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   Abstract—This  study  addresses  the  problem  of  global  asymp-
totic stability for uncertain complex cascade systems composed of
multiple integrator systems and non-strict feedforward nonlinear
systems.  To  tackle  the  complexity  inherent  in  such  structures,  a
novel  nested  saturated  control  design  is  proposed  that  incorpo-
rates both constant saturation levels  and state-dependent satura-
tion levels.  Specifically, a modified differentiable saturation func-
tion  is  proposed  to  facilitate  the  saturation  reduction  analysis  of
the  uncertain  complex  cascade  systems  under  the  presence  of
mixed saturation levels. In addition, the design of modified differ-
entiable  saturation  function  will  help  to  construct  a  hierarchical
global convergence strategy to improve the robustness of control
design scheme. Through calculation of relevant inequalities,  time
derivative  of  boundary  surface  and  simple  Lyapunov  function,
saturation  reduction  analysis  and  convergence  analysis  are  car-
ried out, and then a set of explicit parameter conditions are pro-
vided to ensure global asymptotic stability in the closed-loop sys-
tems. Finally, a simplified system of the mechanical model is pre-
sented to validate the effectiveness of the proposed method.
    Index Terms—Differentiable  saturation  functions, global  stabiliza-
tion analysis, mixed saturation levels, nested saturated control, uncer-
tain complex cascade systems.
  

I.  Introduction

CONSTRAINTS  on  control  inputs  are  common  in  practi-
cal  systems [1].  The  stabilization  issue  of  control  sys-

tems  subject  to  input  constraints  has  gradually  received  a  lot
of  attention [2]−[6].  At  the  same  time,  a  saturated  control
method  is  developed,  which  takes  the  saturation  factor  into
account in advance [7]−[11]. As the study of saturation stabi-

lization  has  evolved,  it  has  gradually  been  found  that  the
application  of  nested  saturation  is  suitable  for  dealing  with
feedforward nonlinear systems that are in an upper triangular
form [12]−[14].  An  elegant  solution  for  the  global  stabiliza-
tion  problem  of  multiply  integrators  systems  is  provided  in
[15],  where a  family of  state  feedback control  laws based on
nested saturation is constructed for the first time. For multiply
integrators  systems  subject  to  input  saturation,  a  class  of
nested saturated controllers has been proposed in [16]. In par-
ticular,  nested  saturated  controller  can  be  used  to  deal  with
multiply  integrator  systems  with  uncertain  parameters.  In
addition,  the  nested  saturated  controller  has  been  utilized  to
globally  stabilize  the  multiply  integrators  systems  in [17],
which contains multi-type nonlinear perturbed terms in a strict
feedforward form and uncertain parameters.

Feedforward  nonlinear  systems  come  from  engineering
practice.  Many realistic  models  of  mechanical  system can be
described as feedforward systems with multiple integrators or
multiple oscillators as the nominal. It seems that related stud-
ies  for  strict  feedforward nonlinear  systems are  more general
and common. In [18]−[21], saturated control has been shown
to be an effective tool for the strict feedforward nonlinear sys-
tems. In contrast, the results on the stabilization for non-strict
feedforward  nonlinear  systems  are  very  scattered.  From
[22]−[26],  state-dependent  saturated  control  design  has  been
proposed  and  used  to  realize  the  stabilization  of  non-strict
feedforward nonlinear systems.

Modeling  uncertainties  are  inherent  in  practical  mecha-
tronic  systems  and  cannot  be  easily  disregarded,  as  they  can
significantly  compromise  the  robustness,  stability  and  track-
ing performance of such systems [27]−[34]. Uncertain param-
eters  contained  in  control  system  equations  will  not  only
affect the control performance, but also will bring problems to
the  analysis  and  computational.  Related  research  results  in
[12], [16] and [17] show  that  the  nested  saturated  controller
design  is  suitable  for  dealing  with  the  uncertain  parameters
system.

Through  a  review of  the  above  works,  we  have  found  that
the nested saturated control design can be used to solve a vari-
ety  of  stabilization  problems  of  strict  feedforward  nonlinear
systems  whose  normal  dynamics  are  multiple  integrators.
However, there are fewer works dealing with the stabilization
problems  of  non-strict  feedforward  nonlinear  systems  with
uncertain  parameters  by  using  nested  saturated  control
designs.  More  importantly,  little  or  no  research  has  consid-
ered  the  global  saturation  stabilization  problems  of  uncertain
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complex  cascade  systems  that  are  cascaded  by  multiple  inte-
grator  systems  and  non-strict  feedforward  nonlinear  systems.
However,  some  simplified  models  of  practical  mechanical
systems  can  be  transformed  into  uncertain  complex  cascade
systems  with  such  structures,  so  it  is  necessary  to  design
robust controls for such uncertain complex cascade systems.

In this paper, we endeavor to solve the challenging problem
of designing a class of saturated controllers that can guarantee
global asymptotic stability for uncertain complex cascade sys-
tems, which are composed of multiple integrator systems and
non-strict feedforward nonlinear systems.

For  the  global  stabilization  problem  of  the  uncertain  com-
plex  cascade  systems,  a  class  of  nested  saturated  control
design is proposed in this paper, which contains both constant
saturation  levels  and  state-dependent  saturation  levels.  Inspi-
red  by  the  relevant  literature [26] and [35]−[39],  our  paper
incorporates  a  modified  differentiable  saturation  function,
facilitating the saturation reduction analysis of uncertain com-
plex  cascade  systems.  Specifically,  by  utilizing  the  differen-
tiable saturation function, the saturation reduction analysis of
some subsystem can be carried out smoothly through the usual
saturated  control  analysis  method.  Additionally,  combined
with  the  method  in [25],  by  directly  calculating  inequalities,
the non-integrability and slowly-varying property of the state-
dependent  saturation  levels  can  be  ensured  and  utilized  to
complete  saturation  reduction  analysis  of  the  remanent  sys-
tem.  Subsequently,  the  convergence  analysis  can  be  carried
out by calculating the time derivative of the boundary surface
and simple Lyapunov function.

In  comparison  with  existing  works,  the  main  contributions
of this paper are summarized as follows:

1)  The  proposed  uncertain  complex  cascade  systems  con-
sist  of  uncertain  parameter,  multiple  integrator  systems  and
non-strict  feedforward  nonlinear  systems.  Compared  with
existing  results [13], [16], [17],  and [25],  the  considered
uncertain complex cascade systems have a more intricate and
comprehensive structure that better reflects the actual mechan-
ical system.

2)  A  novel  nested  saturated  control  design  is  proposed,
which  incorporates  both  constant  saturation  levels  and  state-
dependent  saturation  levels.  The  proposed  control  design  is
different  from  the  nested  saturated  control  design  in [18]−
[26], which only contains saturation levels or state-dependent
saturation  levels.  Such  a  proposed  control  design  helps  to
achieve stabilization of uncertain complex structural systems.

3)  Inspired  by [26] and [35]−[39],  modified  differentiable
saturation function is proposed to facilitate the reduction anal-
ysis of such uncertain complex cascade systems. Based on the
modified  differentiable  saturation  function,  the  saturation
reduction analysis will be divided in two steps. Then the state
of  systems  converges  globally  to  small  domains  by  layering.
This  design  has  strong  robustness,  and  there  are  no  similar
features in the mentioned literature.

The rest of this article is organized as follows. In Section II,
problem  formulation  and  preliminaries  are  given.  In  Section
III,  the main results  are presented.  In Section IV, an applica-
tion of the proposed control design to a mechatronic model is

presented, and Section V draws conclusions to this paper.  

II.  Problem Formulation and Preliminaries

Consider the following uncertain complex cascade systems:
 

ẋ1 = c1x2+q1(x, x̃)

ẋ2 = c2x3+q2(x, x̃)

...

ẋn = cnxn+1+qn(x, x̃)

ẋn+1 = cn+1xn+2

...

ẋn+m = cn+mu

(1)

x = (x1, . . . , xn)T x̃ = (xn+1, . . . , xn+m)T u
i = 1, . . . ,n,

n+1, . . . ,n+m
0 < c−i ≤ ci ≤ c+i
q1(x, x̃), . . . ,qn(x, x̃) |qi(x, x̃)| = ai |x| |x̃|i

(q1(x, x̃), . . . ,qn(x, x̃))T

where ,  and  are the sys-
tem  states  and  control  input,  respectively.  For 

,  the  bounded  uncertain  parameters  satisfy
.  The structure of  nonlinear  disturbance terms

 are  in  the  form  of  and
satisfy  the  following  assumption.  Without  loss  of  generality,
along  the  relevant  conditions  in [24], [25],  the  disturbance
vector field  is  homogeneous of at  least
order one with respect to the dilation (1) in [25].

i = 1,2, . . . ,n
ai

Assumption 1: For , there exist know constants
 such that

 

|qi(x, x̃)| ≤ ai(|x1|+ · · ·+ |xn|)(|xn+1|+ · · ·+ |xn+m|)n. (2)
(x1, . . . , xn)

(q1(x, x̃), . . . ,qn(x, x̃))T

Under  Assumption  1,  we  know  that  subsystem 
of  systems  (1)  is  in  a  non-strict  upper-triangular  form.  The
homogeneous  property  of  can  also  be
converted to (2).

The  structure  of  systems  similar  to  system  (1)  can  be
observed  in  practical  mechatronic  systems,  such  as  the  ball
and beam system. Therefore, it is of potential practical signifi-
cance  to  study  the  global  saturation  stabilization  of  systems
(1).

(xn+1, . . . , xn+m)

(x1, . . . , xn)

(xn+1, . . . , xn+m)

Remark 1: Some studies consider strict feedforward nonlin-
ear  systems whose normal  dynamics are  multiple  integrators,
similar to the subsystem  of uncertain complex
cascade systems (1) with nonlinear terms in a strict upper-tri-
angular form or the subsystem  of systems (1), such
as [17]−[21].  Fewer  works  deal  with  the  stabilization  prob-
lems  of  non-strict  feedforward  nonlinear  systems,  similar  to
the  subsystem  of  uncertain  complex  cascade
systems (1) with nonlinear terms in a non-strict upper-triangu-
lar form, such as [22]−[25]. However, little or no research has
considered  the  global  saturation  stabilization  problems  of
complex  cascade  systems  that  are  cascaded  by  multiple  inte-
grator  systems  and  non-strict  feedforward  nonlinear  systems
[25] and [26].  Furthermore,  taking  into  account  the  uncer-
tainty in the control system and the application in mechanical
systems, the uncertain complex cascade systems (1) subject to
non-strict upper-triangular form of Assumption 1 have a more
general structure.

