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   Abstract—In this paper, the recursive filtering problem is con-
sidered  for  stochastic  systems  over  filter-and-forward  successive
relay  (FFSR)  networks.  An  FFSR  is  located  between  the  sensor
and the remote filter to forward the measurement. In the succes-
sive relay, two cooperative relay nodes are adopted to forward the
signals  alternatively,  thereby  existing  switching  characteristics
and  inter-relay  interferences  (IRI).  Since  the  filter-and-forward
scheme  is  employed,  the  signal  received  by  the  relay  is  retrans-
mitted after it passes through a linear filter. The objective of the
paper is to concurrently design optimal recursive filters for FFSR
and  stochastic  systems  against  switching  characteristics  and  IRI
of  relays.  First,  a  uniform  measurement  model  is  proposed  by
analyzing the  transmission mechanism of  FFSR.  Then,  novel  fil-
ter structures with switching parameters are constructed for both
FFSR  and  stochastic  systems.  With  the  help  of  the  inductive
method,  filtering  error  covariances  are  presented  in  the  form of
coupled  difference  equations.  Next,  the  desired  filter  gain  matri-
ces are further obtained by minimizing the trace of filtering error
covariances.  Moreover,  the  stability  performance  of  the  filtering
algorithm is analyzed where the uniform bound is guaranteed on
the filtering error covariance. Finally, the effectiveness of the pro-
posed  filtering  method  over  FFSR  is  verified  by  a  three-order
resistance-inductance-capacitance circuit system.
    Index Terms—Filter-and-forward  successive  relay  (FFSR), recur-
sive filtering, relay network, stochastic system, time-varying system.
  

I.  Introduction

IN  control  communities,  the  filtering/state  estimation  has
been one of the fundamental research topics due to its enor-

H∞

mous application potentials in many fields [1]–[4]. Till now, a
rich body of enlightening filtering strategies have been devel-
oped with various performance indexes, such as the  filter-
ing [5]–[7], the set-membership filtering [8]–[10], the moving
horizon  estimation [11], [12],  the  finite  impulse  response
(FIR)  filtering [13]–[15],  the  Kalman  filtering [16]–[18] and
the  robust  recursive  filtering [19]–[21].  Among  them,  the
Kalman  filtering  has  been  viewed  as  the  most  efficient  state
estimation  approach  for  linear  stochastic  systems  with  Gaus-
sian  noises.  Notably,  the  traditional  Kalman  filtering  method
provides an optimal state estimate (in the minimum error vari-
ance sense) where the filtering error covariance is recursively
given  by  Riccati  equations.  In  view  of  their  advantages  in
online  computation,  the  Kalman-type  filtering  as  well  as  its
variants has attracted considerable research interest,  see,  e.g.,
[22]–[25].

With  the  development  of  wireless  communication  tech-
niques,  the  signal  transmission  between  the  sensor  node  and
the  filter  is  frequently  implemented  through  wireless  net-
works.  In  practice,  it  is  always  the  case  that  the  coverage  of
the wireless network is essentially limited because of the non-
negligible  fading  phenomenon.  As  a  result,  signals  transmit-
ted by the sensor may not be successfully received by the fil-
ter, especially in the long-distance transmission [26]. In order
to broaden the coverage of the network, a typical solution is to
arrange a relay to forward the signal from the sensor to the fil-
ter. On account of its largely potentiality in the long-distance
wireless communication, the relay network has gained particu-
lar  research  attention  from  communication  communities
[27]–[29]. Accordingly, many effective relay techniques have
been proposed to cater for real engineering requirements, such
as  the  half-duplex  relay,  the  virtual  full-duplex  relay  and  the
full-duplex relay.

