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   Abstract—This  paper  focuses  on  the  quadratic  nonfragile  fil-
tering  problem  for  linear  non-Gaussian  systems  under  multi-
plicative  noises,  multiple  missing  measurements  as  well  as  the
dynamic event-triggered transmission scheme. The multiple miss-
ing  measurements  are  characterized  through  random  variables
that obey some given probability distributions, and thresholds of
the dynamic event-triggered scheme can be adjusted dynamically
via  an  auxiliary  variable.  Our  attention  is  concentrated  on
designing a dynamic event-triggered quadratic nonfragile filter in
the  well-known  minimum-variance  sense.  To  this  end,  the  origi-
nal  system  is  first  augmented  by  stacking  its  state/measurement
vectors  together  with  second-order  Kronecker  powers,  thus  the
original design issue is reformulated as that of the augmented sys-
tem. Subsequently, we analyze statistical properties of augmented
noises as well as high-order moments of certain random parame-
ters. With the aid of two well-defined matrix difference equations,
we  not  only  obtain  upper  bounds  on  filtering  error  covariances,
but  also  minimize  those  bounds  via  carefully  designing  gain
parameters. Finally, an example is presented to explain the effec-
tiveness of this newly established quadratic filtering algorithm.
    Index Terms—Dynamic  event-triggered  scheme, missing  measure-
ments, multiplicative  noises  (MNs), non-Gaussian  noises, quadratic
filter.
  

I.  Introduction

PAST  several  decades  have  witnessed  the  enthusiasm
towards researching stochastic state estimation or filtering

owing to the successful usage in a wide range of engineering
areas  including target  tracking,  satellite  navigation,  industrial
automation and so forth.  As is well  known, for the exact lin-
ear  Gaussian  system,  the  famed Kalman filter  is  able  to  give
the  minimum-mean-square-error  (MMSE)  estimate [1], [2].
Unfortunately, parameter uncertainties are inevitable in many
real-world  applications  due  to  random  component  failures,
environment changes and sensor aging.
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Notably,  the  parameter  uncertainties,  in  many cases,  might
incur  serious  performance  degradation [3]−[10].  In  this  con-
text, researchers have tried hard on designing multifarious fil-
tering strategies,  see e.g., [11]−[17].  Particularly,  robust  non-
fragile  linear  filtering  has  been  investigated  in [16] under
norm-bounded  uncertainties.  In [14],  the  optimal  filtering
issue has  been addressed for  continuous-time systems suffer-
ing  from  multiplicative  noises  (MNs)  and  multiple  sampled
delay measurements.

It  should  be  pointed  out  that  in  engineering  practice,  the
non-Gaussian noises are quite common as a result of the com-
plicated  environments,  and  some  representative  examples
include  the  heavy-tailed  glint  noises [18] and  the  non-Gaus-
sian  Lévy  noises [19].  When  it  comes  to  the  non-Gaussian
noises,  the  Kalman  filter  no  longer  works  as  the  optimal
MMSE estimator and might produce unsatisfactory state esti-
mates. Accordingly, the non-Gaussian filtering has risen to an
active research topic in recent years with many feasible filter-
ing methods available in [19]−[26] and the references therein.
Among  them,  a  modified  Tobit  Kalman  filter  and  a  polyno-
mial filter have been designed in [19], [22] so as to cope with
non-Gaussian  Lévy  noises  and  non-Gaussian  singular  sys-
tems, respectively.

Quadratic filtering, also known as the second-order polyno-
mial  filtering,  has  proved  to  be  an  effective  filtering  tech-
nique  to  deal  with  the  non-Gaussian  noises [27], [28].  The
pivotal feature of quadratic filtering is to achieve system esti-
mation by taking full  advantage of the information contained
in the second-order Kronecker powers with respect to original
states/measurements.  Compared  with  polynomial  filtering
schemes,  the  quadratic  counterpart  is  able  to  provide  a  com-
promise between the filtering performance and computational
cost.  As  such,  the  non-Gaussian  quadratic  filtering  has
attracted a lot of research interest.
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Recent literature has reported a number of elegant quadratic
filtering  results.  For  example,  a  least-squares  quadratic  filter
has  been  novelly  proposed  in [29] for  stochastic  systems
under  random  parameter  matrices,  which  can  later  be
extended  to  multi-sensor  cases  with  MNs/fading  measure-
ments. In [12], a novel linear quadratic filter has been devised
for  non-Gaussian  systems  under  MNs  and  quantization
effects.  Nevertheless,  different  from  the  relatively  mature
Kalman filtering  theory,  the  design  and  analysis  problems of
the quadratic filter have not been adequately investigated yet.

[0,1]

The  phenomenon  of  missing  measurements  has  been  well
recognized as one of the major causes for performance loss in
a  typical  networked  environment.  Consequently,  much  atten-
tion  has  been  deliberately  focused  on  investigating  effects
from such a phenomenon onto the filtering performance [30],
[31].  For  instance,  an  optimal  distributed  and  saturated  filter
has been devised in [32] for nonlinear systems under the ran-
dom  access  protocol  and  missing  measurements,  where  the
theoretical  analyses  in  terms of  boundedness  and monotonic-
ity  were  also  provided.  In  existing  literature,  there  have
mainly been three models  to  characterize  these missing mea-
surements,  namely,  arbitrary  probability  distribution  (within
the  interval ),  Bernoulli  distribution  and  Markov  chain
models.  Particularly,  the  first  kind  of  missing  models  is  cus-
tomarily  referred  to  as  the  multiple  missing  measurements
(MMMs)  model.  It  is  worth  mentioning  that,  for  the  linear
non-Gaussian  systems  with  MMMs,  the  corresponding
quadratic  filtering  problem is  far  from being  fully  examined,
which motivates this current investigation.

For the networked systems, a noticeable fact is that the com-
munication  resources  are  usually  constrained  and  hence  it  is
paramount  to  explore  how  to  reasonably  utilize  the  limited
resources [33].  In  such a  context,  a  huge  amount  of  efficient
transmission  strategies  have  been  developed  where  the
dynamic  event-triggered  scheme  (DETS)  has  now  become  a
popular choice, thus drawn an ever-increasing research atten-
tion [34]−[38].  In  comparison  with  the  static  transmission
scheme,  such a DETS (with a  dynamically adjustable thresh-
old  parameter)  has  greater  potentials  in  reducing  not  only
resource consumption but also communication burden. So far,
some  elegant  results  have  been  reported  on  the  dynamic
event-triggered  filtering  problems [39]−[42].  For  example,
this DETS has been used in complex networks [40] to devise
filters  under  sensor  failures  and  switching  topologies,  and  in
sensor  networks [43] to  design  set-membership  filters  under
bounded noises.

In most existing literature, successful implementation of the
designed  filters  largely  depends  on  a  prerequisite  that  the
desired  gain  parameters  can  be  exactly  realized.  Unfortu-
nately, such a prerequisite might not always hold in engineer-
ing  practice  due  to  gain  fluctuations  caused  by  the  round-
off/programming errors and the finite resolution of instrumen-
tation. Therefore, it is significant to design the filters with cer-
tain resilience against the potential gain fluctuations, and this
gives  rise  to  an  emerging  filtering  scheme  called  resilient  or
non-fragile filter. Roughly speaking, there have been two pop-
ular models to describe the phenomenon of gain perturbations,
namely, the norm-bounded uncertainty model and the stochas-

tic  uncertainty  model  (governed  by  zero-mean  matrices  that
have  bounded  second-order-moment),  see  e.g., [16] and
[44]−[47]. It  should be pointed out that,  up to now, very few
quadratic nonfragile filtering literature has been given in case
of  non-Gaussian  systems,  not  to  mention  cases  that  consider
MNs, DETS, and MMMs.

