  RBF  models  still  have  satisfactory
accuracy and efficiency for high-dimensional data while other
surrogate  models  suffer  from  curse  of  dimensionality.  It  is
conceivable that RBF are widely selected as surrogate models
when dealing with HEPs, as shown in Table I. Although RBF
is  insensitive  to  problem dimension to  some extent,  its  accu-
racy  is  still  hard  to  guarantee  in  such  huge  modelling  space
with  limited  available  training  samples.  Therefore,  some
researchers  take  advantages  of  dimension  reduction  tools,
such as random projection, to train RBF models for each sub-
space  with  a  relative  low  dimension,  and  then  achieve  the
final predicted fitness by calculating the average result of con-
structed  models [47], [65].  Unlike  the  above  unsupervised
dimensionality  reduction  methods,  Lin et  al. [54] select  sev-
eral important decision variables based on an adaptive dropout
model,  and  then  build  a  lower  dimensional  yet  higher  accu-
racy RBF based on the chosen data samples for solving high-
dimensional expensive multiobjective optimization problems.

3) Random Forest: Random forest (RF) uses multiple deci-
sion trees to predict data samples for some tasks, e.g., classifi-
cation  and  regression [66].  Subsets  are  formed  by  bootstrap
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Fig. 2.     The illustration of SAEAs.
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TABLE I 
Comparisons of SAEAs for High-Dimensional Expensive Problems (HEPs)

Algorithm Year Base optimizers Model selection Model construction Model management D̂