The objective of this paper is to design a class of saturated
controllers  that  can  be  used  to  achieve  the  global  asymptotic
stability of uncertain complex cascade systems (1), which are
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cascaded  by  multiple  integrator  systems  and  non-strict  feed-
forward nonlinear systems.  

III.  Main Results

For  system  (1),  the  following  nested  saturated  controller
with mixed saturation levels is presented:
 

u = un+m = −kn+msat2mε(xn+m−un+(m−1))

...

un+1 = −kn+1sat2ε(xn+1−un)

un = −knsatlnερ(x)(xn−un−1)

...

u2 = −k2satl2ερ(x)(x2−u1)

u1 = −k1satl1ερ(x)(x1)

(3)

with
 

ρ(x) = (Mn+1+Mnx2
n + · · ·+M jx2

j + · · ·+M1x2
1)

−1
2(n−1)

Mn+1 = MnΛ
2, M1 = Λ

2, M j+1 = M2
jΛ

2 ( j = 1,2, . . . ,n−1)
(4)

0 < ε ≤ 2−1, Λ ≥ 3, ki > 0, li > 0
i = 1,2, . . . ,n, . . . ,n+m

2ε, . . . ,2mε
l1ερ(x), . . . , lnερ(x)

where  are the constants to be
determined  for .  In  particular,  nested
saturated  controller  (3)  contains  mixed  saturation  levels,
which  are  the  constant  saturation  levels  and  the
state-dependent saturation levels .

satε(s) = sign(s)min{|s| , ε}, ε > 0, s ∈ R

satliερ(x)(s) = liερ(x)sat1( s
liερ(x) ), x ∈ Rn, s ∈ R

Throughout  this  paper,  the  standard  saturation  function  is
defined  as .  Then  the
state-dependent  saturation  levels  can  be  formulated  as

.

2ε, . . . ,2mε

l1ερ(x), . . . , lnερ(x)

Remark 2: In order to globally asymptotically stabilize sys-
tem (1), the nested saturated controller (3) with mixed satura-
tion levels has been proposed. In fact,  the constant saturation
levels  are  designed  to  deal  with  multiple  integra-
tor systems of systems (1), and the state-dependent saturation
levels  are  used  to  handle  the  non-strict
feedforward nonlinear systems of systems (1). In addition, the
nested structure of the controller  helps to deal  with uncertain
complex cascade systems (1) subject to uncertain parameters.
In engineering practice,  the saturation nonlinear  constraint  of
the  controller  widely  exists,  so  the  saturated  control  method
that considers the saturation factor in advance is created. This
saturated  control  design  can  avoid  the  parameter  configura-
tion  problems in  the  process  of  using  the  controller  to  a  cer-
tain extent. The nested saturated control design (3) appears to
be complex due to the form of construction, but it is not inher-
ently complex. If the relevant parameters of the proposed con-
troller  satisfy the explicit  parameter  conditions for  the global
stabilization  of  the  considered  closed-loop  system,  then  the
controller  can  be  put  directly  into  the  system  to  achieve  the
global  stabilization of  the system, thus avoiding the readjust-
ment of the control parameters. For practical applications, this
control design is characterized by high efficiency.

In the following, we will show that the nested saturated con-
troller (3) with mixed saturation levels can globally asymptoti-
cally stabilize uncertain complex cascade systems (1).

Based  on  the  proposed  nested  saturated  controller  with
mixed saturation levels,  the saturation reduction analysis will
be conducted in a bottom-up recursive manner,  once the sys-
tem  states  reach  a  boundary  surface,  by  calculating  the  time
derivative of the boundary surface, a set of explicit parameter
conditions  are  obtained  to  ensure  that  the  states  eventually
tend to a small domain.

Due  to  the  presence  of  both  constant  saturation  levels  and
state-dependent  saturation  levels,  the  bottom-up  saturation
reduction  analysis  will  face  the  problem  that  the  differential
calculation of saturation function is subject to state-dependent
saturation levels, which will affect the whole reduction analy-
sis process. Inspired with [26] and [35]−[39], a modified dif-
ferentiable saturation function is proposed in our paper, which
helps  to  solve  the  differential  calculation  problems related  to
saturation function with state-dependent saturation levels, and
further  contributes  to  the  whole  saturation  reduction  analysis
of  uncertain  complex  cascade  systems  in  the  presence  of
mixed saturation levels.

A simple Lyapunov function is then used to demonstrate the
asymptotic stability of the reduced system.

The algorithm in this paper is divided into three parts.  

xn+1, . . . , xn+mA.  Reduction Analysis of Subsystem ( )

xn+m−un+(m−1), . . . , xn+1−un

In this step, we will address the saturation reduction analy-
sis of saturation terms .

(xn+1, . . . , xn+m)
We  will  compute  the  time  derivatives  of  saturation  func-

tions  of  subsystem  of  system  (1)  with  con-
troller  (3)  in  small  domains,  and  prove  that  the  non-positive
property of time derivatives which are ensured by the parame-
ter conditions.

(xn+1, . . . , xn+m)

u̇1, . . . , u̇n

In  the  process  of  computing the  time derivatives  of  satura-
tion  functions  of  subsystem ,  the  difficulty  of
this  part  is  that  each  step  will  utilize  the  information  of

. From controller (3), we know that
 

un = −knsatlnερ(x)(xn−un−1)

...

u2 = −k2satl2ερ(x)(x2−u1)

u1 = −k1satl1ερ(x)(x1)

l1ερ(x), . . . , lnερ(x)
where  the  saturated  control  design  contains  state-dependent
saturation  levels .  Therefore,  the  differen-
tial problem of saturated controllers with state-dependent satu-
ration levels needs to be treated cautiously. In this regard, the
works  in [26] and [35]−[39] have  proposed  some  methods.
Inspired  by  the  literature,  the  following  definition  is  intro-
duced in this paper.

s ∈ R i = 1, . . . ,nDefinition 1: For  and , there hold
 

s · satliερ(x)(s) ≥ 0 (5a)

satliερ(x)(s) = s, ∀|s| ≤ hi ≤ liερ(x) ≤ Hi (5b)

satliερ(x)(s) = f (s), ∀hi ≤ |s| ≤ Hi (5c)

satliερ(x)(s) = Ni(sign(s)), ∀|s| ≥ Hi (5d)

0 ≤
d[satliερ(x)(s)]

ds
≤ 1 (5e)
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hi,Hi,Ni
hi = βiHi βi ≤ 1 Ni = hi(1+γi) γi ≥ 0 f (s)

s satliερ(x)(s) (hi,Hi)
(−Hi,−hi)

satliερ(x)(s) = s Ni −Ni
γi = 0 βi = 1 hi = Hi Ni = hi

satliερ(x)(s) = liερ(x) ×sat1( s
liερ(x) )

liερ(x)

where  are  positive  design  parameters  that  satisfy
 with  and  with .  is  a

non-decreasing function of . Here,  on  and
 can  be  any  non-decreasing  curves  that  smoothly

connect  and  and , respectively. In partic-
ular, let , , which yield  and , respec-
tively,  then  the  saturation  function  in  Definition  1  can  be
transferred into the standard saturation function. The sate-de-
pendent  saturation  function  
can also  be  included into  (5).  represents  related func-
tion of system states.

hi = βiHi βi ≤ 1
Ni = hi(1+γi) γi ≥ 0 Ni = βiHi(1+γi)

hi γi, βi
Hi, Ni

hi,Hi,Ni

hi γi, βi
Hi,Ni

Remark 3: Those usual saturation functions often inherit the
standard saturation function in Teel’s approach [15]. In order
to deal with situations of feedforward nonlinear systems, dis-
turbances, convergence performance, uncertain parameters, or
global  stability,  the  relevant  works  which  are  based  on  stan-
dard saturation function and its  simple deformation form can
be found in [12], [13] and [16], [17]. To improve the conver-
gence performance of systems to some extent, a class of modi-
fied  saturation  function  with  positive  tunable  parameters  has
been  introduced  in [13], [17],  and [35], [36].  For  some  non-
strict  feedforward  nonlinear  systems,  state-dependent  satu-
rated control design has been proposed in [22]−[26]. In order
to overcome the related problem under  uncertainties  and dis-
turbances,  modified  differentiable  saturation  functions  in  a
general  form have been applied in [35]−[38].  Some differen-
tiable saturation functions in numerical  forms have been pre-
sented in [26] and [39]. Inspired by the aforementioned litera-
ture,  another  modified  differentiable  saturation  functions  (5)
in a general form is proposed to deal with the problem that the
differential  calculation  of  saturation  function  is  subject  to
state-dependent  saturation  levels,  such  that  the  saturation
reduction analysis  of  consider system under mixed saturation
levels  can  be  carried  out  smoothly.  As  with 
and  with , by using , it is
easy  to  design  the  value  of  and  to  get  the  value  of

.  Then  we  can  get  the  boundary’s  values  of  modified
differentiable saturation functions (5). From the perspective of
theoretical  calculation,  it  is  reasonable  to  utilize  as
positive design parameters of the modified differentiable satu-
ration functions (5). At the same time, the boundary values of
the  saturated  nonlinear  constraints  present  in  the  controlled
object are generally known or can be obtained by calculating
the relevant parameters provided by the device. By designing
the  values  of  and ,  the  positive  design  parameters  of

 can be obtained. Furthermore, all of the positive design
parameters of (5) will be utilized to obtain the values of con-
trol parameters. Here, we have completed the configuration of
the parameters of (5).

Fact 1: With the relevant parameters satisfying
 

c−n+m kn+m2mε > c+n+(m−1)kn+(m−1)(2m+ kn+(m−1)2m−1)ε

+ c+n+(m−2)kn+(m−1)kn+(m−2)(2m−1+ kn+(m−2)2m−2)ε

+ c+n+(m−3)kn+(m−1)kn+(m−2)kn+(m−3)(2m−2+ kn+(m−3)2m−3)ε

+ · · ·+ c+n+2kn+(m−1)kn+(m−2)× · · ·× kn+3kn+2(23+ kn+222)ε
 

+ c+n+1kn+(m−1)kn+(m−2)× · · ·× kn+3kn+2kn+1(22+ kn+121)ε

+ kn+(m−1)kn+(m−2)× · · ·× kn+3kn+2kn+1kn

× [(c+n (knNn+21ε)+Qn(x, x̃))

+ kn−1(c+n−1(kn−1Nn−1+Hn)+Qn−1(x, x̃))

+ · · ·+ kn−1 · · ·k2(c+2 (k2N2+H3)+Q2(x, x̃))

+ kn−1 · · ·k1(x2c+1 (k1N1+H2)+Q1(x, x̃))]

...

c−n+1kn+121ε > c+n+122ε+ kn[(c+n (knNn+21ε)+Qn(x, x̃))

+ kn−1(c+n−1(kn−1Nn−1+Hn)+Qn−1(x, x̃))

+ · · ·+ kn−1 · · ·k2(c+2 (k2N2+H3)+Q2(x, x̃))

+ kn−1 · · ·k1(x2c+1 (k1N1+H2)+Q1(x, x̃))] (6)
Qi(x, x̃) (i = 1, . . . ,n)where  is denoted as follows:

 

Qi(x, x̃) = ai(H1+ · · ·+ (kn−1Nn−1+Hn))((knNn

+21ε)+ · · ·+ (kn+m−1 ·2m−1ε+2mε))n

(xn+1, . . . , xn+m)then  the  saturation  functions  of  subsystem of
system (1) with controller (3) is unsaturated in a finite time.