We  endeavor  to  design  a  linear  quadratic  nonfragile  filter-
ing scheme for non-Gaussian systems subject to MNs, DETS,
and MMMs. Three challenging issues that need to be tackled
are  identified  as  follows:  1)  How  to  derive  the  high-order
moments for the parameters related to DETS and the random
variables  describing  the  phenomenon  of  MMMs?  2)  How  to
analyze the statistics of augmented noises composed of origi-
nal  noises  and  second-order  Kronecker  powers?  and  3)  How
to  design  a  quadratic  non-Gaussian  nonfragile  filter  with
MNs, DETS, and MMMs?

Corresponding to the identified challenges, the main contri-
butions  of  this  paper  lie  in:  1)  The  quadratic  non-Gaussian
nonfragile  filter  is  devised  firstly  under  MNs,  DETS,  and
MMMs;  2)  The  statistics  of  augmented  noises  and  involved
random variables  are  revealed;  and  3)  A  new quadratic  non-
fragile filter is designed by minimizing upper bounds on filter-
ing error covariances, which yields better accuracy than tradi-
tional filters only using original measurements.

◦ ⊗
z[l]

z[l] = z⊗ z[l−1](l ≥
1) z[0] = 1 E{z}

ϕ(l)
z Γ̃m,n(x⊗ z)

x⊗ z+ z⊗ x sti(·)
λmax(A)

Sym{A}
A+AT

Notations:  and  represent,  respectively,  the  Hadamard
product and the Kronecker power.  represents the lth-order
Kronecker power of z,  which is  denoted by 

 with .  is  the  mathematical  expectation  of  ran-
dom  variable z.  is  the lth-order  moment  of z. 
denotes .  denotes  an  inverse  operation  that
transfers  the  vectorized  matrix  into  the  original  one. 
and  stand  for  the  maximum  eigenvalue  of  matrix A
and , respectively.  

II.  Problem Formulation

Consider the following stochastic non-Gaussian system with
MNs and MMMs:
 

xt+1 =
(
Ft +

s∑
i=1

αi,tFi,t
)
xt +Btwt

yt = ΛtHt xt +Dtvt

(1)

xt ∈ Rn x0
yt ∈ Rm αi,t ∈ R

wt vt
Λt ≜ diag{λ1,t, . . . ,λm,t}
λ j,t ( j = 1,2, . . . ,m)

[0,1] Ft Fi,t Bt Ht Dt

where  is  the  system  state  and  its  initial  value  is ,
 denotes  the  measurement  output,  and  is  the

multiplicative noise.  and  represent non-Gaussian noises.
 is  the  MMMs  related  variable,  where

 satisfy  certain  probability  distributions
within  the  interval . , , , ,  and  are  known
matrices.

x0 αi,t wt vtAssumption  1: Random  sequences , ,  and  are
white, zero-mean, and mutually independent. In addition, their
second-order, third-order as well as fourth-order moments are
known.

λ j,t
j = 1,2, . . . ,m x0 αi,t wt vt

E{λl
j,t} (l = 1,2,3,4)

Assumption 2: Mutually uncorrelated random sequences 
for  are  uncorrelated  with , ,  and .
Moreover, the expectations  are known.

αi,t
wt vt

Remark 1: In this  paper,  the involved MNs ,  and noises
,  are all  non-Gaussian sequences with known high-order
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λ j,t ( j = 1,2, . . . ,m) [0,1]

λ j,t = 1

moments. In this sense, the existing results with respect to the
Gaussian filtering problems might  be no longer  applicable  to
such  a  case.  On  the  other  hand,  the  random  variables

 distributed  over  are  used  to  charac-
terize MMMs phenomenon of the jth sensor at time instant t.
Specifically,  if ,  the jth  sensor  works  normally,  other-
wise the jth sensor suffers from the measurement degradation.
Obviously,  the  common  Bernoulli  distribution  model  is  one
special case with respect to the considered MMMs model.

To reduce transmission, we adopt a DETS whose triggering
condition is
 

∥ut∥−
ηt

θ
−σ ≥ 0 (2)

ut ≜ yti − yt yti yt
ti

ηt

where ,  and  denote,  respectively,  the  latest
(time ) and current measurements. θ and σ are given positive
parameters.  Moreover,  the  auxiliary  variable  satisfies  the
following recursion:
 

ηt+1 = χηt +σ−∥ut∥ (3)
η0 ≥ 0 0 < χ < 1 θχ ≥ 1with ,  and . Based on the triggering con-

dition (2), the transmitted measurements can be described by
 

ỹt = yti , t ∈ {ti, ti+1, ti+2, . . . , ti+1−1}. (4)

ηt
θ +σ

σ

ηt
θ +σ −→ σ

θ −→∞

Remark  2: The  threshold  in  the  triggering  condition  (2)  is
the time-varying parameter  rather than the fixed scalar

, which means that the DETS has greater potentials than its
static version in reducing the amount of successfully transmit-
ted  measurements [43].  Notably,  the  threshold 
when .  In  this  sense,  the  considered  DETS  includes
the previous static version.  

III.  The Quadratic Filtering Problem

xt yt

ỹt x[2]
t y[2]

t ỹ[2]
t

This  section  investigates  the  problem of  quadratic  filtering
for original system (1). To construct an augmented system, let
us first give the second-order Kronecker powers of ,  and

, i.e., ,  and .
Based on the definition and properties of Kronecker powers,

we have
 

x[2]
t+1 = (Ft +

s∑
i=1

αi,tFi,t)[2]x[2]
t +B[2]

t w[2]
t

+ Γ̃n,n
[
(Ft +

s∑
i=1

αi,tFi,t)xt ⊗Btwt
]

= (F[2]
t +

s∑
i=1

ϕ(2)
αi,t F

[2]
i,t )x[2]

t +B[2]
t ϕ

(2)
wt + w̃t (5)

where
 

w̃t ≜
[
Γ̃n,n(Ft ⊗

s∑
i=1

αi,tFi,t)+
s∑

i=1

(α2
i,t −ϕ

(2)
αi,t )F

[2]
i,t

+

s∑
i=1

s∑
1= j,i

αi,tα j,tFi,t ⊗F j,t
]
x[2]

t +B[2]
t (w[2]

t

−ϕ(2)
wt )+ Γ̃n,n

[
(Ft +

s∑
i=1

αi,tFi,t)xt ⊗Btwt
]
.

ytRecalling the expression of  obtains 

y[2]
t = (ΛtHt xt +Dtvt)⊗ (ΛtHt xt +Dtvt)

= Λ
[2]
t H[2]

t x[2]
t + Γ̃m,m(ΛtHt xt ⊗Dtvt)+D[2]

t v[2]
t

= E{Λ[2]
t }H

[2]
t x[2]

t +D[2]
t ϕ

(2)
vt + ṽt (6)

where
 

ṽt ≜
(
Λ

[2]
t −E{Λ

[2]
t }
)
H[2]

t x[2]
t +D[2]

t (v[2]
t −ϕ

(2)
vt )

+ Γ̃m,m(ΛtHt xt ⊗Dtvt).

ỹ[2]
tSimilarly,  can be described by

 

ỹ[2]
t = (yt +ut)⊗ (yt +ut)

= E{Λ[2]
t }H

[2]
t x[2]

t +D[2]
t ϕ

(2)
vt +u[2]

t +
˜̃vt (7)

where
 

˜̃vt ≜ṽt + Γ̃m,m(yt ⊗ut).