GPEME [29] 2014 DE GP Global/local Hybrid 50

SA-COSO [30] 2017 PSO + SL-PSO RBF + FES Global+local Performance-based 200

FAACSO [31] 2018 CSO FES Local Performance-based 500

SHPSO [32] 2018 PSO + SL-PSO RBF Global + local Performance-based 100

RF-CMOCO [28] 2018 NSGA-II RF Local Hybrid 100

MGP-SLPSO [33] 2019 SL-PSO GP Global Hybrid 100

PESPSO [34] 2019 PSO RBF Global + local Performance-based 100

S-JADE [35] 2019 DE RBF Global + local Performance-based 200

TASEA [36] 2019 DE GP Global + local Performance-based 100

ESAO [37] 2019 DE RBF Global + local Performance-based 200

GORS-SSLPSO [38] 2019 SL-PSO RBF Global/local Performance-based 100

GSGA [39] 2020 GA RBF + GP Global + local Hybrid 100

Gr-based SAPSO [40] 2020 SL-PSO GP + FIS Global + local Hybrid 200

SAGWO [41] 2020 GWO RBF Global Performance-based 100

MS-MTO [42] 2020 MS-MTO RBF Global + local Performance-based 200

EHSDE [43] 2021 DE RBF Global + local Hybrid 100

SAMSO [44] 2021 PSO + TLBO RBF Global Performance-based 100

FHSAPPSO [45] 2021 PSO RBF Global + local Performance-based 100

SATLBO [46] 2021 TLBO RBF Local Performance-based 100

RPHSA [47] 2021 DE RBF Global + local Performance-based 200

SA-MPSO [48] 2022 PSO RBF Global + local Performance-based 100

RFMOISR [49] 2022 NSGA-II RF Local Hybrid 750

MSODE [50] 2022 DE RBF Global + local Hybrid 100

SAHSO [51] 2022 PSO + TLBO RBF Global Performance-based 200

RSAEH [52] 2022 DE RBF Global + local Performance-based 100

VSMPSO [53] 2022 PSO RBF Global Performance-based 200

ADSAPSO [54] 2022 PSO RBF Local Performance-based 200

SAEO [55] 2022 TLBO RBF Global Performance-based 500

TS-DDEO [56] 2023 PSO + DE RBF Global + local Performance-based 100

GL-SADE [57] 2023 DE RBF + GP Global + local Hybrid 200

SDAMA-SPS [58] 2023 Monkey algorithm RBF Global + local Hybrid 100

LSADE [59] 2023 DE Lipschitz + RBF Global + local Performance-based 200

STORA [60] 2023 TLBO RBF Global Performance-based 200

D̂Note:  is the highest dimension of tested problems; FES means fitness estimation strategy; FIS means fitness inheritance strategy; and GWO means grey
wolf optimization.
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Fig. 3.     The main issues of SAEAs for solving HEPs.
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sampling  from  the  training  data  where  subset  size  is  much
smaller than the original dataset size. Each subset includes dif-
ferent  bootstrap  data  samples  and  accordingly  each  decision
tree  trained  by  them  has  different  structures.  Once  decision
trees  are  trained,  we  can  use  them  to  predict  the  results.
Specifically,  for  the  phase  of  training  process,  each  decision
tree  selects  the  same  subset  from  inputs,  and  then  the  pre-
dicted results can be obtained accordingly. The final result  is
the  average  of  the  outputs  of  decision  trees.  RF  has  been
widely adopted as a surrogate model for solving discrete prob-
lems since it possesses a binary structure and thus it is easy to
realize [28], [49]. To accelerate convolutional neural network
architecture design, Sun et al. [27] make use of an offline RF
model as a predictor to replace part of really expensive fitness
evaluations. Although few of research works concentrating on
this kind of extremely challenging problems, i.e., high-dimen-
sional  expensive  discrete/combinatorial  problems,  RF  is  a
promising and important surrogate model to solve such prob-
lems in the future.  

B.  Surrogate Construction
According  to  construction  scenarios  of  surrogate  models,

existing  surrogate  construction  methodologies  for  HEPs  can
be classified into three categories: local surrogates, global sur-
rogates, and ensemble surrogates (global and local surrogates)
[67], as shown in Fig. 4.
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Fig. 4.     Types of surrogate construction.
 

1)  Global  Surrogates: Global  surrogates  are  trained  by  all
real-evaluated points with the aim to model the whole search

space,  and  then  performs  a  global  solution  search  based  on
these models. As presented in Fig. 4(a), global surrogate mod-
els can smoothen out some local optima and locate promising
areas  quickly,  which  is  beneficial  for  further  exploitation.  Li
et al. [44] build a global RBF model to capture the profile of
landscape  and  use  it  to  predict  fitness  values  of  sub-popula-
tion produced by two swarms. Dong and Dong [41] construct
a global RBF model to assist grey wolf algorithm to search the
high-dimensional space and exploit the local trust regions pre-
dicted by the RBF model.  Tian et  al. [53] train and update  a
global RBF model facilitated with a simple sampling strategy
to  select  data  points  for  its  training.  The  constantly  updated
RBF models  can  approach  different  promising  areas  so  as  to
enhance search diversity. Cui et al. [55] propose a bi-popula-
tion co-evolution optimization strategy where  one population
is evaluated under the assistance of a global RBF model. Nev-
ertheless,  it  is  difficult  to  train a  reliable  surrogate  models  in
high-dimensional  space  due  to “curse  of  dimensionality”.  As
seen in Fig.  4(a),  the optimum predicted by the global  surro-
gate  model  is  inconsistent  with  the  true  optimum,  and  thus
misleading the optimization search direction.

2) Local Surrogates: Different  from global  ones,  local  sur-
rogate models are trained by part of real-evaluated data points
to  capture  the  landscape  of  sub-spaces.  As  presented  in
Fig.  4(b),  local  surrogate  models  trained  by  some good  indi-
viduals  found so  far  assist  optimization  algorithms to  exploit
the promising areas. Sun et al. [31] adopt a fitness estimation
strategy based on the positional relationships between individ-
uals and use it in a local manner. Compared with other surro-
gate models heavily relying on data samples,  the fitness esti-
mation  strategy  is  less  sensitive  to  problem  dimensions,  and
thus  fitting  to  deal  with  HEPs.  Moreover,  with  the  help  of
dimension reduction techniques, multiple local surrogate mod-
els are built in the reduced sub-spaces [29], [54]. Dong et al.
[46] train  multiple  surrogate  models  for  different  sub-spaces
to relieve the difficulty  of  modelling in  the high-dimensional
space. Li et al. [68] build a lightweight and reliable local sur-
rogate  model  based  on  newly  produced  offspring,  and  a
model-free  evolutionary  algorithm  is  activated  when  the  for-
mer surrogate model does not work.