Proof: The  proof  is  following  the  analysis  method  of  the
nested saturated control schemes in [16] and [17].

xn+m xn+m(t)−un+(m−1)(t) > 2mε
t ∈ [0,∞)

Consider the  subsystem. If  
holds for all , we have
 

ẋn+m = − cn+mkn+msat2mε(xn+m−un+(m−1))

≤ − c−n+mkn+m2mε. (7)∣∣∣un+(m−1)
∣∣∣ ≤ kn+(m−1)2m−1ε t ∈ [0,∞)

2mε < xn+m(t) − un+(m−1)(t) ≤ xn+m(0) − c−n+m×
kn+m2mεt+ kn+(m−1)2m−1ε

2mε < xn+m(t)−un+(m−1)(t) ≤ 0 t→∞

Together  with ,  for  all 
there  holds 

. Then there yield the following con-
tradiction , as .

tn+mHence, a finite time  exists such that
 

xn+m(tn+m)−un+(m−1)(tn+m) = 2mε.

2ϵ · · ·2mϵ
l1ερ(x), . . . , lnερ(x)

In particular, as the constant saturation levels  and
state-dependent  saturation  levels  exist,
based on the notion of standard saturation function, it  is easy
to verify that there hold
 

d
dt

u j = 0, ∀
∣∣∣x j−u j−1

∣∣∣ > 2 j−nε, j = n+ (m−1), . . . ,n+1.

d
dt (xn+m−un+(m−1)) ≤ 0.Furthermore, based on (7), we obtain 

According to the Definition 1, we derive that
 

d
dt

ui = 0, ∀|xi−ui−1| > Hi, i = n, . . . ,1.

d
dt (xn+m−un+(m−1)) tn+m

Do not  lose  generality,  and  then  we  only  need  to  compute
 at the time instant  in the domain

 

∀
∣∣∣x j−u j−1

∣∣∣ ≤ 2 j−nε, j = n+ (m−1), . . . ,n+1 (8)
and
 

∀|xi−ui−1| < Hi, i = n, . . . ,1. (9)
In view of the Definition 1, one has

 

|un| ≤ knNn, . . . , |u2| ≤ k2N2, |u1| ≤ k1N1.
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From  (8)  and  (9),  together  with  (2)  and  Definition  1,  it
yields
 

|qi(x, x̃)| ≤ ai(|x1|+ · · ·+ |xn|)(|xn+1|+ · · ·+ |xn+m|)n

≤ ai(H1+ · · ·+ (kn−1Nn−1+Hn))((knNn

+21ε)+ · · ·+ (kn+m−1 ·2m−1ε+2mε))n. (10)
Keeping (7)−(10) in mind, and according to (5e) of the Def-

inition 1, we derive that
 

d
dt

(xn+m(t)−un+(m−1)(t))
∣∣∣∣∣
t=tn+m

≤ d
dt

[xn+m(tn+m)+ kn+(m−1)xn+(m−1)(tn+m)

+ kn+(m−1)kn+(m−2)xn+(m−2)(tn+m)

+ kn+(m−1)kn+(m−2)kn+(m−3)xn+(m−3)(tn+m)

+ · · ·+ kn+(m−1)kn+(m−2)× · · ·× kn+3kn+2xn+2(tn+m)

+ kn+(m−1)kn+(m−2)× · · ·× kn+3kn+2kn+1xn+1(tn+m)

+ kn+(m−1)kn+(m−2)× · · ·× kn+3kn+2kn+1

× knsatlnερ(x)(xn−un−1)]

≤ −c−n+m kn+m2mε+ c+n+(m−1)kn+(m−1)(2m+ kn+(m−1)2m−1)ε

+ c+n+(m−2)kn+(m−1)kn+(m−2)(2m−1+ kn+(m−2)2m−2)ε

+ c+n+(m−3)kn+(m−1)kn+(m−2)kn+(m−3)(2m−2+ kn+(m−3)2m−3)ε

+ · · ·+ c+n+2kn+(m−1)kn+(m−2)× · · ·× kn+3kn+2(23+ kn+222)ε

+ c+n+1kn+(m−1)kn+(m−2)× · · ·× kn+3kn+2kn+1(22+ kn+121)ε

+ kn+(m−1)kn+(m−2)× · · ·× kn+3kn+2kn+1kn

× [(c+n (knNn+21ε)+qn(x, x̃))

+ kn−1(c+n−1(kn−1Nn−1+Hn)+qn−1(x, x̃))

+ · · ·+ kn−1 · · ·k2(c+2 (k2N2+H3)+q2(x, x̃))

+ kn−1 · · ·k1(x2c+1 (k1N1+H2)+q1(x, x̃))]. (11)

d
dt (xn+m(t)−un+(m−1)(t))

∣∣∣
t=tn+m

< 0 xn+m(t)−
un+(m−1)(t) ≤ 2mε, ∀t ≥ tn+m

Under  (10)  and  the  parameters  conditions  (6),  one  has
. Hence, there holds 

.
t(n+m)∗

xn+m(t)−un+(m−1)(t) ≥ −2mε t ≥ t(n+m)∗

Similarly, it can be proved: there exists a finite time 
such that  holds for all .
So, we have
 ∣∣∣xn+m(t)−un+(m−1)(t)

∣∣∣ ≤ 2mε,

∀t ≥ Tn+m =max{tn+m, t(n+m)∗}. (12)

xn+m−1, . . . , xn+1

Using  the  above  method,  we  next  analyze  subsystems
.  Under  the  parameter  conditions  (6),  we

obtain
 

∣∣∣xn+(m−1)(t)−un+(m−2)(t)
∣∣∣ ≤ 2m−1ε, ∀t ≥ Tn+(m−1)∣∣∣xn+(m−2)(t)−un+(m−3)(t)
∣∣∣ ≤ 2m−2ε, ∀t ≥ Tn+(m−2)

...

|xn+2(t)−un+1(t)| ≤ 22ε, ∀t ≥ Tn+2

|xn+1(t)−un(t)| ≤ 21ε, ∀t ≥ Tn+1

(13)

where
 

Tn+(m−2), . . . ,Tn+1 (Tn+m ≤ Tn+(m−1) ≤ Tn+(m−2) ≤ · · · ≤ Tn+1)

are finite time instants. ■
Tn+1After  a  finite  time ,  under  the  state  constants  (12)  and

(13), the nested saturated controller (3) with mixed saturation
level reduces to
 

u = un+m = −kn+m(xn+m−un+(m−1))

...

un+1 = −kn+1(xn+1−un)

un = −knsatlnερ(x)(xn−un−1)

...

u2 = −k2satl2ερ(x)(x2−u1)

u1 = −k1satl1ερ(x)(x1).

(14)

xn+m, . . . , xn+1

xn, . . . , x1

xn+m−un+(m−1), . . . , xn+1−un u̇1, . . . , u̇n

l1ερ(x), . . . , lnερ(x) u1, . . . ,un

Remark 4: Since the considered systems (1) is cascaded by
multiple integrator systems and non-strict feedforward nonlin-
ear  systems,  the  subsystems  need  to  be  ana-
lyzed at  first  in bottom-up saturation reduction analysis,  then
the subsystems  are analyzed far behind, respectively.
In the process of computing the time derivatives of saturation
terms , ’s  information
needs to be utilized at each step. Because of the sequential of
bottom-up saturation reduction analysis, the presence of com-
plex  cascade  structures  and  state-dependent  saturation  levels

 for , the differential calculation of
saturation  function  subject  to  state-dependent  saturation  lev-
els  cannot  be  directly  obtained  to  advance  the  saturation
reduction  analysis.  Although  it  is  not  possible  to  solve  the
above  problem  directly,  one  possible  solution  can  easily  be
considered.  Based  on  the  property  of  state-dependent  satura-
tion function and the relevant design of state-dependent satu-
ration levels in (4), one can obtain
 

|un| =
∣∣∣−knsatlnερ(x)(xn−un−1)

∣∣∣ ≤ knlnερ(x)

=
knlnε

(Mn+1+Mnx2
n + · · ·+Mix2

i + · · ·+M1x2
1)1/ (2(n−1))

≤ knlnε

(Mn+1)1/ (2(n−1)) = knlnεM
−1/ (2(n−1))
n+1 .

d
dt |un| ≤ d

dt [knlnεM
−1/(2(n−1))
n+1 ] = 0

d
dt |un| ≤ 0

Furthermore,  we  get .
Under  this  situation,  the  differential  calculation  of  saturation
function  subject  to  state-dependent  saturation  levels  can  be
obtained  and  the  calculating  for  the  time  derivative  of  the
boundary surface can be carried out.  However, it  is not diffi-
cult  to  find  that  there  are  certain  loopholes  in  the  mentioned
solution. By utilizing , the conservatism of computa-
tion will  increase and some state information of systems will
be  lost  in  the  reduction analysis  calculation.  To some extent,
this solution is not appropriate. In order to overcome these dif-
ficulties, the modified differentiable saturation functions (5) in
Definition  1  are  presented.  By  using  Definition  1,  the  time
derivatives  calculation  of  saturation  function  that  contains
state-dependent saturation levels can be dealt with as follows: 
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d
dt
|un| =

d
dt

[knsatlnερ(x)(xn−un−1)]

= kn
d
dt

[satlnερ(x)(xn−un−1)] · d
dt

[xn−un−1]

≤ kn ·1 ·
d
dt

[xn−un−1]

d
dt |un| ≤ kn ·1 · d

dt [xn−un−1],

and then, the calculating for the time derivative of the bound-
ary  surface  can be  carried  out  as  (11)  in  the  proof  of  Fact  1.
By  introducing  the  differential  saturation  function  Definition
1, the differential calculation of saturation function subject to
state-dependent saturation levels can be directly obtained. By
using the computation form  all the
state information will be utilized in the computation of satura-
tion reduction analysis. In the meantime, this analysis scheme
will decrease the conservatism of computation.

xn, . . . , x1

From Remark 4, it can be known that the preliminary calcu-
lation  information  of  cannot  be  obtained  directly  in
bottom-up  saturation  reduction  analysis.  This  situation  will
cause problems in the analysis of saturation degradation at the
outset.  With  the  introduction  of  differential  saturation  func-
tion,  this  problem has  been  addressed  in  some way.  By  con-
structing hierarchical  and known boundaries  with the help of
differential  saturation  functions,  we  avoid  directly  dealing
with the saturation reduction analysis of state-dependent satu-
ration  function  first,  which  in  turn  facilitates  the  smooth
development of saturated reduction analysis.