As one of  the  most  common virtual  full-duplex relay tech-
niques,  the  successive  relay  subtly  embeds  two  synergistic
relay  nodes  with  switching modes  to  alternately  forward  sig-
nals. Specifically, in each time slot, one of the two relay nodes
operating in the receiving mode receives signals from the sig-
nal source. At the same time, the other relay node is certainly
in the transmitting mode that broadcasts signals to the destina-
tion.  In  the  next  time  slot,  the  modes  of  two relay  nodes  are
swapped  compulsively,  which  guarantees  successive  signal
transmissions from the signal source to the destination. By uti-
lizing two collaborative relay nodes,  the successive relay has
shown  its  great  advantages  in  improving  the  bandwidth  effi-
ciency,  thereby  becoming  an  intriguing  topic [29].  However,
because  of  the  switching  modes  of  relay  nodes,  there  evi-
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dently appear complex switching characteristics in the succes-
sive  relay,  which  unavoidably  affects  the  performance  of  the
networks.  On  the  other  hand,  the  signals  transmitted  by  the
relay  node  in  the  transmitting  mode  will  be  also  received  by
another relay node since it is certainly operating in the receiv-
ing mode. Therefore, the collaborative relay nodes are vulner-
able  to  the  inter-relay  interference  (IRI).  Recently,  many
related  results  concerning  the  switching  characteristics  and
IRI have been available in the existing literature [30], [31].

Apart  from  relay  techniques,  relaying  schemes  have  been
another  counterpart  that  should  be  considered  seriously  in
relay systems. The majority of the relaying schemes reported
in  the  literature  include,  but  are  not  limited  to,  the  amplify-
and-forward (AF), the decode-and-forward (DF) and the filter-
and-forward  (FF).  Differently  from  the  AF  relaying  scheme
amplifying  undesired  noises  in  signals,  the  FF  relaying
retransmits  the  signal  after  it  passes  through  a  linear  filter,
which  performs  higher  accuracy.  Comparing  with  the  DF
relaying where complex decoding and re-encoding are neces-
sary, such a relaying scheme is easy to implement. Therefore,
the  FF relaying can realize  a  trade-off  between the  complex-
ity and the performance improvement [32]. Consequently, the
FF relaying has aroused a lot of research interests and consid-
erable  efforts  have  been  devoted  to  the  filter  design  problem
for the FF relaying. For example, in [33], the FF relaying has
been first  proposed where a finite impulse response filter has
been  employed  to  reconstruct  actual  states  from  noisy  mea-
surements. In [34], FF relays with an optimal filter in the min-
imum mean-square error sense have been designed by solving
a  set  of  convex  optimization  problems.  In [35],  a  jointly
source and relay filter design problem has been considered by
converting  it  into  a  constrained  optimization  problem  in  a
finite dimensional space.

Recently,  some  primary  research  results  investigating  the
filtering problem under relay networks have been available in
the existing literature. Typically, in [36], the optimal and sub-
optimal relay configuration methods have been given by mini-
mizing  the  filtering  error  covariance  of  the  Kalman  filter.  In
[37],  the  robust  filtering  problem  has  been  considered  for  a
class  of  uncertain  systems  over  AF  relay  network  with  ran-
dom  transmission  power.  In [38],  a  recursive  filter  has  been
designed  where  the  measurement  has  been  forwarded  by  a
full-duplex relay. However, for the filtering problem simulta-
neously considering relaying techniques and schemes, the cor-
responding results are extremely deficient despite the fact that
relaying  techniques  and  schemes  are  essential  indivisible  in
practical  relay  systems.  To  shorten  such  a  gap,  we  make  the
first attempt to investigate the filtering problem under typical
filter-and-forward successive relay (FFSR) networks.

To  handle  the  filter  design  problem  over  FFSR  networks,
we  are  confronted  with  the  following  challenges:  1)  How  to
eliminate  the  effects  of  switching  characteristics  and  IRI  of
the successive relay? 2) How to cooperatively design the clas-
sical  Kalman-type  filters  for  both  the  FFSR  and  underlying
systems;  and 3)  How to analyze the stability of  the proposed
filtering  algorithms  in  the  presence  of  FFSR.  Hence,  we  are

endeavoring to overcome the identified challenges by provid-
ing  the  filter  design  method  for  the  stochastic  system  with
FFSR.  Accordingly,  the  main  contributions  of  this  paper  are
summarized as follows: 1) The FFSR network is, for the first
time,  considered  in  the  filtering  problem  of  stochastic  sys-
tems; 2) New optimal recursive filters with switching parame-
ters are jointly designed for the FFSR and the stochastic sys-
tem  when  there  appear  switching  characteristics  and  IRI  of
FFSR;  and  3)  The  boundedness  stability  is  analyzed  for  the
proposed filtering algorithm under FFSR networks.  