3) Ensemble Surrogates: As analyzed above, a global surro-
gate  model  can  ensure  the  population’s  global  search  ability
and smoothen out some local areas, but its use tends to sacri-
fice accuracy performance in some key regions. Contrarily, a
local surrogate model can help the population to exploit some
key regions fast and accurately, but may ignore other promis-
ing regions and trap into local optima. Hence, some ensemble
or  multi-fidelity  surrogates  are  investigated  to  make  use  of
global  and  local  surrogates’ strengths [25].  Sun et  al. [30]
employ  a  RBF  as  a  global  surrogate  to  capture  the  whole
search space, and adopt a fitness estimation strategy as a local
surrogate according to the positional relationship between the
particles.  Cai et  al. [39] make  full  use  of  a  global  surrogate
model built in the whole design space and a local one built in
a  neighbor  region  around  the  optima  found  so  far  to  guide
efficient  search.  Chen et  al. [43] adopt  a  global  surrogate
model  and two local  surrogates,  where  local  ones  are  trained
by  the  most  promising  sample  points  and  the  sample  points
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around the current best solution, respectively. Along with the
same idea, Chu et al. [45] propose a global surrogate and two
local surrogates, among which a local surrogate is constructed
based  on  the  sub-archived  data  divided  by  fuzzy  clustering
algorithm.  Yang et  al. [36] construct  a  global  GP  model  to
locate  some  promising  regions  and  a  local  GP  model  to
exploit  the  space  neighboring  the  best  solution  found  so  far.
Wang et  al. [37] alternatively  use  a  global  surrogate  and  a
local  surrogate  to  assist  the  optimization  process.  The  local
surrogate is trained by several best data samples to capture the
landscape of a sub-space, and a global optimizer is adopted to
find the optimum of it. Tian et al. [40] employ a GP model as
a global surrogate which is trained by coarse-grained individu-
als,  and  adopt  a  fitness  inheritance  strategy  as  a  local  surro-
gate that is built by fine-grained individuals. Wang et al. [57]
take  advantages  of  heterogeneous  surrogates  to  balance  the
ability  of  exploration  and  exploitation.  Their  analysis  shows
that a RBF model is appropriate to estimate global trend while
a GP model is suitable to assist the population to jump out of
local  optima.  Liao et  al. [42] treat  a  global  surrogate  and  a
local  surrogate  as  two  different  but  related  tasks,  and  thus
multi-tasking optimization is adopted to solve HEPs.  

C.  Model Management
Surrogate models need to be re-constructed based on newly

added  data  pairs,  which  are  re-evaluated  by  true  models,  to
refine  their  accuracy.  Then  optimization  assisted  by  more
accurate  surrogate  models  can  be  more  effective.  However,
how  to  select  candidate  individuals  for  true  evaluation  is  an
elaborate  issue  affecting  the  overall  performance  of  SAEAs,
which is called model management or evolution control [7]. In
general, model management criteria can be divided into three
categories,  i.e.,  performance-based,  uncertainty-based  and
their hybrid.

1) Performance-Based: The performance-based model man-
agement intends to re-evaluate the promising individuals with
the  aim to  exploit  the  promising  areas  found so  far.  The  key
issue  is  how  to  determine  whether  individuals  are  promising
or not. The natural way is to choose the best predicted individ-
uals for true evaluations [31]. Yu et al. [32] conduct true eval-
uations  of  all  individuals  whose  predicted  fitness  values  are
better than that of their historical bests. Furthermore, Li et al.
[44] consider  the  minimum  distance  between  the  promising
individuals  and  other  real-evaluated  points  to  prevent  neigh-
bouring individuals from being over-evaluated. Cai et al. [35]
select several trial individuals with best approximation values
for  real  fitness  evaluations,  and the exact  number  of  selected
points is tested through experiments. Sun et al. [30] re-evalu-
ate the individuals only if their fitness values estimated by two
surrogate models separately are better than their historical fit-
ness values. Wang et al. [37] carry out true evaluations of the
best  individual  pre-screened  by  a  global  surrogate  model  as
well as the optimal one found by a local surrogate model.

2)  Uncertainty-Based: The  uncertainty-based  model  man-
agement  strategy  chooses  the  individuals  considered  as  most
indeterminate  for  true  evaluations.  It  benefits  to  explore  the
area  with  little  information,  i.e.,  blessing  of  uncertainty [7].
However,  how  to  determine  the  degree  of  uncertainty  is  the

foremost consideration of using it. Here, we conclude several
uncertainty  measurements  proposed  in  recently  published
papers.  The  variance  values  provided  by  GP  models  can  be
naturally  used  as  uncertainty  information,  thereby  widely
adopted in related papers [29], [39], [40]. However, the uncer-
tainty  information  provided  by  GP  models  is  hard  to  distin-
guish  as  problem size  increases.  To get  over  the  above diffi-
culty,  Chen et  al. [43] take  advantage  of  the  Euclidean  dis-
tance between offspring and existing solutions as the metric to
determine  uncertainty  degree. Guo et  al. [69] determine  the
uncertainty  information  assisted  by  the  discrepancies  among
predicted  fitness  values  provided  by  surrogate  ensembles.
Wang et al. [57] consider both the prediction discrepancies of
multiple surrogates and the minimum distance of the individ-
ual  to  existing samples as  uncertainty information.  Neverthe-
less, few works of HEPs only rely on the uncertainty criterion
since  convergence  speed  in  this  scenario  can  not  be  guaran-
teed in reasonable time.