Xt
Yt Ỹt

In what follows, let us define the augmented state vector 
and measurement vectors  and :
 

Xt ≜

 xt

x[2]
t

 , Yt ≜

 yt

y[2]
t

 , Ỹt ≜

 ỹt

ỹ[2]
t

 (8)

then system (1) is converted into
 Xt+1 = FtXt + f̃t +Wt

Ỹt =HtXt + g̃t +Ut +Vt

(9)

where
 

Ft ≜


Ft 0

0 F[2]
t +

s∑
i=1

ϕ(2)
αi,t F

[2]
i,t


Wt ≜


s∑

i=1

αi,tFi,t xt +Btwt

w̃t


Ht ≜

 E{Λt}Ht 0

0 E{Λ[2]
t }H

[2]
t


f̃t ≜

 0

B[2]
t ϕ

(2)
wt

, g̃t ≜

 0

D[2]
t ϕ

(2)
vt


Ut ≜

 ut

u[2]
t

, Vt ≜

 (Λt −E{Λt})Ht xt +Dtvt

˜̃vt

.
ỸtBy  resorting  to  the  available  measurements ,  the  non-

fragile filter for system (9) is
 X̂t+1|t = FtX̂t|t + f̃t

X̂t+1|t+1 = X̂t+1|t + L̃t+1[Ỹt+1−Ht+1X̂t+1|t − g̃t+1]
(10)

X̂t+1|t X̂t+1|t+1

Xt+1 L̃t+1 ≜Lt+1+∆Lt+1 ∆Lt+1

where  and  are,  respectively,  the prediction and
estimate  of .  Gain ,  where 
describes  the  gain  parameter  fluctuations  satisfying  the  fol-
lowing statistical characteristics:
 

E{∆Lt+1} = 0, E{∆Lt+1∆LT
t+1} ≤ δI (11)

∆Lt+1 x0 αi,t wt vt λ j,t

where δ is a positive scalar. Moreover, we assume that all ran-
dom variables, i.e., , , , ,  and , are mutually
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independent.

l2− l∞

∆Lt+1
δ

ϕ(2)
αi,t E{Λ

[2]
t } ϕ

(2)
wt ϕ(2)

vt

Remark  3: It  should  be  pointed  out  that,  many  excellent
non-fragile filtering algorithms have been proposed in the lit-
erature,  see  e.g., [16], [46].  Different  from  these  two  works
focusing on the design of the robust  nonfragile Kalman filter
and the  state estimator, respectively, this paper concen-
trates on the issue of the quadratic nonfragile filtering for non-
Gaussian  systems.  By  utilizing  the  Kronecker  powers  with
respect to state and measurement vectors, the quadratic filter-
ing problem for system (1) has been successfully transformed
into  a  recursive  filtering  problem  for  the  augmented  system
(9). The computational or implementation error  is mod-
eled  as  (11),  and  the  parameter  is  dependent  on  the  word-
length  of  the  adopted  computing  device.  The  distinctive  fea-
tures of (10) lie in: 1) The capability to deal with the effects of
the  MNs,  MMMs,  DETS,  and  stochastic  gain  fluctuations
(SGFs);  2)  The  full  use  of  information  contained  in  second-
order  moments  of  the  non-Gaussian  random  variables  (e.g.,

, , , and ) and the capability of improving the
filtering performance; and 3) The recursive form suitable to be
implemented online.

X̃t+1|t ≜ Xt+1−X̂t+1|t X̃t+1|t+1 ≜ Xt+1−X̂t+1|t+1Let  and .  The
corresponding covariance matrices can be defined as follows:
 

Pt+1|t ≜ E{X̃t+1|tX̃T
t+1|t}

Pt+1|t+1 ≜ E{X̃t+1|t+1X̃T
t+1|t+1}.

Pt+1|t+1
Lt+1

The  main  purpose  is  to  design  filter  (10)  to  ensure  there
exists an upper bound for , and minimize this bound by
designing .  

IV.  Main Results

Pt+1|t+1
Lt+1

This  section  first  presents  a  few  preliminary  lemmas,  then
determines an upper bound for , finally minimizes this
bound by designing .  

A.  Preliminary Lemmas
A ≜ diag{a1,a2, . . . ,an}Lemma  1 [32]: Letting  and C,

respectively, be random and real-valued matrices, we have
 

E{ACAT } =


E{a2

1} E{a1a2} · · · E{a1an}
E{a2a1} E{a2

2} · · · E{a2an}
...

...
. . .

...

E{ana1} E{ana2} · · · E{a2
n}


◦C. (12)

Lemma 2 [40]: For any two given matrices A and B,
 

ABT +BAT ≤ αAAT +α−1BBT (13)
α > 0holds where the scalar .

Lemma 3: Define
 

Ω
(1)
t+1 ≜ E{η

2
t+1}

Ω
(2)
t+1 ≜ E{η

4
t+1}

Ω
(u,1)
t+1 ≜ E{∥ut+1∥2}

Ω
(u,2)
t+1 ≜ E{∥ut+1∥4}

then, the following conditions are satisfied: 

Ω
(1)
t+1 ≤ Ω̄

(1)
t+1

Ω
(2)
t+1 ≤ Ω̄

(2)
t+1

Ω
(u,1)
t+1 ≤ Ω̄

(u,1)
t+1

Ω
(u,2)
t+1 ≤ Ω̄

(u,2)
t+1 (14)

where
 

Ω̄
(1)
t+1 ≜

[
(1+ e1,t)(1+ e2,t)χ2+ (1+ e−1

1,t )
1+ θ
θ2

]
Ω̄

(1)
t

+
[
(1+ e1,t)(1+ e−1

2,t )+ (1+ e−1
1,t )(1+ θ

−1)
]
σ2

Ω̄
(2)
t+1 ≜ Ξ1,tΩ̄

(2)
t +Ξ2,tΩ̄

(1)
t +Ξ3,tσ

4

Ω̄
(u,1)
t+1 ≜

1+ θ
θ2
Ω̄

(1)
t+1+ (1+ θ−1)σ2

Ω̄
(u,2)
t+1 ≜

(1+ θ)2

θ4
Ω̄

(2)
t+1+ (1+ θ−1)2σ4

+2(1+ θ)
(1+ θ−1)
θ2

σ2Ω̄
(1)
t+1

with
 

Ξ1,t ≜ (1+ e1,t)2(1+ e2,t)2(1+ e3,t)χ4

+2(1+ e1,t)(1+ e−1
1,t )(1+ e2,t)χ2 (1+ θ)

θ2

+ (1+ e−1
1,t )

2 (1+ θ)2

θ4

Ξ2,t ≜ 2(1+ e1,t)(1+ e−1
1,t )σ

2
[
(1+ e2,t)(1+ θ−1)χ2

+ (1+ e−1
2,t )

(1+ θ)
θ2

]
+2(1+ e−1

1,t )
2 (1+ θ−1)
θ2

× (1+ θ)σ2

Ξ3,t ≜ (1+ e1,t)2(1+ e−1
2,t )

2(1+ e−1
3,t )

+2(1+ e1,t)(1+ e−1
1,t )(1+ e−1

2,t )(1+ θ
−1)

+ (1+ e−1
1,t )

2(1+ θ−1)2.