II.  Problem Formulation
  

A.  System Description
Consider a stochastic system as follows:

 {
xk+1 = Γk xk +Σkwk

yk = Ψk xk +Θkvk
(1)

xk ∈ Rnx

yk ∈ Rny

wk ∈ Rnw vk ∈ Rnv

where  denotes the state  vector  at  sampling instant k,
 is  the  measurement  output  of  the  sensor  node,
 and  stand  for  the  zero-mean  Gaussian  dis-

tributed noises with
 

E
{

[wk vk] [wl vl]T
}
= δ(k, l)

[
Wk 0
0 Vk

]
(2)

Γk ∈ Rnx×nx Ψk ∈ Rny×nx Σk ∈ Rnx×nw Θk ∈ Rny×nv Wk ∈
Rnw×nw > 0 Vk ∈ Rnv×nv > 0
δ(k, l) = 1 k = l δ(k, l) = 0

x̄0 P0

where , , , , 
 and  are  pre-setting  matrices,

 for , otherwise, . Moreover, the initial
value of the discrete-time system follows the Gaussian distri-
bution with mean  and covariance .  

B.  Relay Scheme

R1 R2

R1

R2

The  considered  filtering  problem  over  FFSR  network  is
visually shown in Fig. 1. In detail, two relays (  and ) with
embedded  filters  switch  between  the  receiving  mode  and  the
transmission  mode.  In  the  even  time  instant,  relay  in  the
receiving  mode  receives  from  the  sensor  and  further  gener-
ates  an  estimate  by  its  filter.  Meanwhile,  the  relay  in  the
transmitting  mode  forwards  signals  to  the  remote  filter.  It
should  be  mentioned  that,  since  both  relays  can  receive  the
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Filter

Filter
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R1
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Plant

(a) The even time instant
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Filter
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(b) The odd time instant

R1

R2

 
Fig. 1.     Diagram for the filtering problem over FFSR network.
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R1
R2

signals  transmitted  by  each  other,  there  inevitably  exists  IRI
indicated by red dotted lines. In the next odd time instant, 
and  exchange  their  operation  modes  to  assist  the  signal
transmission.

According  to [39],  the  signals  arriving  at  each  relay  are
denoted as
 y1,k = γ1,kyk +γ3,kŷ2,k + ξ1,k, k is even

y2,k = γ2,kyk +γ3,kŷ1,k + ξ2,k, k is odd (3)

yi,k (i = 1,2) Ri γ1,k
γ2,k

Ri (i = 1,2) γ3,k
ξi,k (i = 1,2) ŷi,k = Ψkϑi,k−1

(i = 1,2) Ri ϑi,k−1

where   is the received signal of the relay , 
and  stand for the stochastic channel coefficients from sen-
sor to  ,  represents the coefficient of relay-relay
channel,   is  the  channel  noise, 

 is the signal transmitted by relay  and  is the
estimate signal of the relay which will be generated later.

zk

Furthermore, the relays alternately forward estimate signals
to  the  remote  filter.  Then,  the  signal  forwarded  to  the
remote filter is depicted as follows:
 

zk =

{
γ4,kŷ1,k +τ1,k, k is odd

γ5,kŷ2,k +τ2,k, k is even
(4)

γi,k (i = 4,5)
τm,k (m = 1,2)

where   is  the  stochastic  channel  coefficient  of
relay-filter channel,   is the channel noise.

Remark  1: In  this  paper,  the  measurements  are  transmitted
through  FFSR  with  switching  characteristics  and  IRI.  Based
on measurement models (3) and (4), the transmission charac-
teristics of FFSR are described explicitly. In what follows, we
will  cooperatively  design  easy-to-implement  filters  for  the
relay and the stochastic system.