3)  Hybrid: Their  hybrid  model  management,  naturally,  is
capable  of  keeping  a  good  balance  between  global  explo-
ration  and  local  exploitation.  For  example,  lower  confidence
bound  (LCB) [70] and  expected  improvement  (EI) [71] pro-
vided  by  GP models  consider  the  search  both  in  the  promis-
ing areas (i.e., best predicted fitness values) and less explored
areas  (i.e.,  with  high  variance) [29], [39].  Wang et  al. [57]
adopt a RBF model as global surrogate and a GP model as a
local one, and thus employing different infill criterion consid-
ering both performance and uncertainty. Unlike combing them
into a scalar function, Tian et al. [33] consider approximation
fitness  and  uncertainty  information  as  two  objectives,  i.e.,  a
multiobjective  infill  criterion  for  GP  modelling,  and  then
adopt a nondominated sorting strategy for model management.  

D.  Base Optimizers
Although  any  optimization  algorithm  can  be  employed  to

solve optimization problems, the selection of appropriate base
optitmizer for some complex and challenging problems play a
significant role in final performance in terms of both accuracy
and efficiency. As presented in Table I, we notice that several
evolutionary  optimization  methods  are  widely  adopted  in
solving  HEPs  as  basic  optimizers,  i.e.,  particle  swarm  opti-
mization  (PSO),  differential  evolution  (DE),  teaching-learn-
ing-based-optimization  (TLBO)  and  their  variants.  Tradi-
tional evolutionary algorithms are difficult to achieve satisfac-
tory  results  within  limited  computational/physical  resource,
their  variants  and  some  newly  proposed  evolutionary  algo-
rithms  that  dedicated  to  deal  with  high-dimensional/large-
scale problems are suitable to be employed as base optimizers.
As  shown  in Table  I,  compared  with  other  algorithms,  PSO,
DE,  TLBO and  their  variants  are  absolutely  top  selection  by
researchers for solving HEPs.  Therefore,  we review them for
peer  reference,  and  more  optimizer  selections  can  refer  to
[72]−[74] if readers interested in. Also, several efficient strate-
gies  used  for  enhancing  evolutionary  algorithms  are  intro-
duced.

1)  Particle  Swarm  Optimization  and  Its  Variants: Particle
swarm  optimization  (PSO) [75] emulates  behaviors  of  a  fish
shoal  or  a  bird  flock.  PSO  shows  outstanding  performance
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when dealing with optimization problems due to its simplicity
and fast convergence [76]. Based on the canonical PSO, some
variants  are  proposed  to  deal  with  large-scale  optimization
problems, among which social learning-based PSO (SL-PSO)
[77] and competitive swarm optimization (CSO) [78] are two
representative variants.  SL-PSO is  inspired by a social  learn-
ing mechanism, i.e., an imitator learns the behaviors of differ-
ent  demonstrators [77].  In  SL-PSO,  the  particles  are  first
sorted in an increasing order of their fitness values, i.e., from
the  worst  to  the  best.  Each  particle,  except  the  best  particle,
learns from a randomly chosen particle whose fitness is better
than that of particle, known as a demonstrator. Then, the posi-
tion of the particle is updated. While CSO enhances the global
search capability by introducing a pairwise competition strat-
egy on the basis of the standard PSO [78]. To be specific, all
particles  are  randomly  divided  into  two  swarms  for  further
pairwise competition. Then particle with a better fitness value
is selected into the next generation directly while the inferior
one is  updated by learning from the  better  one.  Furthermore,
Wei et  al. [13] adopt  the  level-based  learning  swarm  opti-
mizer  as  the  base  optimizer,  which  is  well  suited  to  the
adopted surrogate model, namely gradient boosting classifier.
No matter  PSO or  its  variants  demonstrate  high efficiency in
handling  high-dimensional  problems,  several  research  works
adopt them as base optimizers and achieved good results [30],
[32]−[34]

2) Differential Evolution and Its Variants: Differential evo-
lution  (DE)  is  a  competitive  evolutionary  algorithm  with  a
typical  memory  characteristic  and  a  global  search  capability.
Its characteristics such as ease of implementation, fewer con-
trol  parameters,  and  low  space  complexity  have  attracted
tremendous attention from the evolutionary computation com-
munity [79].  A canonical  DE algorithm has  four  basic  steps:
initialization,  mutation,  crossover,  and  selection.  The  initial
population are randomly generated and each individual in the
population is called a target vector. Then, different frequently
considered  mutation  strategies [80] can  be  chosen  according
to problems’ characteristics. To increase population diversity,
a crossover process is conducted by creating a trail vector. At
last,  the  better  individuals  are  selected  for  next  generation  in
terms of fitness values. DE and its variants have been used to
solve HEPs and validated their good performance in this field
[29], [35]−[37]. Readers can refer to [79] for more details.