Proof: See Appendix A. ■

ηt ut

Ω
(1)
t+1 Ω

(2)
t+1 Ω

(u,1)
t+1 Ω

(u,2)
t+1

Ω̄
(1)
t+1 Ω̄

(2)
t+1 Ω̄

(u,1)
t+1 Ω̄

(u,2)
t+1

Remark 4: In order to deal with the difficulties incurred by
the DETS, the second-order and fourth-order Kronecker pow-
ers of  and  have been derived in Lemma 3. Obviously, it
is  hard  to  exactly  calculate , , ,  and 
mainly because of the introduced triggering condition (2). To
this  end,  we  have  established  their  respective  upper  bounds
(i.e., , , , and ) by means of Lemma 2.

Wt Vt

Based on the above lemmas, we are ready to analyze statis-
tical properties of noises  and .

Lemma 4: Let us define
 

QWt ≜ E{WtWT
t } =
 QW11,t QW12,t

QT
W12,t

QW22,t


QVt ≜ E{VtVT

t } =
 QV11,t QV12,t

QT
V12,t

QV22,t


Q̄Vt ≜

 QV11,t QV12,t

QT
V12,t

Q̄V22,t


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where

 

QW11,t ≜
s∑

i=1

ϕ(2)
αi,t Fi,tsti(ϕ(2)

xt )FT
i,t +Btsti(ϕ(2)

wt )BT
t

QW12,t ≜
s∑

i=1

ϕ(2)
αi,t Fi,tsti(ϕ(3)

xt )(Ft ⊗Fi,t)T Γ̃T
n,n

+

s∑
i=1

ϕ(3)
αi,t Fi,tsti(ϕ(3)

xt )(F[2]
i,t )T +Btsti(ϕ(3)

wt )(B[2]
t )T

QW22,t ≜ Γ̃n,n

s∑
i=1

ϕ(2)
αi,t (Ft ⊗Fi,t)sti(ϕ(4)

xt )(Ft ⊗Fi,t)T Γ̃T
n,n

+

s∑
i=1

(ϕ(4)
αi,t − (ϕ(2)

αi,t )
2)F[2]

i,t sti(ϕ(4)
xt )(F[2]

i,t )T

+

s∑
i=1

s∑
j,i=1

ϕ(2)
αi,tϕ

(2)
α j,t (Fi,t ⊗F j,t)sti(ϕ(4)

xt )(Fi,t

⊗F j,t)T + Γ̃n,n

s∑
i=1

ϕ(3)
αi,t (Ft ⊗Fi,t)sti(ϕ(4)

xt )(F[2]
i,t )T

+

s∑
i=1

ϕ(3)
αi,t F

[2]
i,t sti(ϕ(4)

xt )(Ft ⊗Fi,t)T Γ̃T
n,n

+ Γ̃n,n
{( s∑

i=1

ϕ(2)
αi,t Fi,tsti(ϕ(2)

xt )FT
i,t

+Ftsti(ϕ(2)
xt )FT

t
)⊗ (Btsti(ϕ(2)

wt )BT
t )
}
Γ̃T

n,n

+B[2]
t
(
sti(ϕ(4)

wt )−ϕ(2)
wt (ϕ(2)

wt )T )(B[2]
t )T

QV11,t ≜ Υt ◦ (Htsti(ϕ(2)
xt )HT

t )+Dtsti(ϕ(2)
vt )DT

t

QV12,t ≜ (1−2ρt)
(
Mt +Dtsti(ϕ(3)

vt )(D[2]
t )T )

Q̄V22,t ≜ Γ̃m,m
(
Tt ◦ (Htsti(ϕ(2)

xt )HT
t )
)⊗ (Dtsti(ϕ(2)

vt )

×DT
t
)
Γ̃T

m,m+Nt ◦
(
H[2]

t sti(ϕ(4)
xt )(H[2]

t )T )
−E{Λ[2]

t }H
[2]
t sti(ϕ(4)

xt )(H[2]
t )T (E{Λ[2]

t })T

+D[2]
t
(
sti(ϕ(4)

vt )−ϕ(2)
vt (ϕ(2)

vt )T )(D[2]
t )T

+ Γ̃m,m
[(

Tt ◦ (Htsti(ϕ(2)
xt )HT

t )+Dtsti(ϕ(2)
vt )DT

t
)

⊗ ((1+ θ) Ω̄(1)
t

θ2
+ (1+ θ−1)σ2)I]Γ̃T

m,m

+Sym
{
−2ρt
[
Nt ◦ (H[2]

t sti(ϕ(4)
xt )(H[2]

t )T )

−E{Λ[2]
t }(H

[2]
t sti(ϕ(4)

xt )(H[2]
t )T )(E{Λ[2]

t })T ]
−2ρtΓ̃m,m

(
Tt ◦ (Htsti(ϕ(2)

xt )HT
t )
)

⊗ (Dtsti(ϕ(2)
vt )DT

t
)
Γ̃T

m,m−2ρtD
[2]
t
(
sti(ϕ(4)

vt )

−ϕ(2)
vt (ϕ(2)

vt )T )(D[2]
t )T
}

(15)

with
 

Ei ≜ diag{0,0, . . . ,0,1,0, . . . ,0}, λ̄i,t ≜ E{λi,t}

Υt ≜ diag{ϕ(2)
λ1,t
− λ̄2

1,t, . . . ,ϕ
(2)
λm,t
− λ̄2

m,t}

Mt ≜
m∑

i=1

(ϕ(3)
λi,t
− λ̄i,tϕ

(2)
λi,t

)EiHtsti(ϕ(3)
xt )(H[2]

t )T (E[2]
i )T

+

m∑
i=1

m∑
1= j,i

(ϕ(2)
λi,t
− λ̄2

i,t)λ̄ j,tEiHtsti(ϕ(3)
xt )(H[2]

t )T

× (Ei⊗E j+E j⊗Ei)T

Tt ≜



ϕ(2)
λ1,t

λ̄1,tλ̄2,t · · · λ̄1,tλ̄m,t

λ̄2,tλ̄1,t ϕ(2)
λ2,t

· · · λ̄2,tλ̄m,t

...
... · · ·

...

λ̄m,tλ̄1,t λ̄m,tλ̄2,t · · · ϕ(2)
λm,t



Nt ≜



ϕ(4)
λ1,t

ϕ(3)
λ1,t
λ̄2,t · · · ϕ(2)

λ1,t
ϕ(2)
λm,t

ϕ(3)
λ1,t
λ̄2,t ϕ(2)

λ1,t
ϕ(2)
λ2,t

· · · λ̄1,tλ̄2,tϕ
(2)
λm,t

...
... · · ·

...

ϕ(2)
λm,t
ϕ(1)
λ1,t

λ̄1,tλ̄2,tϕ
(2)
λm,t

· · · ϕ(4)
λm,t


.

ρt = 0 ρt = 1 Q̄Vt QVt

Note  that  if  the  condition  (2)  is  satisfied  at  time  instant t,
, otherwise . Then,  is an upper bound of .

Proof: See Appendix B. ■

Wt Vt

QVt

Λt Λt∑m
i=1 λi,tEi

yt ⊗ut

Remark 5: It is clear to see that great effort has been made
on the analysis of statistical properties of noises  and .
The  essential  difficulties  result  from  the  co-existence  of  the
high-order  moments  about  non-Gaussian  noises  and  the
parameters  involved  in  MMMs  and  DETS  when  computing
the exact value of . To this end, the matrix decomposition
technique  has  been  exploited  to  cope  with  the  cross-terms
containing  the  high-order  moments  of  (i.e.,  has  been
decomposed  into ).  Considering  the  DETS,  much
attention should be devoted to the term  since it  equals
to zero when t is the triggering time instant, and nonzero oth-
erwise.