(xn+1, . . . , xn+m)
(x1, . . . , xn)

(xn+1, . . . , xn+m)

Remark  5: Since  the  mixed  saturation  levels  exist,  the
reduction analysis  is  divided into  two parts  for  both  constant
saturation  levels  and  state-dependent  saturation  levels,
namely,  reduction  analysis  of  subsystem  and
reduction analysis of subsystem . In the process of
reduction  analysis  of  subsystem ,  combined
with  Definition  1,  the  time  derivatives  calculation  of  satura-
tion functions are carried out in the following small domains:
 

∣∣∣x j−u j−1
∣∣∣ ≤ 2 j−nϵ, j = n+m, . . . ,n+1

|xi−ui−1| < Hi, i = n, . . . ,1.

(x1, . . . , xn)

Because of the proposed of Definition 1, the reduction anal-
ysis can be carried out in the above way, and it also paves the
way  for  completing  the  reduction  analysis  of  subsystem

.  

x1, . . . , xnB.  Reduction Analysis of Subsystem ( )

xn−un−1, xn−1−un−2, . . . , x2−u1, x1
(x1, . . . ,

xn)

Then, we deal with the saturation reduction analysis of satu-
ration  terms  for  system
(1)  with  controller  (14).  Considering  the  subsystem 

, we need to handle the saturation reduction analysis of sat-
uration  function  with  state-dependent  saturation  levels.  The
non-integrable property of the state-dependent saturation func-
tion here is a sufficient condition to prove that the system state
reaches the boundary surface in a finite time, and the slowly-
varying properties of the state-dependent saturation function is
a  sufficient  condition  to  ensure  that  the  system state  enters  a
small domain.

Fact 2: With the relevant parameters satisfying 

c−n knlnεM
−1/(2(n−1))
n+1 > c+n 21ε+2−nM−1/(2(n−1))

n+1 + kn−1

×max{ln−1ε2−nM−1/(2(n−1))
n+1 ,

[(c+n−1(kn−1Nn−1+ lnεM
−1/(2(n−1))
n+1 )

+2−nM−1/(2(n−1))
n+1 )+ · · ·

+ kn−2 · · ·k2(c+2 (k2N2+ l3εM
−1/(2(n−1))
n+1 )

+2−nM−1/(2(n−1))
n+1 )

+ kn−2 · · ·k1(c+1 (k1N1+ l2εM
−1/(2(n−1))
n+1 )

+2−nM−1/(2(n−1))
n+1 )]}

+ lnε2−nM−1/(2(n−1))
n+1

...

c−1 k1l1εM
−1/(2(n−1))
n+1 > c1l2εM

−1/(2(n−1))
n+1 +2−nM−1/(2(n−1))

n+1

+ l1ε2−nM−1/(2(n−1))
n+1 (15)

Mn+1 = MnΛ
2, Mi+1 = M2

i Λ
2 (i = 1,2, . . . ,n−1), M1 =

Λ2 (x1, . . . , xn)
where 

 holds,  then  the  saturation  functions  of  subsys-
tem of system (1) with controller (14) is unsaturated in a finite
time.

xn−un−1, . . . , x2−u1, x1

Proof: The following four Steps 1−4 are given to complete
the  saturation  reduction  analysis  of  saturation  terms

.
Step 1: Some estimates need to be obtained

ρ(x)From the  state-dependent  saturation  function  in  (4)  of
the  nested  saturated  controller  (3)  with  mixed  saturation  lev-
els, one has
 

ρ(x) = (Mn+1+Mnx2
n + · · ·+Mix2

i + · · ·+M1x2
1)−1/(2(n−1))

≤ 1
(Mn+1)1/(2(n−1)) = M−1/(2(n−1))

n+1 (16)

Mn+1,Mi+1 (i = 1,2, . . . ,n−1),M1 Λwhere  and  satisfy  the
design in (4).

satliερ(x)(s) = liερ(x)sat1( s
liερ(x) )Furthermore, using  and Def-

inition 1, one has
 

|un| =
∣∣∣−knsatlnερ(x)(xn−un−1)

∣∣∣
≤ knlnερ(x)

≤ knlnεM
−1/ (2(n−1))
n+1 (17)

knlnεM
−1/ (2(n−1))
n+1 ≤ knNn Λ εwhere  holds for suitable  and .

From  Assumption  1,  together  with  (13)  and  Definition  1,
one has
 

|qi(x, x̃)| ≤ ai(|x1|+ · · ·+ |xn|)(|xn+1|+ · · ·+ |xn+m|)n

≤ ai(|x1|+ · · ·+ |xn|)((knNn+21ε)

+6 · · ·+ (kn+m−1 ·2m−1ε+2mε))n. (18)
Combined with Definition 1, it yields

 

|qi(x, x̃)| ≤ ai(H1+ · · ·+ (kn−1Nn−1+Hn))((knNn

+21ε)+ · · ·+ (kn+m−1 ·2m−1ε+2mε))n. (19)
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ρ(x)Step 2: Verifying the non-integrable property of 
ρ(x)

ẋn = cnxn+1+qn(x, x̃)
Here,  we  will  verify  the  non-integrable  property  of .

Consider the subsystem .
Vn = |xn| xn

|xn| ≥ |un−1|+ lnερ(x)
We  define  a  function  for  subsystem.  For

, using (13), (17) and (19), there holds
 

V̇n = cnun+ cn(xn+1−un)+qn(x, x̃)

= −cnknsatlnερ(x)(xn−un−1)+ cn(xn+1−un)+qn(x, x̃)

≤ −c−n knNn+ c+n 21ε+qn(x, x̃). (20)
V̇n < 0

|xn| ≤ |un−1|+ lnερ(x)
Under the parameter conditions (15), it implies that .

Then there exists a finite time such that .
From (16) and (17), using Definition 1, one has

 

|un−1| =
∣∣∣−kn−1satln−1ερ(x)(xn−1−un−2)

∣∣∣ ≤ kn−1Nn−1

lnερ(x) ≤ lnεM
−1/ (2(n−1))
n+1and .

xn |xn| ≤ bn1
bn1

(q1(x, x̃), . . . ,qn(x, x̃))T

ẋn−1 = cn−1xn+qn−1(x, x̃)
|xn−1| ≤ b(n−1)1+b(n−1)2t b(n−1)1,b(n−1)2

ρ(x)

Hence  is  bounded,  and  one  can  obtain ,  where
 is  a  positive  constant.  In  the  meantime,  the  disturbance

vector field  is  homogeneous of at  least
order  one  and  satisfies  the  Assumption  1.  Combing  with

,  and  using  integral  calculation,  we
can  obtain  where  are
positive  constants.  By  analogy  and  using  the  proof  of  Theo-
rem 1 in [25], we can infer that  is non-integrable.

ρ(x)Step 3: Obtaining the slowly-varying estimate of 
ρ(x)By the  state-dependent  saturation  function  in  (4),  one

can obtain
 

ρ̇(x) = − 1
2(n−1)

×
( d

dt )(Mn+1+Mnx2
n + · · ·+Mix2

i + · · ·+M1x2
1)

Mn+1+Mnx2
n + · · ·+Mix2

i + · · ·+M1x2
1

ρ(x).

According to  (18),  and using the  Proposition 2  in [12],  we
can deduce that
 

( d
dt )(Mn+1+Mnx2

n + · · ·+Mix2
i + · · ·+M1x2

1)

Mn+1+Mnx2
n + · · ·+Mix2

i + · · ·+M1x2
1

Λ

ε

can  be  rendered  arbitrarily  small  by  choosing  large  and
small .  In turn,  we have the following slowing-varying esti-
mate
 

|ρ̇(x)|

=

∣∣∣∣∣∣∣− 1
2(n−1)

( d
dt )(Mn+1+Mnx2

n + · · ·+Mix2
i + · · ·+M1x2

1)

Mn+1+Mnx2
n + · · ·+Mix2

i + · · ·+M1x2
1

ρ(x)

∣∣∣∣∣∣∣
≤ 1

2(n−1)
·
∣∣∣∣∣∣∣ (

d
dt )(Mn+1+Mnx2

n + · · ·+Mix2
i + · · ·+M1x2

1)

Mn+1+Mnx2
n + · · ·+Mix2

i + · · ·+M1x2
1

∣∣∣∣∣∣∣ρ(x)

≤ 2−nρ(x) (21)
Λ εwith suitable  and .

Utilizing  Lemma  1  in [25] and  combining  with  (16),
Assumption 1 and (21), there holds
 

|qi(x, x̃)| ≤ ai(|x1|+ · · ·+ |xn|)(|xn+1|+ · · ·+ |xn+m|)n

≤ 2−nρ(x) ≤ 2−nM−1/(2(n−1))
n+1 (22)

Λ εwith suitable  and .

xn−
un−1, . . . , x2−u1, x1

Step  4:  Verifying  the  reduction  of  saturated  terms 
 

xn xn(t)−un−1(t) > lnερ(x)
t ∈ [Tn+1,∞)

Consider the subsystem . If  holds
for all , we have
 

ẋn = cnun+ cn(xn+1−un)+qn(x, x̃)

= −cnknsatlnερ(x)(xn−un−1)+ cn(xn+1−un)+qn(x, x̃)

≤ −c−n knlnερ(x)+ cn21ε+qn(x, x̃). (23)
ẋn < 0 |un−1| ≤

kn−1Nn−1 t ∈ [Tn+1,∞)
According  to  (15),  one  has .  Together  with 

, for all , there holds
 

lnερ(x) < xn(t)−un−1(t)

≤ xn(0)+
w t

0
[−c−n knlnερ(x)+ cn21ε+qn(x, x̃)]ds

+ kn−1Nn−1.