3)  Teaching-Learning-Based-Optimization  (TLBO): In
state-of-the-art  research, as a competitive heuristic algorithm,
TLBO  has  attracted  an  enormous  attention  in  solving  high-
dimensional/large-scale  optimization  problems  due  to  its  few
parameters  and  fast  convergence [81].  It  simulates  teaching
and learning procedures in schools so as to enhance students’
knowledge.  Specifically,  students  learn  knowledge  from  the
teacher,  the  best  individual,  according  to  the  difference
between  the  teacher  and  the  mean  of  students.  Moreover,  a
student  can  interact  randomly with  other  students  to  enhance
their knowledge so as to prompt diversity. Due to its excellent
performance  on  solving  large-scale  optimization  problems,
TLBO  has  been  widely  adopted  in  HEPs  community  and
regarded as a promising and competitive algorithms for com-
plex  problems  characterized  by  high  dimension [44], [46],

[55], [82]−[84].  Readers  interested  in  TLBO  can  find  more
information in [85].

4)  Evolutionary  Algorithms  Enhanced  by  Surrogates: The
intuitive  employment  of  surrogate  models  is  to  screen  out
some  promising  candidate  individuals  to  avoid  unnecessary
use of truly expensive evaluations. Furthermore, the effective-
ness  of  surrogate  models  have  been  adopted  throughout  the
whole  process  of  evolutionary  algorithms,  such  as  surrogate-
assisted  updating  strategy  and  surrogate-assisted  global/local
search,  which  expand  the  use  scenarios  of  surrogate  models
and  thus  advance  the  conventional  algorithms’ performance.
Cai et  al. [35] generate  trail  vectors  of  DE by  taking  advan-
tages  of  optimum  information  predicted  by  local  surrogates,
and  thus  speeding  up  the  convergence  speed.  Likewise,  they
consider the predicted best individuals provided by global sur-
rogates  and  local  surrogates  to  enhance  the  updating  opera-
tors  of  the  traditional  PSO [34].  Furthermore,  they  combine
surrogate-assisted  local  search,  surrogate-assisted  updating
strategy,  and  surroagte-assisted  pre-screening  strategy
together to form an efficient SAEA framework. However, the
extensive  training  of  surrogate  models  throughout  the  whole
process can inevitably result in improving computational bur-
dens [39].

5)  Autoencoder-Embedded  Optimization: The  obstacle  of
evolutionary  algorithms  to  solve  HEPs  lies  in  the  expanded
search  space  and  complicated  landscape  as  problem  size
increases,  making  it  difficult  to  produce  high-quality  off-
spring in  the  high-dimensional  space.  However,  if  high-qual-
ity offspring can be generated, then the effect of every fitness
evaluations  to  improve  the  overall  performance  can  be  fully
used  and  HEPs  can  be  handled  with  limited  computational
resource. As a result,  some works naturally attempt to gener-
ate  offspring  in  the  shrunken  space  assisted  by  some  dimen-
sion recursion techniques [55], [60], [86], [87]. Cui et al. [86]
propose  an  autoencoder-embedded  optimization  (AEO)
framework  where  they  compress  the  high-dimensional  space
to  the  lower  one  with  the  assistance  of  trained  autoencoders.
Then, variations are conducted in the reduced yet informative
space which benefits to generate promising offspring. Also, a
bi-population  cooperative  optimization  strategy  is  adopted  to
make a trade-off between exploration and exploitation, where
one sub-population is assisted by autoencoder-embedded evo-
lution and the other one is  optimized by a baseline optimizer
(i.e., conventional evolution). Their experimental results show
its superiority over traditional evolutionary algorithms. Differ-
ent  from constructing surrogate models  in the reduced space,
AEO  framework  enables  offspring  generated  in  the  com-
pressed  yet  informative  space  under  the  assistance  of  dimen-
sion  reduction  techniques.  It  is  worth  stressing  that  AEO
framework  is  compatible  with  other  frameworks,  such  as
SAEAs, which has been validated in [55]. Overall,  the incor-
poration  AEO  with  other  frameworks  can  further  enhance
their  efficacy  on  some  complex  optimization  problems [60],
[87].