Jt+1 ≜
E{Xt+1XT

t+1}
Lemma  5: The  state  covariance  matrix  defined  by 

 satisfies the following recursion:
 

Jt+1 = FtJtF T
t + f̃t f̃ T

t +QWt +FtKt f̃ T
t + f̃tKT

t F T
t (16)

Kt ≜ E{Xt} = [0, (ϕ(2)
xt )T ]T .where 

Jt+1Proof: Definition of  and (9) imply
 

Jt+1 = FtJtF T
t + f̃t f̃ T

t +E{WtWT
t }+Sym

{
FtE{Xt f̃ T

t }

+FtE{XtWT
t }+E{ f̃tWT

t }
}
. (17)

Assumption 1 indicates
 

E{XtWT
t } = 0,E{ f̃tWT

t } = 0. (18)
Then, substituting (18) into (17) leads to (16).

J11,t+1=sti(ϕ(2)
xt+1 ) J12,t+1=

sti(ϕ(3)
xt+1 ) J22,t+1 = sti(ϕ(4)

xt+1 )
In addition, we further know that , 

 and . ■
Pt+1|tLemma 6:  satisfies

 

Pt+1|t =FtPt|tF T
t +QWt . (19)
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Proof: According to (9) and (10),
 

X̃t+1|t =FtX̃t|t +Wt (20)
Pt+1|twhich together with the definition of , yields

 

Pt+1|t =FtPt|tF T
t +QWt +Gt +GT

t (21)
Gt ≜ E{FtX̃t|tWT

t }where .
Gt = 0From Assumption 1, we further have , which implies

that (19) holds. ■
Pt+1|t+1Lemma 7:  satisfies

 

Pt+1|t+1 = (I−Lt+1Ht+1)Pt+1|t(I−Lt+1Ht+1)T

+Lt+1E{Ut+1UT
t+1}LT

t+1+Lt+1QVt+1LT
t+1

+E{∆Lt+1(Ht+1Pt+1|tHT
t+1+Ut+1UT

t+1

+Vt+1VT
t+1)∆LT

t+1}+Sym
{
M1,t+1

+M2,t+1+M3,t+1
}

(22)

where
 

M1,t+1 ≜ E{−(I−L̃t+1Ht+1)X̃t+1|tUT
t+1L̃T

t+1}

M2,t+1 ≜ E{−(I−L̃t+1Ht+1)X̃t+1|tVT
t+1L̃T

t+1}

M3,t+1 ≜ E{L̃t+1Ut+1VT
t+1L̃T

t+1}.
X̂t+1|t+1 Xt+1Proof: Subtracting  from  yields

 

X̃t+1|t+1 = X̃t+1|t −L̃t+1
(Ỹt+1−Ht+1X̂t+1|t − g̃t+1

)
= X̃t+1|t −L̃t+1

(Ht+1X̃t+1|t +Ut+1+Vt+1
)

= (I−L̃t+1Ht+1)X̃t+1|t −L̃t+1Ut+1−L̃t+1Vt+1. (23)
Pt+1|t+1Recalling ’s  definition,  the  recursion  (22)  can  be

immediately obtained. ■

M1,t+1 M2,t+1
M3,t+1

Pt+1|t+1
Pt+1|t+1

It  should  be  mentioned  that  the  covariance  recursion  pro-
vided  in  Lemma  7  contains  cross-terms , ,  and

 (induced  by  MMMs,  DETS,  and  SGFs),  which  put
extreme  difficulties  on  exactly  calculating  via  (22).
We are, thus, going to seek a bound for  in the follow-
ing subsection.  

B.  Upper Bound
ei,t+1 > 0 (i = 4,5,6)Theorem 1: Let scalars  be given. Assu-

me equations
 

P̃t+1|t =FtP̃t|tF T
t +QWt (24)

and
 

P̃t+1|t+1 = (1+ e4,t+1+ e5,t+1)(I−Lt+1Ht+1)P̃t+1|t

× (I−Lt+1Ht+1)T + (1+ e−1
4,t+1+ e6,t+1)

×Lt+1(Ω̄(u,1)
t+1 +Ω̄

(u,2)
t+1 )LT

t+1

+ (1+ e−1
5,t+1+ e−1

6,t+1)Lt+1Q̄Vt+1LT
t+1

+λmax
{
(1+ e4,t+1+ e5,t+1)Ht+1P̃t+1|tHT

t+1

+ (1+ e−1
4,t+1+ e6,t+1)(Ω̄(u,1)

t+1 +Ω̄
(u,2)
t+1 )I

+ (1+ e−1
5,t+1+ e−1

6,t+1)Q̄Vt+1

}
δI (25)

P̃t+1|t P̃t+1|t+1 P0|0 =
P̃0|0 > 0
have  solutions  and  under  conditions 

. Then,
 

Pt+1|t ≤ P̃t+1|t, Pt+1|t+1 ≤ P̃t+1|t+1.

P0|0 ≤ P̃0|0
Pt|t ≤ P̃t|t Pt+1|t+1 ≤ P̃t+1|t+1

Proof: This  theorem is  proved  by  the  mathematical  induc-
tion  method.  Evidently,  the  condition  holds.
Assuming , we will need to show .

According to Lemma 2,
 

M1,t+1+MT
1,t+1

≤ e4,t+1E{(I−L̃t+1Ht+1)X̃t+1|tX̃T
t+1|t(I−L̃t+1Ht+1)T }

+ e−1
4,t+1E{L̃t+1Ut+1UT

t+1L̃T
t+1} (26)

 

M2,t+1+MT
2,t+1

≤ e5,t+1E{(I−L̃t+1Ht+1)X̃t+1|tX̃T
t+1|t(I−L̃t+1Ht+1)T }

+ e−1
5,t+1E{L̃t+1Vt+1VT

t+1L̃T
t+1}. (27)

M3,t+1+MT
3,t+1Similarly, the term  are calculated as

 

M3,t+1+MT
3,t+1 ≤ e6,t+1E{L̃t+1Ut+1UT

t+1L̃T
t+1}

+ e−1
6,t+1E{L̃t+1Vt+1VT

t+1L̃T
t+1}. (28)

Substituting (26)−(28) into (22) leads to
 

Pt+1|t+1 ≤ (1+ e4,t+1+ e5,t+1)(I−Lt+1Ht+1)Pt+1|t

× (I−Lt+1Ht+1)T + (1+ e−1
4,t+1+ e6,t+1)

×Lt+1(Ω̄(u,1)
t+1 +Ω̄

(u,2)
t+1 )LT

t+1

+ (1+ e−1
5,t+1+ e−1

6,t+1)Lt+1Q̄Vt+1LT
t+1

+λmax
{
(1+ e4,t+1+ e5,t+1)Ht+1Pt+1|tHT

t+1

+ (1+ e−1
4,t+1+ e6,t+1)(Ω̄(u,1)

t+1 +Ω̄
(u,2)
t+1 )I

+ (1+ e−1
5,t+1+ e−1

6,t+1)Q̄Vt+1

}
δI. (29)

Pt|t ≤ P̃t|t
Pt+1|t ≤ P̃t+1|t

Bearing  in  mind  that ,  we  can  easily  obtain
.  Utilizing  the  mathematical  induction  method,

we further have
 

Pt+1|t+1 ≤ P̃t+1|t+1. ■
P̃t+1|t+1Now, we are in a position to minimize bound .