ρ(x)From  Step  2,  we  obtain  that  is  non-integrable,  then
there yields the following contradiction:
 

lnερ(x) < xn(t)−un−1(t) ≤ 0, as t→∞.
tn+1 xn(tn)−un−1(tn) =

lnερ(x(tn)) xn
xn(tn)−un−1(tn) = lnερ(x(tn))

Hence,  a  finite  time  exists  such  that 
. It implies that states of the subsystem  arrive at

the boundary surface .

xn(tn) − un−1(tn) =
lnερ(x(tn))

Next, we need to prove the non-positive property of the time
derivative  of  the  boundary  surface 

,  which  guarantees  states  to  enter  into  small
domains.

xn
d
dt (xn(tn)−un−1(tn)− lnερ(x(tn)))|t=tn

For  the  subsystem ,  we  need  to  compute  the  derivative
 under two conditions

 

|xi−ui−1| > liερ(x), i = n−1, . . . ,1
and
 

|xi−ui−1| ≤ liερ(x), i = n−1, . . . ,1.
|xi−ui−1| > liερ(x), i = n−1, . . . ,1Under ,  combined  with

(16)−(18), (21), (22), one obtains
 

d
dt

(xn(tn)−un−1(tn)− lnερ(x(tn)))|t=tn

≤ ẋn+ u̇n−1+ lnερ̇(x(tn))

≤ (−c−n knlnερ(x)+ cn21ε+qn(x, x̃))

+ kn−1ln−1ερ̇(x)+ lnερ̇(x(tn))

≤ (−c−n knlnερ(x)+ cn21ε+2−nρ(x))+ kn−1ln−1ε2−nρ(x)

+ lnε2−nρ(x)

≤ (−c−n knlnεM
−1/(2(n−1))
n+1 + cn21ε+2−nM−1/(2(n−1))

n+1 )

+ kn−1ln−1ε2−nM−1/(2(n−1))
n+1 + lnε2−nM−1/(2(n−1))

n+1 . (24)
|xi−ui−1| ≤ liερ(x), i = n−1, . . . ,1Under , it yields

 

d
dt

(xn(tn)−un−1(tn)− lnερ(x(tn)))|t=tn

≤ (−c−n knlnερ(x)+ cn21ε+qn(x, x̃))

+D+(kn−1satln−1ερ(x)(xn−1−un−2))+ lnερ̇(x)

≤ (−c−n knlnερ(x)+ cn21ε+2−nρ(x))

+ kn−1[ẋn−1+ · · ·+ kn−2 · · ·k2 ẋ2

+ kn−2 · · ·k1 ẋ1]+ lnε2−nρ(x)
 

LI AND ZENG: NESTED SATURATED CONTROL OF UNCERTAIN COMPLEX CASCADE SYSTEMS USING MIXED SATURATION LEVELS 1169 



≤ (−c−n knlnεM
−1/(2(n−1))
n+1 + cn21ε+2−nM−1/(2(n−1))

n+1 )

+ kn−1[(c+n−1(kn−1Nn−1+ lnεM
−1/(2(n−1))
n+1 )+qn−1(x, x̃))

+ · · ·+ kn−2 · · ·k2(c+2 (k2N2+ l3εM
−1/(2(n−1))
n+1 )+q2(x, x̃))

+ kn−2 · · ·k1(c+1 (k1N1+ l2εM
−1/(2(n−1))
n+1 )+q1(x, x̃))]

+ lnε2−nM−1/(2(n−1))
n+1 . (25)

d
dt (xn(tn)−un−1(tn)− lnερ(x(tn)))|t=tn < 0

|xi−ui−1| > liερ(x), i = n−1, . . . ,1, |xi−ui−1| ≤
liερ(x), i = n−1, . . . ,1 xn(t)−un−1(t) ≤
lnερ(x), ∀t ≥ tn

By using (22)  and the  parameters  conditions  (15),  it  yields
that  holds  under  two
conditions:  and 

.  Hence,  there  holds
.

tn∗
xn(t)−un−1(t) ≥ −lnερ(x), ∀t ≥ tn∗ t ≥ tn∗

Similarly, it can be proved: there exists a finite time  such
that  holds for all . So,
we have
 

|xn(t)−un−1(t)| ≤ lnερ(x), ∀t ≥ Tn =max{tn, tn∗}. (26)
xn−1, . . . , x1We next analyze subsystems  by using the same

method. Under the parameter conditions (15), we obtain
 

|xn−1(t)−un−2(t)| ≤ ln−1ερ(x), ∀t ≥ Tn

|xn−2(t)−un−3(t)| ≤ ln−2ερ(x), ∀t ≥ Tn−1

...

|x2(t)−u1(t)| ≤ l2ερ(x), ∀t ≥ T2

|x1(t)| ≤ l1ερ(x), ∀t ≥ T1

(27)

Tn, . . . ,T1 (Tn ≤ Tn−1 ≤ · · · ≤ T1)where  are finite time instants.
■

T1After  a  finite  time ,  under  the  state  constants  (12),  (13),
(26),  and (27),  the nested saturated controller  (3)  with mixed
saturation level reduces to
 

u = un+m = −kn+m(xn+m−un+(m−1))

...

un+1 = −kn+1(xn+1−un)

un = −kn(xn−un−1)

...

u2 = −k2(x2−u1)

u1 = −k1(x1).

(28)

ρ(x) xn−
un−1, . . . , x2−u1, x1xn−un−1, . . . , x2−u1, x1

Remark  6: Inspired  with [25],  the  same  method  has  been
used to verify the non-integrable property and slowly-varying
estimate  of ,  then  the  reduction  of  saturated  terms 

 can  be  addressed.
But differently from [25],  the nested saturated control  design
has been proposed to deal with the problem of global asymp-
totic stability of uncertain complex cascade systems.

(x1, . . . , xn)

|xi−ui−1| ≤ liερ(x), i = n−1, . . . ,1

Remark  7: In  the  process  of  reduction  analysis  of  subsys-
tem , the time derivatives calculations of saturation
functions  are  carried  out  in  the  following  small  domains

.  

C.  Asymptotical Stability Analysis of Reduced System
In the following, we analyze the asymptotic stability of the

reduced systems (1) with (28).

Fact 3: Under the following parameters conditions:
 

(kn+m−12m−1ε+2mε)c−n+m[kn+m(kn+m−12m−1ε+2mε)

+ · · ·+ kn+mkn+m−1 · · ·kn+1(knNn+21ε)

+ kn+mkn+m−1 · · ·kn+1kn(kn−1Nn−1+ lnεM
−1/(2(n−1))
n+1 )

+ · · ·+ kn+mkn+m−1 · · ·k2k1l1εM
−1/(2(n−1))
n+1 ]

> l1εM
−1/(2(n−1))
n+1 [(c+1 (k1N1+ l2εM

−1/(2(n−1))
n+1 )

+2−nM−1/(2(n−1))
n+1 )]+ · · ·

+ (kn−1Nn−1+ lnεM
−1/(2(n−1))
n+1 )[(c+n (knNn+21ε)

+2−nM−1/(2(n−1))
n+1 )]

+ (knNn+21ε)c+n+1(kn+12ε+22ε)

+ · · ·+ (kn+m−22m−2ε+2m−1ε)c+n+m−1(kn+m−12m−1ε+2mε)
(29)

the  reduced  systems  (1)  with  controller  (24)  are  asymptoti-
cally stable.

Proof: Consider the Lyapunov function
 

U = 2−1x2
1 +2−1x2

2 + · · ·+2−1x2
n +2−1x2

n+1+ · · ·+2−1x2
n+m.

UThe derivative of  along solutions of the reduced systems
(1) with (28) is
 

U̇ = x1 ẋ1+ · · ·+ xn ẋn+ xn+1 ẋn+1+ · · ·+ xn+m ẋn+m

≤ |x1| |c1x2+q1(x, x̃)|+ · · ·+ |xn| |cnxn+1+qn(x, x̃)|
+ |xn+1|cn+1 |xn+2|+ · · ·+ |xn+m|cn+m

× [−kn+m |xn+m| − · · · − kn+mkn+m−1 · · ·kn+1 |xn+1|
− kn+mkn+m−1 · · ·kn+1kn |xn| − · · · − kn+mkn+m−1 · · ·k2k1 |x1|].

Combined with (12),  (13),  (16),  (19),  (26),  (27),  and under
parameters conditions (29), it yields
 

U̇ ≤ l1ερ(x)[(c+1 (k1N1+ l2ερ(x))+q1(x, x̃))]+ · · ·

+ (kn−1Nn−1+ lnερ(x))[(c+n (knNn+21ε)

+qn(x, x̃))] + (knNn+21ε)c+n+1(kn+12ε+22ε)

+ · · ·+ (kn+m−12m−1ε+2mε)c−n+m

× [−kn+m(kn+m−12m−1ε+2mε)

− · · ·− kn+mkn+m−1 · · ·kn+1(knNn+21ε)

− kn+mkn+m−1 · · ·kn+1kn(kn−1Nn−1+ lnερ(x))

− · · ·− kn+mkn+m−1 · · ·k2k1l1ερ(x)]

≤ l1εM
−1/(2(n−1))
n+1 [(c+1 (k1N1+ l2εM

−1/(2(n−1))
n+1 )

+q1(x, x̃))]+ · · ·

+ (kn−1Nn−1+ lnεM
−1/(2(n−1))
n+1 )[(c+n (knNn+21ε)

+qn(x, x̃))]+ (knNn+21ε)c+n+1(kn+12ε+22ε)

+ · · ·+ (kn+m−12m−1ε+2mε)c−n+m

× [−kn+m(kn+m−12m−1ε+2mε)

− · · ·− kn+mkn+m−1 · · ·kn+1(knNn+21ε)
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− kn+mkn+m−1 · · ·kn+1kn(kn−1Nn−1+ lnεM
−1/(2(n−1))
n+1 )

− · · ·− kn+mkn+m−1 · · ·k2k1l1εM
−1/(2(n−1))
n+1 ] < 0.

Hence,  the  reduced  systems  (1)  with  controller  (24)  are
asymptotically stable. ■

From Facts 1−3, the main results of this paper can be shown
as follows.

0 < ε < 2−1 Λ > 3
Theorem  1: With  parameter  conditions  (6),  (15)  and  (29)

holding,  let  and ,  the  nested  saturated  con-
troller  (3)  can  globally  stabilizes  uncertain  complex  cascade
systems (1).

Based  on  Facts  1−3,  systems  (1)  with  controller  (3)  are
globally attractive and locally asymptotically stable,  and thus
the closed-loop system is globally asymptotically stable at the
origin [40]. Then Theorem 1 can be proved.