Accordingly,  researchers  or  practitioners  can  design/select
their  algorithms  by  means  of  considering  above-mentioned
four  aspects,  as  shown  in Fig.  3.  After  reviewing  them,  we
have  several  observations  for  how  to  design/choose  an  algo-
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rithm for HEPs as follows.
a) Surrogate selection: Random forests perform well on dis-

crete HEPs thanks to their binary structures. Radial basis func-
tions  are  less  sensitive  to  problem  dimensions  and  they  are
suitable  for  high-dimensional  problems.  Gaussian  Processes
can  enhance  their  accuracy  by  taking  account  of  uncertainty
information.

b) Model construction: Global model construction can cap-
ture  the  main  profile  of  the  HEPs  and  thus  benefiting  to
smoothening out  local  optima and locate  the promising areas
quickly.  Although  local  surrogate  models  can  focus  on
exploiting  local  areas,  they  can  hardly  capture  the  landscape
of  high-dimensional  space.  Therefore,  surrogate  ensembles
should  be  used  to  make  full  use  of  multiple  surrogates  with
different  advantages,  which  is  widely  adopted  in  recent
research.

c)  Surrogate  management: Performance-based  strategy
intends to exploit promising areas found so far, which are ben-
eficial  to  quickening  the  convergence  speed.  The  uncertainty
one  can  explore  the  area  with  less  information  so  as  to
enhance  surrogate  accuracy.  Naturally,  the  combination  of
performance and uncertainty strategies can strike a good bal-
ance between global exploration and local exploitation.

d) Base optimizer: Compared with conventional algorithms,
some  enhanced  algorithms  with  different  strategies,  such  as
surrogate-based  search  and  autoencoder-embeded  frame-
works, show promising results in solving HEPs.  

IV.  Comparison Results and Application Examples
  

A.  Benchmark Functions
After  reviewing  HEPs-related  papers,  we  identify  seven

widely used benchmark problems as shown in Table II where
D is  problem  dimension [39], [44], [88]−[91].  They  can  be
divided into three classes:

1)  Unimodal  Function  F1: Continuous,  convex  and  uni-
modal.

2)  Multimodal  Functions  F2–F6: A  huge  number  of  local
optima.

3)  Hybrid  Composition  Function  F7: Rotated  hybrid  com-
position function with a narrow basin global optimum.  

B.  Comparison of Results of Representative Algorithms
To show the  effectiveness  of  different  algorithms for  solv-

ing HEPs, we review the most popular ten related algorithms
for  solving  HEPs,  as  shown  in Table  III.  We  compare  the
average  best  performance  of  algorithms  according  to  the
results from their original papers. Functions varying from D =
50 to D = 200 listed in Table II are adopted if algorithms are
tested  on  them.  Since  most  algorithms  were  not  tested  in  F5
with D =  200,  and  a  total  of  20  functions  excluding  F5  are
adopted and reported in this survey for the case of D = 200. If
two  algorithms  are  not  compared,  the  corresponding  entry  is
noted  with “/”.  Otherwise,  if  the  algorithm  in  the  column  is
better  than  that  in  the  row,  the  corresponding  entry  is  repre-

 

TABLE II 
Benchmark Functions

Function Name Design space f ∗† Property

F1 Ellipsoid [−5,5]D 0 Unimodal

F2 Rosenbrock [−2,2]D 0 Multimodal with narrow valley

F3 Ackley [−32,32]D 0 Multimodal

F4 Griewank [−600,600]D 0 Multimodal

F5 Rastrigin [−5,5]D 0 Multimodal

F6 Shifted rotated F5 [−5,5]D −330 Multimodal and shifted

F7 F19 in [92] [−5,5]D 10 Multimodal and non-separable
D
† f ∗

 means problem dimension.
  means global optimum.

 

TABLE III 
Comparisons of Different Algorithms for HEPs

GPEME SA-COSO SHPSO ESAO GSGA SAMSO TS-DDEO SAEO GL-SADE RSAEH

GPEME × / < < < / / / / <

SA-COSO / × < < < < < < < /

SHPSO > > × < < < < < < <

ESAO > > > × / < < < < <

GSGA > > > / × / / < / /

SAMSO / > > > / × < < / /

TS-DDEO / > > > / > × / / /

SAEO / > > > > > / × / /

GL-SADE / > > > / / / / × /

RSAEH > / > > / / / / / ×
Note: > means that the algorithm in the column performs better than that in the row; < means that the algorithm in the column performs worse than that in the
row; / means that two algorithms are not compared; × means that an algorithm does not compare itself.
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sented as “>”; and otherwise “<”. SA-COSO, SHPSO, ESAO,
and SAMSO are  the  most  compared algorithms as  they have
been published two to five years ago. Among these four algo-
rithms,  SAMSO [44] achieves  the  best  overall  performance
facilitated by two swarms, dynamic swarm size, and powerful
search algorithms, i.e., social learning-PSO and TLBO. GSGA
[34], as a contemporaneous algorithm, is seldom adopted as a
compared  algorithm although  experimental  results  have  vali-
dated  its  high  performance  in  solving  benchmark  problems.
As  stated  in [34],  too  many  times  of  re-training  surrogate
models  cost  large  amounts  of  computational  resource  as  a
result  of  three  kinds  of  surrogate-assisted  strategies  used
throughout  the  evolutionary  process.  In  addition,  some
recently  proposed  algorithms,  i.e.,  TS-DDEO [56],  SAEO
[55], GL-SADE [57], and RSAEH [52] can obtain overall bet-
ter performance than the previous algorithms [30], [32], [37].
However,  the  comparison  results  among  them  are  not  avail-
able yet, which can be investigated as important future work.