P̃t+1|t+1Theorem 2:  is minimized by designing the filter gain
matrix as follows:
 

Lt+1 = (1+ e4,t+1+ e5,t+1)P̃t+1|tHT
t+1Ψ

−1
t+1. (30)

Furthermore,  the  desired  minimal  upper  bound  can  be
expressed by
 

P̃t+1|t+1 = (1+ e4,t+1+ e5,t+1)P̃t+1|t

+λmax(Ψt+1)δI−Lt+1Ψt+1LT
t+1 (31)

where
 

Ψt+1 ≜ (1+ e4,t+1+ e5,t+1)Ht+1P̃t+1|tHT
t+1

+ (1+ e−1
4,t+1+ e6,t+1)(Ω̄(u,1)

t+1 +Ω̄
(u,2)
t+1 )I

+ (1+ e−1
5,t+1+ e−1

6,t+1)Q̄Vt+1 .
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Proof: Using  the  method  of  completing  the  square,  we
rewrite (25) as follows:
 

P̃t+1|t+1 = (1+ e4,t+1+ e5,t+1)P̃t+1|t +λmax(Ψt+1)δI

+
[Lt+1− (1+ e4,t+1+ e5,t+1)P̃t+1|tHT

t+1Ψ
−1
t+1
]
Ψt+1

× [Lt+1− (1+ e4,t+1+ e5,t+1)P̃t+1|tHT
t+1Ψ

−1
t+1
]T

− (1+ e4,t+1+ e5,t+1)2P̃t+1|tHT
t+1Ψ

−1
t+1Ht+1P̃t+1|t

(32)
P̃t+1|t+1which indicates that  is minimal when

 

Lt+1 = (1+ e4,t+1+ e5,t+1)P̃t+1|tHT
t+1Ψ

−1
t+1. ■

ϕ(l)
αi,t (i = 1,2, . . . , s; l = 2,3,4) QWt

ϕ(l)
λ j,t

( j = 1,2, . . . ,m; l = 2,3,4) QVt

δ Ω̄(u,1)
t+1 Ω̄

(u,2)
t+1

P̃t+1|t+1

e4,t+1 e5,t+1 e6,t+1

O((n+n2)3)

Remark 6: We have now addressed the quadratic nonfragile
filter design issue for linear non-Gaussian systems with MNs,
MMMs, SGFs, and DETS. The original design issue has been
converted into the filter design issue for an augmented system
that  stacks  not  only  original  vectors  but  also  second-order
Kronecker  powers.  An  upper  bound  on  the  filtering  error
covariance and the filter  gain matrix have been,  respectively,
obtained  in  Theorems  1  and  2.  Clearly,  the  effects  from  the
aforementioned  factors  on  the  filter  performance  have  been
reflected  in  the  designed  quadratic  filtering  algorithm.  To  be
specific,  in  account  for  the
effect of MNs,  in  reflect the
influence  from  MMMs, , ,  and  characterize  the
impacts of SGFs and DETS, respectively. Moreover, in order
to  further  minimize  the  upper  bound ,  the  parameters

,  and  can  also  be  selected  by  means  of  opti-
mization algorithms in [4], [33] and the famous genetic algo-
rithm in [48]. In addition, the computation complexity of this
quadratic filtering algorithm is .

ỹt

Remark 7: In  comparison with  existing literature,  the  main
novelties lie in: 1) A novel design framework of the quadratic
nonfragile filter is proposed to handle the complexities caused
by  non-Gaussian  noises,  MNs,  MMMs,  SGFs,  and  DETS;
2) Statistical properties about the augmented noises and high-
order moments of certain involved parameters are discussed in
depth; 3) The newly proposed algorithm possesses a recursive
form  that  is  suitable  to  be  implemented  online;  and  4)  The
designed  algorithm  has  a  higher  filtering  accuracy  than  the
traditional filter only using the measurements .  

V.  An Illustrative Example

Consider system (1) with parameters
 

Ft =

[
0.75 0.3+0.4sin(0.1t)
0.15 0.29

]
F1,t =

[
0.05 0

0 0.05

]
, Bt =

[0.3
0.1

]
Ht =

[
0.2 0.18

0.7+0.5cos(0.5t) 0.3

]

Λt =

λ1,t 0
0 λ2,t

 , Dt =

[
0.15
0.1

]
.

x0 Cov(x0) =In this simulation,  is Gaussian distributed where 

10−2I2 s = 1 η0 = 1 χ = 0.2 σ = 0.3
θ = 10 ei,t = 0.5 (i = 1,2, . . . ,6) δ = 10−2

λ1,t λ2,t

.  Moreover,  we  set , , , ,
, ,  and .  The  probabilis-

tic distributions of  and  satisfy
 

P{λ1,t = 1} = 0.9, P{λ1,t = 0.7} = 0.1

P{λ2,t = 1} = 0.8, P{λ2,t = 0.8} = 0.2.
wt vt α1,tThe  non-Gaussian  random  sequences , ,  and  are

chosen as follows:
 

wt = −1.4τwt +0.6(1−τwt )

vt = 0.7τvt −1.3(1−τvt )

α1,t = −1.5τα1,t +0.5(1−τα1,t )

τwt τvt τα1,twhere , ,  and  are  independent  Bernoulli  variables
that satisfy
 

P{τwt = 1} = 0.3, P{τvt = 1} = 0.65, P{τα1,t = 1} = 0.25.

wt vt α1,t λ1,t λ2,t

The  corresponding  second-order,  third-order  and  fourth-
order  moments  of , , , ,  and  are  provided  in
Table I.
  

TABLE I
The 2nd, 3rd and 4th-Order Moments of

Random Variables

E{(·)2} E{(·)3} E{(·)4}
wt 0.8400 −0.6720 1.2432

vt 0.9100 −0.5460 1.1557
α1,t 0.7500 −0.7500 1.3125

λ1,t 0.9490 0.9343 0.9240

λ2,t 0.9280 0.9024 0.8819
 

P̃t+1|t+1

ỹt

True states and their respective estimates are plotted in Fig. 1
where  it  is  illustrated  that  the  original  states  can  be  well
tracked. Fig. 2 shows the trajectories of upper bounds ,
which confirms that trajectories of actual errors stay below the
bounds. Fig. 3 depicts the mean square error (MSE) curves of
the designed quadratic filter and the recursive filter only using

.  Clearly,  the  developed  quadratic  filter  is  able  to  improve
filtering  performance.  All  simulations  have  demonstrated  the
effectiveness  of  this  newly  established  quadratic  filtering
algorithm.  
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VI.  Conclusions

In this paper, the quadratic nonfragile filtering design issue
has  been  addressed  for  linear  non-Gaussian  systems  under
MNs,  MMMs,  SGFs,  and  DETS.  An  augmented  system  has
been obtained by stacking the original system’ state/measure-
ment  vectors  together  with  second-order  Kronecker  powers,
thus the original design issue has been reformulated as that of
the augmented system. Subsequently, we have analyzed statis-
tical  properties  of  augmented  noises  as  well  as  high-order
moments  of  certain  random  parameters.  With  the  aid  of  two
well-defined  matrix  difference  equations,  we  not  only  have
obtained upper bounds on filtering error covariances, but also
have  minimized  those  bounds  via  appropriate  design  of  gain
parameters. Finally, an example has been presented to explain
the  effectiveness  of  this  newly  established  quadratic  filtering
algorithm. Future research topics would include the extension
of the proposed quadratic non-fragile filtering scheme to more
general systems.
  