Remark 8: For the problem of global asymptotic stability of
uncertain complex cascade systems, the nested saturated con-
trol  design  has  been  proposed  in  this  paper.  Specifically,  a
modified  differentiable  saturation  function  (5)  is  proposed  to
facilitate  the  saturation  reduction  analysis.  Based  on  the  dif-
ferentiable  saturation  function  (5),  the  saturation  reduction
analysis has been divided into two steps. By constructing hier-
archical  and  known  boundaries  with  the  help  of  differential
saturation  functions,  the  time  derivatives  calculations  of  the
boundary  surface  will  be  carried  out  in  the  following  small
domains:
 

∣∣∣x j−u j−1
∣∣∣ ≤ 2 j−nϵ, j = n+m, . . . ,n+1

|xi−ui−1| < Hi, i = n, . . . ,1

xn+m, . . . , xn+1for  subsystems ;  and  then  are  analyzed  in  the
small domains:
 

|xi−ui−1| ≤ liερ(x) ≤ Hi, i = n, . . . ,1
xn, . . . , x1

|x j| ≤ |u j−1|+2 j−nε, j = n + m, . . . ,n+1, |xi| < |ui−1| +
Hi, i = n, . . . ,1 x j, j = n+m, . . . ,n+1

|x j| ≤ |u j−1|+2 j−nε

xi, i = n, . . . ,1 |xi| < |ui−1|+Hi
|xi| ≤ |ui−1|+ liερ(x)

for the subsystems . Along such hierarchical conver-
gence  strategy,  all  states  will  first  converge  to  the  domains

 and 
,  then  states  will  keep

staying  in  the  domains .  In  turn,  states
 with  respect  to  will  converge

further into the domains . At last, all states
will  converge  globally  to  a  small  region  through  the  above
hierarchical convergence strategies. Then the closed-loop sys-
tem  is  globally  attractive  and  locally  asymptotically  stable,
and thus is global asymptotic stability. Without using the dif-
ferentiable saturation function (5), the time derivatives calcu-
lations of the boundary surface need to be first expanded with
respect to the following small domains:
 

∣∣∣x j−u j−1
∣∣∣ ≤ 2 j−nϵ, j = n+m, . . . ,n+1

|xi−ui−1| < liϵρ(x), i = n, . . . ,1.
As the differential calculation of saturation function subject

to state-dependent saturation levels is hard to be handled, the
saturation reduction analysis may be difficult to develop in the
above  cases  without  using  the  differentiable  saturation  func-
tion  (5).  One-step  global  convergence  to  a  small  domain  is
certainly  ideal.  For  uncertain  complex  cascade  systems  (1)
and novel nested saturated control design (3), it is algorithmi-
cally  impossible  to  achieve  one-step  global  convergence  to

small domain now. However, based on the differentiable satu-
ration  function  (5),  the  proposed  hierarchical  convergence
strategies  can  achieve  state  global  convergence  to  small
regions.  Compared  with  one-step  global  convergence,  the
hierarchical  convergence  strategy  is  somewhat  easier  to
achieve  global  convergence  and  has  stronger  overall  robust-
ness to perturbations to some extent.  

IV.  Simulation Results

In this paper,  we present an application to verify the effec-
tiveness of the proposed method.

The ball and beam system can be found in many control lab-
oratories,  which  is  a  typical  nonlinear  control  system.  It  has
the characteristics of simple mechanism and easy observation.
It  is  a  common  experimental  equipment  in  control  laborato-
ries and is usually used to test the effect of a control strategy
[22]−[26] and [41]−[47].  The  ball  and  beam  system  shares
numerous similarities with robot systems, and many practical
systems can be abstracted as models based on the concept of
ball and beam. Due to the extensive application background of
ball  and  beam  systems  in  practical  robotics  and  mechanical
systems, as well as their simplicity of operation in the labora-
tory settings, the study of ball and beam systems has garnered
significant scholarly attention.

In order to understand the simple principle of actual ball and
beam  model,  we  take  an  embedded  ball  and  beam  model
(type: GBN2004-E2) of GOOGOL TECH-PARADOX (a com-
pany in  China)  as  an  example  for  a  simple  explanation.  This
type ball and beam model is shown in Fig. 1 (This figure can
be found on website: http://new.paradoxtech.cn/product-detail/
NoRjA5GB).
  

 
Fig. 1.     The actual ball and beam model.
 

The ball  and  beam system is  a  typical  single  input,  double
output system. The beam is made to rotate in a vertical plane
by  applying  a  torque  at  the  center  of  rotation  and  the  ball  is
free to roll along the beam [44]. The sensor on the beam and
the encoder on the motor detect the actual position of the ball
and  the  actual  position  of  the  motor  respectively,  and  then
they  feed  back  the  relevant  information  to  the  controller  to
calculate  the  control  quantity.  By  controlling  the  rotation  of
the motor, the beam is made to rotate so that the ball can roll
along it.

Consider  the  simplified  ball  and  beam  system  in [43] and
[44] that is described as follows:
 

0 = (
Jb

R2 +M)r̈+MG sinθ−Mrθ̇2

τ = (Mx2
1 + J+ Jb)θ̈+2Mrṙθ̇+MGr cosθ

(30)

r θ
τ

where  and  represents the ball position and the beam angle,
respectively,  is the torque applied to the beam. The nominal
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value of the various system parameters are given as follows:
 

M = 0.05 kg, R = 0.01 m, J = 0.02 kg ·m2

Jb = 2×10−6 kg ·m2, G = 9.81 m/s2

where  the  meaning  represented  by  the  above  parameters  can
be consulted with the ball and beam system in [43] and [44].
The illustrative diagram of ball and beam systems for system
(30) is presented in Fig. 2. The principle of the ball and beam
system in Fig. 2 is analogous to the principle of the actual ball
and beam model in Fig. 1.
 
 

τ
θ

r

 
Fig. 2.     An illustrative diagram of the ball and beam system.
 

(r, ṙ, θ, θ̇)T = (x1, x2, x3, x4)TFollowing [43],  let ,  the  dynam-
ics equation of the ball and beam system is described by:
 

ẋ1 = x2

ẋ2 = Hx1x2
4 −GH sin x3

ẋ3 = x4

ẋ4 = −
2Mx1x2x4+MGx1 cos x3

Mx2
1 + J+ Jb

+
τ

Mx2
1 + J+ Jb

(31)

H H = M/(Jb/R2+M) = 0.7134where  represents .
The  control  objective  of  the  ball  and  beam  system  is  to

design  a  state  feedback  control  law such  that  the  ball  can  be
globally asymptotically positioned at the beam.

By making the following transformation:
 

τ = 2Mx1x2x4+MGx1 cos x3+ (Mx2
1 + J+ Jb)u (32)

system (31) is transformed into
 

ẋ1 = x2

ẋ2 = −GH sin x3+Hx1x2
4

ẋ3 = x4

ẋ4 = u.

(33)

Further, by introducing the change of coordinates
 

y1 = −x1, y2 = −x2, y3 = x3, y4 = x4 (34)
system (33) is rewritten as follows:
 

ẏ1 = y2

ẏ2 =

(
GH

siny3

y3

)
· y3+Hy1y2

4

ẏ3 = y4

ẏ4 = u

(35)

u G,H
siny3/y3
y3 = x3 = θ

θ ∈ [0,π/2] siny3/y3 ∈ [2/π,1]

where  is a new control input;  are constant parameters;
 can  be  viewed  as  bounded  uncertain  parameter.  As

 represents  the  beam angle,  the  range of  the  beam
angle belongs to . Hence, one has .

GH(siny3/y3) GH(siny3/y3) ∈ [GH×2/π,GH] =
[4.455354,6.998454]

Based  on  the  above  analysis,  system  (35)  is  shown  in
the  form  of  system  (1),  where  the  uncertain  parameter

 is limited by 
.

Following Theorem 1 in Section III, for globally stabilizing
systems (35), we design the following control law:
 

u = u4 = −k4sat22ε(y4−u3)

u3 = −k3sat21ε(y3−u2)

u2 = −k2satl2ερ(y)(y2−u1)

u1 = −k1satl1ερ(y)(y1)

(36)

ρ(y)where  satisfies the conditions in the proposed algorithm,
namely,
 

ρ(x) = (M3+M2y2
2+M1y2

1)−
1
2

M3 = M2Λ
2 = Λ8, M2 = M2

1Λ
2 = Λ6, M1 = Λ

2 (37)

0 < ε ≤ 2−1,Λ ≥ 2,ki > 0, li > 0, i = 1,2,3,4where  are the con-
stants to be determined.

By  using  Theorem  1,  we  can  use  controller  (36)  globally
stabilizes  system  (35).  According  to  the  relevant  algorithm
design  in  Definition  1,  Facts  1−3,  and  Theorem  1,  general
parameters  of  differentiable saturation functions are designed
and calculated as follows:
 

γ1 = 0.001, β1 = 0.6, h1 = 0.36×10−5

⇒ N1 = 0.36036×10−5, H1 = 0.6×10−5

γ2 = 0.001, β2 = 0.6, h2 = 0.48×10−4

⇒ N2 = 0.48048×10−4, H2 = 0.8×10−4. (38)
Meanwhile, those control parameters are also determined as

follows:
 

k1 = 1, k2 = 285, k3 = 0.96×104, k4 = 9.1×107

l1 = 2, l2 = 1; ε = 0.002, Λ = 3. (39)

GH(siny3/y3)∈ [GH×2/π,GH]= [4.455354,6.998454],As 
the bounded uncertain parameter is design as
 

GH
siny3

y3
= 4.455354+2.5431 |sin t|

(x1(0), x2(0), x3(0), x4(0))T = (0.0001,0,0,0)
in  the  simulation.  Under  parameter  design  (38)  and  (39)  and
the  initial  state ,
Figs. 3 and 4 show the effectiveness of the controller (36) for
system  (35).  It  can  be  observed  form Figs.  3 and 4 that  the
states  and  control  design  are  globally  asymptotically  conver-
gent to zero.

In fact, the simplified ball and beam systems (30) are origi-
nally  systems  without  uncertain  parameters.  However,  after
appropriate coordinate transformations, the ball and beam sys-
tems (30) can be transformed into systems (35) which can be
considered as complex cascade systems with uncertain param-
eters. Two points should then be noted. On the one hand, the
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effectiveness  of  the  proposed  algorithm  for  uncertain  com-
plex  cascade  systems  can  be  verified  by  applying  the  algo-
rithm proposed  in  this  paper  to  deal  with  the  equivalent  sys-
tems (35)  of  systems (30).  On the  other  hand,  this  paper  has
provided  different  treatments  for  the  global  stabilization  of  a
class  of  simplified  mechanical  systems.  The  key  is  to  trans-
form mechanical systems into systems that can be considered
as uncertain complex cascade systems.  