γi,k (i = 1,2,3,4,5) ξ j,k ( j = 1,2)
τm,k (m = 1,2)

The  stochastic  variables  ,  
and   are  mutually  independent  and auto-uncor-
related and satisfy
 

Eξ j,k = 0, Eτm,k = 0, Eγi,k = γ̄i,k

E{ξ j,kξ
T
j,k} =G j,k, E{τm,kτTm,k} = Om,k

E{(γi,k − γ̄i,k)2} = γ⃗i,k (5)

γ̄i,k γ⃗i,k > 0 (i = 1,2,3,4,5)
G j,k > 0 ( j = 1,2) Om,k > 0 (m = 1,2)
where  and   are  known parameters,

  and   are  given  positive-
definite  matrices.  Moreover,  the  statistical  characteristics  of
channel  coefficients  and  noises  are  available  for  both  relays
and the remote filter.  

C.  Recursive Filter
ϑi,k (i = 1,2)

Ri

To obtain the estimate  signal   in  the relay,  we
construct the following filter for relay :
 

ϑi,k = Γk−1ϑi,k−1+δi,kKi,k(yi,k − γ̄i,kΨkΓk−1ϑi,k−1− γ̄3,kŷi,k) (6)

Ki,k
δi,k (i = 1,2)

where  denotes the gain matrix which should be designed
later and   is an auxiliary variable satisfying
 

δ1,k = θk, δ2,k = 1− θk

θk =

{
1, k is even
0, k is odd.

(7)

ϑi,0 = x̄0
ŷi,0 = Ψ0ϑi,0

In  addition,  the  initial  value  is  selected  as  and
.

Remark 2: In this paper, a novel filter (6) is constructed for

δi,k

γ̄3,kŷi,k

the FF relaying schemes in FFSR. The distinctive features of
the filter are summarized as the following two aspects: 1) An
auxiliary  variable  is  introduced  to  accommodate  the
switching  characteristic  of  successive  relay;  and  2)  The  term

 is  included to eliminate the effects  of IRI.  Notably,  if
the filter is designed as
 

ϑi,k = Γk−1ϑi,k−1+δi,kKi,k(yi,k − γ̄i,kΨkΓk−1ϑi,k−1

− γ̄3,kŷ j,k)

= Γk−1ϑi,k−1+δi,kKi,k(γi,kyk + ξi,k

− γ̄i,kΨkΓk−1ϑi,k−1+ (γ3,k − γ̄3,k)ŷ j,k).

E{(γ3,k − γ̄3,k)ŷ j,k} = 0

γ3,k
Ri ŷ j,k R j
Ri ŷ j,k ŷi,k

We obtain that ,  which means that the
effects of IRI are eliminated in the mean sense. However, due
mainly  to  the  stochastic  channel  coefficient ,  it  is  techni-
cally impossible for  to capture the exact  output  of .
Therefore, for relay , the term  in IRI is replaced by 
in the constructed filter (6).

θk zkWith the help of the switched parameter ,  is rewritten as
follows:
 

zk = δ2,k(γ4,kŷ1,k +τ1,k)+δ1,k(γ5,kŷ2,k +τ2,k). (8)
zkUtilizing signal , we construct the following remote filter

for the stochastic system over FFSR network:
 

x̂k = Γk−1 x̂k−1+Lk(zk − δ̄2,kΨk x̂k−1− δ̄1,kΨk x̂k−1) (9)
x̂k xk Lk

δ̄1,k = δ1,kγ̄5,k δ̄2,k = δ2,kγ̄4,k

x̂0 = x̄0

where  denote the estimate for ,  is the filter gain to be
meticulously  designed,  and .  The
initial value of the filter (9) is set as .

ϑ̃i,k = xk −ϑi,kDefine .  Then,  it  is  easily  obtained  from  (1),
(3) and (6) that
 