Appendix A
Proof of Lemma 3

Proof: Lemma 2 and (3) imply
 

η2
t+1 = (χηt +σ−∥ut∥)2

≤ (1+ e1,t)(χηt +σ)2+ (1+ e−1
1,t )∥ut∥2

≤ (1+ e1,t)[(1+ e2,t)χ2η2
t + (1+ e−1

2,t )σ
2]+ (1+ e−1

1,t )∥ut∥2
(33)

and
 

η4
t+1 ≤ (1+ e1,t)2(χηt +σ)4+ (1+ e−1

1,t )
2∥ut∥4

+2(1+ e1,t)(1+ e−1
1,t )(χηt +σ)2∥ut∥2

≤ (1+ e1,t)2[(1+ e3,t)(1+ e2,t)2χ4η4
t

+ (1+ e−1
3,t )(1+ e−1

2,t )
2σ4]

+2(1+ e1,t)(1+ e−1
1,t )[(1+ e2,t)χ2η2

t

+ (1+ e−1
2,t )σ

2]∥ut∥2+ (1+ e−1
1,t )

2∥ut∥4. (34)

t ∈ {ti, ti+1, ti+2, . . . , ti+1−1}On the other  hand,  when ,  one
has
 

∥ut∥2 ≤ (1+ θ)
η2

t

θ2
+ (1+ θ−1)σ2 (35)

and
 

∥ut∥4 ≤ [(1+ θ)
η2

t

θ2
+ (1+ θ−1)σ2]2

= (1+ θ)2 η
4
t

θ4
+ (1+ θ−1)2σ4

+2(1+ θ)(1+ θ−1)
η2

t

θ2
σ2. (36)

Substituting (35) and (36) into (33) and (34) leads to
 

η2
t+1 ≤

[
(1+ e1,t)(1+ e2,t)χ2+ (1+ e−1

1,t )
1+ θ
θ2

]
η2

t

+
[
(1+ e1,t)(1+ e−1

2,t )+ (1+ e−1
1,t )(1+ θ

−1)
]
σ2 (37)

and
 

η4
t+1 ≤ Ξ1,tη

4
t +Ξ2,tη

2
t +Ξ3,tσ

4 (38)

Ξ1,t Ξ2,t Ξ3,twhere ,  and  are defined in Lemma 3.
Moreover,

 

E{∥ut∥2} ≤ (1+ θ)
E{η2

t }
θ2
+ (1+ θ−1)σ2 (39)

and
 

E{∥ut∥4} ≤ (1+ θ)2E{η4
t }
θ4
+ (1+ θ−1)2σ4

+2(1+ θ)(1+ θ−1)
E{η2

t }
θ2
σ2. (40)

Based on (37)−(40),  it  can be  concluded that  conditions  of
(14) are satisfied. ■  

Appendix B
Proof of Lemma 4

QW11,tProof: Recalling the definition of  and Assumption 1,
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Fig. 3.     MSEs of the developed quadratic filter and the traditional filter only
using .

 1134 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 5, MAY 2024



one has
 

QW11,t =

s∑
i=1

E{α2
i,tFi,t xt xT

t FT
i,t}+BtE{wtwT

t }BT
t

=

s∑
i=1

ϕ(2)
αi,t Fi,tsti(ϕ(2)

xt )FT
i,t +Btsti(ϕ(2)

wt )BT
t . (41)

w̃tBased on the expression of ,
 

QW12,t = E
{
(

s∑
i=1

αi,tFi,t)xt(x[2]
t )T (Ft ⊗

s∑
i=1

αi,tFi,t)T Γ̃T
n,n

}
+E
{
(

s∑
i=1

αi,tFi,t)xt(x[2]
t )T
[ s∑

i=1

(α2
i,t −ϕ

(2)
αi,t )F

[2]
i,t

]T }
+Btsti(ϕ(3)

wt )(B[2]
t )T

=

s∑
i=1

ϕ(2)
αi,t Fi,tsti(ϕ(3)

xt )(Ft ⊗Fi,t)T Γ̃T
n,n

+

s∑
i=1

ϕ(3)
αi,t Fi,tsti(ϕ(3)

xt )(F[2]
i,t )T

+Btsti(ϕ(3)
wt )(B[2]

t )T (42)

E{αi,t(α2
i,t −ϕ

(2)
αi,t )} = ϕ

(3)
αi,t E{αi,t(α2

j,t−
ϕ(2)
α j,t )} = 0 (i , j)

where  the  facts  that  and 
 have been used.

For the sake of simplicity, let us define
 

F̃t ≜ Ft +

s∑
i=1

αi,tFi,t

∆F̃t ≜ Γ̃n,n(Ft ⊗
s∑

i=1

αi,tFi,t)+
s∑

i=1

(α2
i,t −ϕ

(2)
αi,t )F

[2]
i,t

+

s∑
i=1

s∑
1= j,i

αi,tα j,tFi,t ⊗F j,t. (43)

w̃tThen, the term  can be rewritten as follows:
 

w̃t =∆F̃t x
[2]
t + Γ̃n,n(F̃t xt ⊗Btwt)+B[2]

t (w[2]
t −ϕ

(2)
wt ). (44)

QW22,t QW22,t = E{w̃tw̃T
t }

E{∆F̃t x
[2]
t (x[2]

t )T∆F̃T
t } E{Γ̃n,n(F̃t xt ⊗Btwt)(F̃t xt ⊗Btwt)T Γ̃T

n,n}
E{B[2]

t (w[2]
t −ϕ

(2)
wt )(w[2]

t −ϕ
(2)
wt )T (B[2]

t )T }

From ’s  definition,  we  know  that .
In  what  follows,  we  are  going  to  calculate  the  terms

, 
and  one by one.

Based on (43), we have
 

E
{
∆F̃t x

[2]
t (x[2]

t )T∆F̃T
t
}

= E
{
Γ̃n,n

s∑
i=1

α2
i,t(Ft ⊗Fi,t)x[2]

t (x[2]
t )T (Ft ⊗Fi,t)T Γ̃T

n,n
}

+E
{ s∑

i=1

(α4
i,t − (ϕ(2)

αi,t )
2)F[2]

i,t x[2]
t (x[2]

t )T (F[2]
i,t )T }

+E
{ s∑

i=1

s∑
j,i=1

α2
i,tα

2
j,t(Fi,t ⊗F j,t)x[2]

t (x[2]
t )T (Fi,t ⊗F j,t)T

}
 

+Sym
{
E
{
Γ̃n,n

s∑
i=1

α3
i,t(Ft ⊗Fi,t)x[2]

t (x[2]
t )T (F[2]

i,t )T }}
= Γ̃n,n

s∑
i=1

ϕ(2)
αi,t (Ft ⊗Fi,t)sti(ϕ(4)

xt )(Ft ⊗Fi,t)T Γ̃T
n,n

+

s∑
i=1

[ϕ(4)
αi,t − (ϕ(2)

αi,t )
2]F[2]

i,t sti(ϕ(4)
xt )(F[2]

i,t )T

+

s∑
i=1

s∑
j,i=1

ϕ(2)
αi,tϕ

(2)
α j,t (Fi,t ⊗F j,t)sti(ϕ(4)

xt )(Fi,t ⊗F j,t)T

+Sym
{
Γ̃n,n

s∑
i=1

ϕ(3)
αi,t (Ft ⊗Fi,t)sti(ϕ(4)

xt )(F[2]
i,t )T
}
. (45)

On the other hand, we can further obtain that
 

E
{
Γ̃n,n(F̃t xt ⊗Btwt)(F̃t xt ⊗Btwt)T Γ̃T

n,n
}

= Γ̃n,nE
{
(F̃t xt xT

t F̃T
t )⊗ (BtwtwT

t BT
t )
}
Γ̃T

n,n

= Γ̃n,n
{(

Ftsti(ϕ(2)
xt )FT

t +

s∑
i=1

ϕ(2)
αi,t Fi,tsti(ϕ(2)

xt )FT
i,t

)
⊗ (Btsti(ϕ(2)

wt )BT
t
)}
Γ̃T

n,n (46)

and
 

E
{
B[2]

t (w[2]
t −ϕ

(2)
wt )(w[2]

t −ϕ
(2)
wt )T (B[2]

t )T }
= B[2]

t
(
sti(ϕ(4)

wt )−ϕ(2)
wt (ϕ(2)

wt )T )(B[2]
t )T . (47)

QW22,t

Then,  from  (45)−(47),  we  can  acquire  the  expression  of
.