V.  Conclusion

In  this  paper,  the  proposed  nested  saturated  control  design
with  mixed  saturation  levels  has  been  used  to  achieve  the
global asymptotic stability of uncertain complex cascade sys-
tems.  By  introducing  a  modified  differentiable  saturation
function,  the  saturation  reduction  analysis  of  uncertain  com-
plex  cascade  system can  be  carried  out  smoothly.  Moreover,
the  modified  differentiable  saturation  function  has  helped  to
achieve  hierarchical  global  convergence  and  to  improve  the
robustness  of  the  control  strategy.  Combined  with  the  usual
saturation  schemes,  some  explicit  parameter  conditions  have
been  given  to  guarantee  the  global  asymptotic  stability  of
uncertain  complex  cascade  systems.  In  this  paper,  a  class  of
nested  saturation  control  strategies  is  proposed  to  deal  with
the  global  asymptotic  stability  problem  of  a  special  class  of
high-order  differential  equations.  Furthermore,  the  proposed
algorithm has been extended to corresponding applications in
some practical mechanical models, such as the ball and beam
system.

References 

 X. Niu, W. Lin, and X. Gao, “Static output feedback control of a chain
of  integrators  with  input  constraints  using  multiple  saturations  and
delays,” Automatica, vol. 125, p. 109457, Mar. 2021.

[1]

 J.  Zhang,  K.  Li,  and  Y.  Li, “Output-feedback  based  simplified
optimized  backstepping  control  for  strict-feedback  systems  with  input
and  state  constraints,” IEEE/CAA  J.  Autom.  Sinica,  vol. 8,  no. 6,
pp. 1119–1132, Jun. 2021.

[2]

 M. Chen, S. S. Ge, and B. Ren, “Adaptive tracking control of uncertain
MIMO  nonlinear  systems  with  input  constraints,” Automatica,  vol. 47,
no. 3, pp. 452–465, Mar. 2011.

[3]

 S.  A.  Emami,  P.  Castaldi,  and  A.  Banazadeh, “Neural  network-based
flight control systems: Present and future,” Annu. Rev. Control, vol. 53,
pp. 97–137, Jun. 2022.

[4]

 K. Zhang, B. Zhou, W. X. Zheng, and G.-R. Duan, “Event-triggered and
self-triggered  gain  scheduled  control  of  linear  systems  with  input
constraints,” IEEE  Trans.  Syst., Man, Cybern.:  Syst.,  vol. 52,  no. 10,
pp. 6452–6463, Oct. 2022.

[5]

 Z. Zuo, X. Li, B. Ning, and Q.-L. Han, “Global finite-time stabilization
of  first-order  systems  with  bounded  controls,” IEEE  Trans.  Circuits
Syst. II: Express Briefs, vol. 70, no. 7, pp. 2440–2444, Jul. 2023.

[6]

 T.  Hu and Z.  Lin, Control  Systems  with  Actuator  Saturation:  Analysis
and Design. Boston, USA: Birkhäuser, 2001.

[7]

 Y.  Li  and  Z.  Lin, Stability  and  Performance  of  Control  Systems  with
Actuator Saturation. Cham, Germany: Birkhäuser, 2018.

[8]

 Z.  Lin, “Control  design  in  the  presence  of  actuator  saturation:  From
individual systems to multi-agent systems,” Science China Information
Sciences, vol. 62, no. 2, p. 26201, Feb. 2019.

[9]

 P.  Li,  J.  Lam,  R.  Lu,  and  H.  Li, “Variable-parameter-dependent
saturated  robust  control  for  vehicle  lateral  stability,” IEEE  Trans.
Control Syst. Technol., vol. 30, no. 4, pp. 1711–1722, Jul. 2022.

[10]

 Z.  Zuo,  C.  Liu,  Q.-L.  Han,  and  J.  Song, “Unmanned  aerial  vehicles:
Control  methods  and  future  challenges,” IEEE/CAA  J.  Autom.  Sinica,
vol. 9, no. 4, pp. 601–614, Apr. 2022.

[11]

 S.  Ding  and  W.  X.  Zheng, “Robust  control  of  multiple  integrators
subject  to  input  saturation  and  disturbance,” Int.  J.  Control,  vol. 88,
no. 4, pp. 844–856, Apr. 2015.

[12]

 M.  Li  and  Z.  Zeng, “Modified  nested  saturated  control  for  uncertain
multiple  integrators  with  high-order  nonlinear  perturbation,” IEEE
Trans. Cybern., vol. 54, no. 4, pp. 2086–2098, Apr. 2024.

[13]

 H.  Ye,  M.  Li,  C.  Yang,  and  W.  Gui, “Finite-time  stabilization  of  the
double  integrator  subject  to  input  saturation  and  input  delay,”
IEEE/CAA J. Autom. Sinica, vol. 5, no. 5, pp. 1017–1024, Sept. 2018.

[14]

 A.  R.  Teel, “Global  stabilization  and  restricted  tracking  for  multiple[15]

 

1.2

0

1.0

1

0.8

2

0.6

3

0.4

4

0.2

5
0

6 7 8 9 10
Time (s)

×10−4

1
0

−1
−2
−3
−4
−5

0 1 2 3 4 5 6 7 8 9 10
Time (s)

×10−5

1

0
0

−2
−1

−4
−2

−6−3
−8−4

−5
−6
−7
−8

0 1 2 3 4 5 6

0 1 2 3 4 5 6

7 8 9 10
Time (s)

×10−3

×10−3

×10−3

10

10

5

0

0

−10

−5

−20

−10

−30
−15

−40
−20
−25
−30
−35
−40

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0 1 2 3 4 5 6
×10−3

y 1
y 2

y 3
y 4 y 4

y 3

 
Fig. 3.     Trajectories of states of system (35) with controller (36).

 

4

0

2

1

0

2

−2

3

−4

4

−6

5
−8

6 7 8 9 10
Time (s)

5
0

−5
−10

0 0.5 1.0 1.5 2.0 3.5 3.0 3.5

×105

×105

×10−3

u

u

 
Fig. 4.     Trajectories of control input of system (35) with controller (36).

LI AND ZENG: NESTED SATURATED CONTROL OF UNCERTAIN COMPLEX CASCADE SYSTEMS USING MIXED SATURATION LEVELS 1173 

http://dx.doi.org/10.1016/j.automatica.2020.109457
http://dx.doi.org/10.1109/JAS.2021.1004018
http://dx.doi.org/10.1016/j.automatica.2011.01.025
http://dx.doi.org/10.1016/j.arcontrol.2022.04.006
http://dx.doi.org/10.1007/s11432-018-9698-x
http://dx.doi.org/10.1007/s11432-018-9698-x
http://dx.doi.org/10.1109/TCST.2021.3121395
http://dx.doi.org/10.1109/TCST.2021.3121395
http://dx.doi.org/10.1109/JAS.2022.105410
http://dx.doi.org/10.1080/00207179.2014.982710
http://dx.doi.org/10.1109/TCYB.2022.3218849
http://dx.doi.org/10.1109/TCYB.2022.3218849
http://dx.doi.org/10.1109/JAS.2018.7511177


integrators  with  bounded  controls,” Syst.  Control  Lett.,  vol. 18,  no. 3,
pp. 165–171, Mar. 1992.
 M. Li, S. Ding, H. Ye, and J. Zhang, “Parameterisation of a special class
of  saturated  controllers  and  application  to  mechanical  systems,” IET
Control Theory Appl., vol. 11, no. 17, pp. 3146–3155, Nov. 2017.

[16]

 H.  Ye, “Stabilization  of  uncertain  feedforward  nonlinear  systems  with
application  to  underactuated  systems,” IEEE  Trans.  Autom.  Control,
vol. 64, no. 8, pp. 3484–3491, Aug. 2019.

[17]

 F.  Mazenc,  S.  Mondie,  and  R.  Francisco, “Global  asymptotic
stabilization  of  feedforward  systems  with  delay  in  the  input,” IEEE
Trans. Autom. Control, vol. 49, no. 5, pp. 844–850, May 2004.

[18]

 S.  Ding,  C.  Qian,  and  S.  Li, “Global  stabilization  of  a  class  of
feedforward  systems  with  lower-order  nonlinearities,” IEEE  Trans.
Autom. Control, vol. 55, no. 3, pp. 691–696, Mar. 2010.

[19]

 L.  Marconi  and  A.  Isidori, “Robust  global  stabilization  of  a  class  of
uncertain  feedforward  nonlinear  systems,” Syst.  Control  Lett.,  vol. 41,
no. 4, pp. 281–290, Nov. 2000.

[20]

 B. Zhou and X.  Yang, “Global  stabilization of  the multiple  integrators
system by delayed and bounded controls,” IEEE Trans. Autom. Control,
vol. 61, no. 12, pp. 4222–4228, Dec. 2016.

[21]

 C.  Barbu,  R.  Sepulchre,  W.  Lin,  and  P.  V.  Kokotovic, “Global
asymptotic  stabilization  of  the  ball-and-beam  system,” in Proc.  36th
IEEE  Conf.  Decision  and  Control,  San  Diego,  USA,  1997,  pp.
2351–2355.

[22]

 W.  Lin  and  X.  Li, “Synthesis  of  upper-triangular  non-linear  systems
with  marginally  unstable  free  dynamics  using  state-dependent
saturation,” Int. J. Control, vol. 72, no. 12, pp. 1078–1086, Feb. 1999.

[23]

 R.  Sepulchre, “Slow  peaking  and  low-gain  designs  for  global
stabilization  of  nonlinear  systems,” IEEE  Trans.  Autom.  Control,
vol. 45, no. 3, pp. 453–461, Mar. 2000.

[24]

 H.  Ye, “Global  stabilisation  of  complicated  feedforward  non-linear
systems by constructing state-dependent saturation levels,” IET Control
Theory Appl., vol. 10, no. 16, pp. 2071–2082, Oct. 2016.

[25]

 J.  Liu,  H.  Ye,  and  X.  Qi, “Stabilization  of  benchmark  under-actuated
systems  via  saturated  controls,” Int.  J.  Control, Autom.  Syst.,  vol. 20,
no. 11, pp. 3524–3539, Sept. 2022.

[26]

 M.  Yuan  and  X.  Zhang, “Stability  and  fast  transient  performance
oriented  motion  control  of  a  direct-drive  system  with  modeling
uncertainties,  velocity,  and  input  constraints,” IEEE/ASME  Trans.
Mechatron., vol. 27, no. 6, pp. 5926–5935, Dec. 2022.