After  reviewing  them,  we  can  conclude  that  the  trends  of
algorithms  for  HEPs  are  1)  surrogate-assisted  strategies
adopted throughout  the  whole  process,  i.e.,  sampling,  search,
crossover/mutation,  and  fitness  prescreening;  and  2)  high-
quality offspring generated in reduced space assisted by both
dimension  reduction  tools  and  surrogate  models.  Overall,
newly proposed algorithms for HEPs and their improved per-
formance can be regarded as the evidence of advancement of
the HEP research field.  

C.  Application Examples
Real-world  high-dimensional  expensive  optimization  prob-

lems are existing extensively in various fields. We select sev-
eral  representative  application  examples  for  readers  who  are
interested in.

1) Shape Design Optimization: The shape design optimiza-
tion  problems  usually  contain  tens  or  even  hundreds  of  vari-
ables and the calculation of objectives involves time-consum-
ing  CFD  simulations,  resulting  in  the  typical  high-dimen-
sional computationally expensive problems [93]. For example,
airfoil  shape  design  optimization  problems  involve  tens  of
decision  variables  and  a  single  simulation  may  take  several
hours  or  even  days [94].  Several  algorithms  have  been  pro-
posed to deal with these problems and achieved the promising
results [37], [48], [57]. In their works, the airfoil geometry is
parameterized by the  class  shape transformation method [95]
and  NACA0012  airfoil  is  adopted  as  the  baseline.  Likewise,
some other shape design optimization problems are researched
as  well,  such  as  all-direction  propellers [35], [36], [51], [96]
and  blended-wing-body  underwater  vehicles  shape  design
[46], [93], [97].  The goal of handling shape design optimiza-
tion problems is to find the optimal design parameters with as
less computational resource as possible.

2)  Resource  Allocation  Optimization: No  matter  medical
resource  or  computational  resource  are  limited  in  the  real
world. How to allocate intensive resource to meet the require-
ment is an important research direction. As reported in [1], the
objective  and  constraints  of  the  trauma  system  optimization
can  be  evaluated  only  by  using  incidents,  which  is  a  typical
resource-restricted  high-dimensional  expensive  problem.  To

obtain  a  high-quality  solution  in  a  reasonable  computation
time, Wang et al. [1] present a surrogate management scheme
by establishing a regression model that can estimate the num-
ber  of  clusters  required  based  on  the  maximum  acceptable
approximation error. Moreover, Bi et al. [60] propose an evo-
lutionary algorithm assisted by autoencders to solve computa-
tion  offloading  problem  in  mobile  edge  computing,  which
intends  to  migrate  a  part  of  data  processing  from  resource-
constrained smart mobile devices (SMDs) to high-performing
platforms.

3) Production Scheduling Optimization: Production schedu-
ling problems with different characteristics are existing in dif-
ferent fields,  such as flexible job shop scheduling [98]−[101]
and  order  scheduling [102], [103].  The  increasing  scale  of
scheduling  problems  usually  accounts  for  an  exponentially
increased search space [104]. Sun et al. [105], [106] test their
algorithms  on  a  large-scale  scheduling  problem  of  80  jobs
with 600 operations processed on 50 machines, which is a typ-
ical  high-dimensional  problem.  Zhang et  al. [100] regard  the
allocation  of  individuals  for  different  tasks  as  computation-
ally  expensive problems.  They build  surrogates  for  each task
by considering the behavior of individuals and their fitness in
dynamic flexible job shop scheduling.  

V.  Open Issues

Although some promising algorithms have been proposed to
solve HEPs, their solution methods are far from being mature.
Some  open  issues  and  challenges  need  to  be  addressed  as
future research.  