Based on Assumption 1,
 

QV11,t = E{(Λt −E{Λt})Ht xt xT
t HT

t (Λt −E{Λt})T }

+DtE{vtvT
t }DT

t (48)

which, together with Lemma 1, implies that
 

QV11,t =Υt ◦ (Htsti(ϕ(2)
xt )HT

t )+Dtsti(ϕ(2)
vt )DT

t . (49)

QV12,tFor the term , we can obtain that
 

QV12,t = E
{
(Λt −E{Λt})Ht xt(x[2]

t )T (H[2]
t )T (Λ[2]

t −E{Λ
[2]
t })T }

+E{Dtvt(v
[2]
t −ϕ

(2)
vt )T (D[2]

t )T }

+E{(Λt −E{Λt})Ht xt(yt ⊗ut)T Γ̃T
m,m}

+E{Dtvt(yt ⊗ut)T Γ̃T
m,m}. (50)

Λ
[2]
t −E{Λ

[2]
t }

Λt
∑m

i=1 λi,tEi

To handle the difficulties induced by the term ,
the matrix  is rewritten as . Then, one has
 

Λ
[2]
t −E{Λ

[2]
t } =

m∑
i=1

(λ2
i,t −ϕ

(2)
λi,t

)E[2]
i +

m∑
i=1

m∑
1= j,i

(λi,tλ j,t

− λ̄i,tλ̄ j,t)(Ei⊗E j). (51)

Consequently, for (50), we have 
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E
{
(Λt−E{Λt})Ht xt(x[2]

t )T (H[2]
t )T (Λ[2]

t −E{Λ
[2]
t })T }

= E
{ m∑

i=1

(λi,t − λ̄i,t)EiHt xt(x[2]
t )T (H[2]

t )T

×
[ m∑

i=1

(λ2
i,t −ϕ

(2)
λi,t

)E[2]
i +

m∑
i=1

m∑
1= j,i

(λi,tλ j,t

− λ̄i,tλ̄ j,t)(Ei⊗E j)
]T }
≜ Mt (52)

 

E
{
(Λt −E{Λt})Ht xt(yt ⊗ut)T Γ̃T

m,m
}
= −2ρt Mt (53)

and
 

E{Dtvt(yt ⊗ut)T Γ̃T
m,m} = −2ρtDtsti(ϕ(3)

vt )(D[2]
t )T (54)

ρt 0 1

QV12,t

where  equals to  when t is an triggering time instant, and 
otherwise.  Then,  substituting  (52)−(54)  into  (50)  yields  the
expression of  in (15).

QV22,tNext, we are going to discuss the term . It is straight-
forward to verify that
 

QV22,t = E
{
(Λ[2]

t −E
{
Λ

[2]
t })H

[2]
t x[2]

t (x[2]
t )T

× (H[2]
t )T (Λ[2]

t −E{Λ
[2]
t })T }

+ Γ̃m,mE
{
(ΛtHt xt xT

t HT
t Λ

T
t )⊗ (DtvtvT

t DT
t )
}
Γ̃T

m,m

+E
{
D[2]

t (v[2]
t −ϕ

(2)
vt )(v[2]

t −ϕ
(2)
vt )T (D[2]

t )T }
+ Γ̃m,mE

{
(yt ⊗ut)(yt ⊗ut)T }Γ̃T

m,m

+Sym
{
E
{
(Λ[2]

t −E{Λ
[2]
t })H

[2]
t x[2]

t (yt ⊗ut)T Γ̃T
m,m
}

+E
{
Γ̃m,m(ΛtHt xt ⊗Dtvt)(yt ⊗ut)T Γ̃T

m,m
}

+E
{
D[2]

t (v[2]
t −ϕ

(2)
vt )(yt ⊗ut)T Γ̃T

m,m
}}
. (55)

Based on Lemma 1, we can see that
 

E
{
(Λ[2]

t −E{Λ
[2]
t })H

[2]
t x[2]

t (x[2]
t )T

× (H[2]
t )T (Λ[2]

t −E{Λ
[2]
t })T }

= Nt ◦
(
H[2]

t sti(ϕ(4)
xt )(H[2]

t )T )
−E{Λ[2]

t }H
[2]
t sti(ϕ(4)

xt )(H[2]
t )T (E{Λ[2]

t })T . (56)

Meanwhile, we have
 

Γ̃m,mE
{
(ΛtHt xt xT

t HT
t Λ

T
t )⊗ (DtvtvT

t DT
t )
}
Γ̃T

m,m

= Γ̃m,m
(
Tt ◦ (Htsti(ϕ(2)

xt )HT
t )
)⊗ (Dtsti(ϕ(2)

vt )DT
t
)
Γ̃T

m,m (57)
and
 

E
{
D[2]

t (v[2]
t −ϕ

(2)
vt )(v[2]

t −ϕ
(2)
vt )T (D[2]

t )T }
= D[2]

t (sti
(
ϕ(4)

vt )−ϕ(2)
vt (ϕ(2)

vt )T )(D[2]
t
)T . (58)

On the other hand,
 

E
{
ytyT

t
}
= E
{
ΛtHt xt xT

t HT
t Λ

T
t
}
+E
{
DtvtvT

t DT
t
}

= Tt ◦ (Htsti(ϕ(2)
xt )HT

t )+Dtsti(ϕ(2)
vt )DT

t . (59)

Therefore, the following result holds: 

Γ̃m,mE
{
(yt ⊗ut)(yt ⊗ut)T }Γ̃T

m,m

= Γ̃m,mE
{
(ytyT

t )⊗ (utuT
t )
}
Γ̃T

m,m

≤ Γ̃m,m
{(

Tt ◦ (Htsti(ϕ(2)
xt )HT

t )

+Dtsti(ϕ(2)
vt )DT

t
)⊗ Ω̄(u,1)

t I
}
Γ̃T

m,m. (60)

Following the similar line of the derivation of (53) and (54),
one has:
 

E{(Λ[2]
t −E{Λ

[2]
t })H

[2]
t x[2]

t (yt ⊗ut)T Γ̃T
m,m}

= −2ρt
[
Nt ◦ (H[2]

t sti(ϕ(4)
xt )(H[2]

t )T )

−E{Λ[2]
t }H

[2]
t sti(ϕ(4)

xt )(H[2]
t )T (E{Λ[2]

t })T ] (61)
 

E{Γ̃m,m(ΛtHt xt ⊗Dtvt)(yt ⊗ut)T Γ̃T
m,m}

= −2ρtΓ̃m,m[(Tt ◦ (Htsti(ϕ(2)
xt )HT

t ))

⊗ (Dtsti(ϕ(2)
vt )DT

t )]Γ̃T
m,m (62)

and
 

E
{
D[2]

t (v[2]
t −ϕ

(2)
vt )(yt ⊗ut)T Γ̃T

m,m
}

= −2ρtD
[2]
t (sti(ϕ(4)

vt )−ϕ(2)
vt (ϕ(2)

vt )T )(D[2]
t )T . (63)

Q̄V22,t

Substituting (56)−(63) into (55), it is straightforward to see
that the term  can be expressed as in (15). ■
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