[27]

 S. Wu, T. Liu, M. Egerstedt, and Z.-P. Jiang, “Quadratic programming
for  continuous  control  of  safety-critical  multiagent  systems  under
uncertainty,” IEEE  Trans.  Autom.  Control,  vol. 68,  no. 11,  pp. 6664–
6674, Nov. 2023.

[28]

 M. Lin, B. Zhao, and D. Liu, “Event-triggered robust adaptive dynamic
programming  for  multiplayer  Stackelberg-Nash  games  of  uncertain
nonlinear  systems,” IEEE  Trans.  Cybern.,  vol. 54,  no. 1,  pp. 273–286,
Jan. 2024.

[29]

 T.  Liu,  P.  Zhang,  M.  Wang,  and  Z.-P.  Jiang, “New  results  in
stabilization  of  uncertain  nonholonomic  systems:  An  event-triggered
control approach,” J. Syst. Sci. Complex.,  vol. 34, no. 5, pp. 1953–1972,
Oct. 2021.

[30]

 W.  Chen  and  Q.  Hu, “Sliding-mode-based  attitude  tracking  control  of
spacecraft  under  reaction  wheel  uncertainties,” IEEE/CAA  J.  Autom.
Sinica, vol. 10, no. 6, pp. 1475–1487, Jun. 2023.

[31]

 C.  Du,  F.  Li,  Y.  Shi,  C.  Yang,  and  W.  Gui, “Integral  event-triggered
attack-resilient  control  of  aircraft-on-ground synergistic  turning system
with  uncertain  tire  cornering  stiffness,” IEEE/CAA  J.  Autom.  Sinica,
vol. 10, no. 5, pp. 1276–1287, May 2023.

[32]

 P. Yu, K.-Z. Liu, X. Liu, X. Li, M. Wu, and J. She, “Robust consensus
tracking control of uncertain multi-agent systems with local disturbance
rejection,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 427–438, Feb.
2023.

[33]

 X.  Ge,  Q.-L.  Han,  Q.  Wu,  and  X.-M.  Zhang, “Resilient  and  safe
platooning control of connected automated vehicles against intermittent
denial-of-service  attacks,” IEEE/CAA  J.  Autom.  Sinica,  vol. 10,  no. 5,
pp. 1234–1251, May 2023.

[34]

 S.  Gayaka,  L.  Lu,  and  B.  Yao, “Global  stabilization  of  a  chain  of
integrators  with  input  saturation  and  disturbances:  A  new  approach,”
Automatica, vol. 48, no. 7, pp. 1389–1396, Jul. 2012.

[35]

 S. Amini, B. Ahi, and M. Haeri, “Control of high order integrator chain
systems subjected to disturbance and saturated control: A new adaptive
scheme,” Automatica, vol. 100, pp. 108–113, Feb. 2019.

[36]

 J.  Sun  and  W.  Lin, “A  dynamic  gain-based  saturation  control  strategy
for  feedforward  systems  with  long  delays  in  state  and  input,” IEEE
Trans. Autom. Control, vol. 66, no. 9, pp. 4357–4364, Sept. 2021.

[37]

 J.  Sun  and  W.  Lin, “Non-identifier  based  adaptive  regulation  of
feedforward  systems  with  nonlinear  parametrization  and  delays:  A
saturation  control  scheme,” Syst.  Control  Lett.,  vol. 173,  p.  105456,
Mar. 2023.

[38]

 A.  Zavala-Río,  I.  Fantoni,  and  R.  Lozano, “Global  stabilization  of  a
PVTOL  aircraft  model  with  bounded  inputs,” Int.  J.  Control,  vol. 76,
no. 18, pp. 1833–1844, Oct. 2003.

[39]

 S.  Sastry, Nonlinear  System:  Analysis,  Stability,  and  Control.  New
York, USA: Springer, 1999.

[40]

 R.  Ortega,  M.  W.  Spong,  F.  Gomez-Estern,  and  G.  Blankenstein,
“Stabilization  of  a  class  of  underactuated  mechanical  systems  via
interconnection  and  damping  assignment,” IEEE  Trans.  Autom.
Control, vol. 47, no. 8, pp. 1218–1233, Aug. 2002.

[41]

 A.  Sultangazin,  L.  Pannocchi,  L.  Fraile,  and  P.  Tabuada, “Learning  to
control  known  feedback  linearizable  systems  from  demonstrations,”
IEEE Trans. Autom. Control, vol. 69, no. 1, pp. 189–201, Jan. 2023.

[42]

 J. Huang and C.-F. Lin, “Robust nonlinear control of the ball and beam
system,” in Proc.  American  Control  Conf.,  Seattle,  USA,  pp.  306–
310.

[43]

 J.  Hauser,  S.  Sastry,  and  P.  Kokotovic, “Nonlinear  control  via
approximate  input-output  linearization:  The  ball  and  beam  example,”
IEEE Trans. Autom. Control, vol. 37, no. 3, pp. 392–398, Mar. 1992.

[44]

 M. Ha, D. Wang, and D. Liu, “Novel discounted adaptive critic control
designs  with  accelerated  learning  formulation,” IEEE  Trans.  Cybern.,
2023. DOI: 10.1109/TCYB.2022.3233593

[45]

 Z.  Jin,  A.  Liu,  W.-A.  Zhang,  L.  Yu,  and  C.-Y.  Su, “A  learning  based
hierarchical  control  framework  for  human-robot  collaboration,” IEEE
Trans. Autom. Sci. Eng., vol. 20, no. 1, pp. 506–517, Jan. 2023.

[46]

 W. Sirichotiyakul and A. C. Satici, “Data-driven passivity-based control
of  underactuated  mechanical  systems via  interconnection  and  damping
assignment,” Int. J. Control, vol. 96, no. 6, pp. 1448–1456, Mar. 2023.

[47]

Meng Li (Member,  IEEE)  receive  the  Ph.D.  degree
in  control  science  and  engineering  from  the  School
of  Automation,  Central  South  University,  in  2020.
He  was  a  Visiting  Ph.D.  Student  with  the  Depart-
ment of Mechanical Engineering, University of Vic-
toria,  Canada,  from 2019  to  2020.  He  is  currently  a
Postdoctoral Researcher of control science and engi-
neering  with  Wuhan  National  Laboratory  for  Opto-
electronics,  and  also  with  the  School  of  Artificial
Intelligence  and  Automation,  Huazhong  University

of  Science  and  Technology.  His  research  interests  include  uncertain  nonlin-
ear  control  systems,  saturated control,  and stability analysis  of  dynamic sys-
tems.

Zhigang  Zeng (Fellow,  IEEE)  received  the  Ph.D.
degree  in  systems  analysis  and  integration  from
Huazhong  University  of  Science  and  Technology  in
2003. He is currently a Professor with the School of
Artificial  Intelligence  and  Automation,  Huazhong
University of Science and Technology, and also with
the Key Laboratory of Image Processing and Intelli-
gent Control of the Education Ministry of China. He
has published over 300 international journal articles.
His  research  interests  include  the  theory  of  func-

tional  differential  equations  and  differential  equations  with  discontinuous
right-hand sides, and their applications to dynamics of neural networks, mem-
ristive systems, and associative memories.
     Dr.  Zeng has  been a  Member  of  the  Editorial  Board of Neural  Networks
since 2012, Cognitive Computation since 2010,  and Applied Soft  Computing
since 2013. He was an Associate Editor of the IEEE Transactions on Neural
Networks from 2010  to  2011,  and  the IEEE Transactions  on  Fuzzy  Systems
from 2016  to  2021.  He  has  been  an  Associate  Editor  of  the IEEE  Transac-
tions on Cybernetics since 2014.

 1174 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 5, MAY 2024

http://dx.doi.org/10.1016/0167-6911(92)90001-9
http://dx.doi.org/10.1049/iet-cta.2017.0634
http://dx.doi.org/10.1049/iet-cta.2017.0634
http://dx.doi.org/10.1109/TAC.2018.2882479
http://dx.doi.org/10.1109/TAC.2004.828313
http://dx.doi.org/10.1109/TAC.2004.828313
http://dx.doi.org/10.1109/TAC.2009.2037455
http://dx.doi.org/10.1109/TAC.2009.2037455
http://dx.doi.org/10.1016/S0167-6911(00)00066-9
http://dx.doi.org/10.1109/TAC.2015.2513371
http://dx.doi.org/10.1080/002071799220434
http://dx.doi.org/10.1109/9.847724
http://dx.doi.org/10.1049/iet-cta.2016.0172
http://dx.doi.org/10.1049/iet-cta.2016.0172
http://dx.doi.org/10.1109/TMECH.2022.3191201
http://dx.doi.org/10.1109/TMECH.2022.3191201
http://dx.doi.org/10.1109/TAC.2023.3244745
http://dx.doi.org/10.1109/TCYB.2023.3251653
http://dx.doi.org/10.1007/s11424-021-1235-5
http://dx.doi.org/10.1109/JAS.2022.105665
http://dx.doi.org/10.1109/JAS.2022.105665
http://dx.doi.org/10.1109/JAS.2023.123480
http://dx.doi.org/10.1109/JAS.2023.123231
http://dx.doi.org/10.1109/JAS.2022.105845
http://dx.doi.org/10.1016/j.automatica.2011.11.012
http://dx.doi.org/10.1016/j.automatica.2018.10.039
http://dx.doi.org/10.1109/TAC.2020.3030744
http://dx.doi.org/10.1109/TAC.2020.3030744
http://dx.doi.org/10.1016/j.sysconle.2023.105456
http://dx.doi.org/10.1080/00207170310001637147
http://dx.doi.org/10.1109/TAC.2002.800770
http://dx.doi.org/10.1109/TAC.2002.800770
http://dx.doi.org/10.1109/TAC.2023.3272392
http://dx.doi.org/10.1109/9.119645
http://dx.doi.org/10.1109/TCYB.2022.3233593
https://doi.org/10.1109/TCYB.2022.3233593
http://dx.doi.org/10.1109/TASE.2022.3161993
http://dx.doi.org/10.1109/TASE.2022.3161993
http://dx.doi.org/10.1080/00207179.2022.2051750

	I Introduction
	II Problem Formulation and Preliminaries
	III Main Results
	A Reduction Analysis of Subsystem ($  {{x_{n + 1}}, \ldots ,{x_{n + m}}} $)
	B Reduction Analysis of Subsystem ($  {{x_1}, \ldots ,{x_n}}  $)
	C Asymptotical Stability Analysis of Reduced System

	IV Simulation Results
	V Conclusion
	References