A.  Surrogate Models for HEPs
As a dominant method for solving expensive problems, how

to  construct  effective  and  efficient  surrogate  models  in  high-
dimensional  space  remains  an  immense  challenge.  A  high-
accuracy  surrogate  model  can  be  trained  by  sufficient  data
samples,  however,  which  can  inevitably  result  in  high  surro-
gate  construction  time  consumption.  How  to  balance  surro-
gate  accuracy  and  construction  time  is  a  key  issue  when
adopting  SAEAs  for  solving  HEPs.  The  existing  surrogate
models  are  mainly  selected  from  GP,  RF  and  RBF.  Some
novel and effective machine learning methods,  such as graph
convolutional  networks [107] and deep brief  networks [108],
should  be  investigated  as  surrogate  models  in  the  evolution-
ary community, especially for problems with complicated data
structures.  Moreover,  some  efficient  model-free  optimization
methods for HEPs need to be researched in the future so as to
alleviate  the  difficulty  of  building  surrogate  models  in  high-
dimensional space [68].  

B.  Hybrid HEPs
Nowadays,  optimization  problems  tend  to  be  ones  that  are

hybridized  with  different  characteristics.  As  listed  in Fig.  5,
any  optimization  problem  hybridization  can  result  in  a  chal-
lenging  and  potential  research  direction.  Although  several
works intend to solve some complicated HEPs, such as high-
dimensional expensive multiobjective optimization [54], there
still remains a great demand to investigate how to design effi-
cient  algorithms  for  HEPs  characterized  by  highly  con-
strained [14], [109],  multi-objective or many-objective [110],
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[111],  multi-modal [112],  dynamic [113],  robust [114],  dis-
continuous [24],  and  bi-level [115].  As  a  result,  HEPs  with
more  complicated  characteristics,  especially  those  arise  from
real scenarios, are on great demand to be deeper researched.
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Fig. 5.     The main research directions of EAs.
   

C.  Parallel Computing and Distributed Computing for HEPs
Modern advances in  computing power enables  parallel  and

distributed  computing  to  some  large-scale  or  expensive  opti-
mization problems [116]−[118]. Since the evaluations of can-
didate individuals are independent of each other in most cases,
inherent  parallel  characteristic  of  evolutionary  algorithms
enables  parallel  computing  and  distributed  computing  natu-
rally suitable to deal with such challenging optimization prob-
lems and thus speed up the convergence rates [119]. Also, par-
allel  computing  and  distributed  computing  can  be  investi-
gated to accelerate the speed of surrogate constructions in the
SAEA  framework,  especially  multiple  surrogate  retraining
process.  Therefore,  advanced  computing  techniques  are
required  to  be  considered  to  handle  HEPs  with  reasonable
time budget [120].  

D.   Comprehensive  Benchmark  Suites  and  Real-World  Applica-
tions

We  notice  that  most  papers  adopt  only  seven  basic  func-
tions, which are insufficient to validate HEP algorithms’ per-
formance.  Although  it  is  indeed  challenging  to  solve  HEPs
with  limited  computational  resource,  some  complex  HEPs
with different characteristics, such as rotated and shifted, need
to  be  included  as  benchmark  functions  for  future  research
[121]. The existing algorithms are hardly tested on a compre-
hensive benchmark suite  thus  resulting in  insufficient  valida-
tion of their overall performance in solving HEPs. In addition,
most of the industrial applications, such as airfoil design opti-
mization [57] and  propeller  design  optimization [51],  are
benchmark applications.  We should  investigate  how to  apply
the  algorithms  to  solve  practical  and  industrial-size  HEPs,
e.g.,  large-scale  scheduling  problems  in  intelligent  manufac-
turing [122] and vehicle routing planning in intelligent trans-
portation [123].  

VI.  Conclusion

This paper provides the first comprehensive survey of evo-

lutionary  optimization  approaches  for  high-dimensional
expensive problems (HEPs).  After  introducing the basic  con-
cepts of HEPs, we discuss the main ideas of surrogate-assisted
evolutionary algorithms and summarize the existing SAEAs in
solving different HEPs from four main aspects, namely surro-
gate  selection,  model  construction,  model  management  and
base optimizers. Then, we present the commonly-used bench-
mark suites for HEPs and show the comparative results of sev-
eral  representative algorithms.  Some HEPs arising from real-
ity scenarios are presented in our paper for potential  applica-
tions. We also outline the challenges and issues that need to be
addressed as future studies. We expect these introduced evolu-
tionary  algorithms  to  play  an  increasingly  important  role  in
helping engineers solve their particular engineering optimiza-
tion  problems  arising  from  various  industrial  sectors,  e.g.,
transportation,  manufacturing,  aerospace,  biology,  and  envi-
ronment [124]−[126].  Hence,  by  providing  in-depth  under-
standing and useful insights into HEPs and their updated solu-
tion  methods,  we hope this  paper  is  instrumental  and helpful
to  researchers  and practicing  engineers,  especially  novices  in
the area  of  evolutionary optimization.  We also hope that  this
paper  can  provide  valuable  inspirations  for  them  to  develop
better algorithms for solving challenging HEPs.
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