ϑ̃i,k = (Γk−1−δi,kKi,kΓ̄i,k−1)ϑ̃i,k−1−δi,kKi,kξi,k

−δi,k(γi,k − γ̄i,k)Ki,kΨkΓk−1xk−1+Σk−1wk−1

−δi,k(γ3,k − γ̄3,k)Ki,kΨk xk−1−δi,kγi,kKi,kΘkvk

+δi,kγ3,kKi,kΨkϑ̃ j,k−1−δi,kγi,kKi,kΨkΣk−1wk−1 (10)

i, j ∈ {1,2} i , j Γ̄i,k−1 = γ̄i,kΨkΓk−1+ γ̄3,kΨkwhere  and , .
x̃k = xk − x̂kLetting the filtering error of the remote filter be ,

it then follows from (1), (8) and (9) that:
 

x̃k = [Γk−1− (δ̄1,k + δ̄2,k)LkΨk]x̃k−1+Σk−1wk−1

− [δ2,k(γ4,k − γ̄4,k)+δ1,k(γ5,k − γ̄5,k)]LkΨk xk−1

+δ2,kγ4,kLkΨkϑ̃1,k−1+δ1,kγ5,kLkΨkϑ̃2,k−1

−δ2,kLkτ1,k −δ1,kLkτ2,k. (11)
ϑ̃i,k (i = 1,2) x̃k

Ξi,k = E{ϑ̃i,kϑ̃
T
i,k} Pk = E{x̃k x̃T

k }

Ki,k (i = 1,2) Lk
Ξi,k Pk

Based on the filtering errors   and , we define
 and .  In  this  paper,  our  main

objective  is  to  synergistically  design  the  filter  gain  matrices
  and  such  that  the  filtering  error  covariances
 and  are minimized in the trace sense, i.e.,

 

Ki,k = argmin
Ki,k

tr(Ξi,k), Lk = argmin
Lk

tr(Pk). (12)

Remark 3: It  should be mentioned that,  the performance of
the  remote  filter  is  inevitably  affected  by  the  FF  relaying
scheme. So, the filtering scheme of relays and the remote fil-
ter should be coordinately designed to achieve more accurate
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state  estimates.  In  this  case,  the  filtering  methods  with  the
minimum  mean  square  error  will  be  simultaneously  devel-
oped for both FFSR and stochastic systems in this paper.  

III.  Main Results
  

A.  Filter Design
In this section, the desired filter gain matrices are provided

for the FFSR and the remote filter.
Πk = E{xk xT

k } ΠkLemma  1: Let .  can  be  deduced  from  the
following recursions:
 

Πk = Γk−1Πk−1Γ
T
k−1+Σk−1Vk−1Σ

T
k−1

Π0 = P0+ x̄0 x̄T
0 . (13)

Proof: The proof is obtained immediately from (1) and the
details are omitted here. ■

Ξi j,k = E{ϑ̃i,kϑ̃
T
j,k} Ξxi,k = E{xkϑ̃

T
i,k} (i, j = 1,2, i , j)

Ξi,k (i = 1,2)
Let  and  .

Then,  the  covariance   is  obtained  in  the  follow-
ing lemma.

Ξi,kLemma 2: The covariance  is the solution to the follow-
ing matrix equation:
 

Ξi,k = (Γk−1−δi,kKi,kΓ̄i,k−1)Ξi,k−1(Γk−1−δi,kKi,k

× Γ̄i,k−1)T +δi,kγ̄3,kΓk−1Ξi j,k−1Ψ
T
k KT

i,k

+Σk−1Wk−1Σ
T
k−1+δi,kKi,kℵi,kKT

i,k

+δi,kγ̄3,kKi,kΨkΞ
T
i j,k−1Γ

T
k−1

−δi,kγ̄i,kKi,kΨkΣk−1Wk−1Σ
T
k−1

−δi,kγ̄i,kΣk−1Wk−1Σ
T
k−1Ψ

T
k KT

i,k (14)

where
 

ℵi,k = (γ⃗i,k + γ̄
2
i,k)ΨkΣk−1Wk−1Σ

T
k−1Ψ

T
k +Gi,k

+ γ⃗3,kΨkΠk−1Ψ
T
k + γ⃗i,kΨkΓk−1Πk−1Γ

T
k−1Ψ

T
k

+ (γ⃗3,k + γ̄
2
3,k)ΨkΞ j,k−1Ψ

T
k + (γ⃗i,k + γ̄

2
i,k)Θk

×VkΘ
T
k − γ̄3,kΓ̄i,k−1Ξi j,k−1Ψ

T
k − γ̄3,kΨkΞ

T
i j,k−1

× Γ̄T
i,k−1− γ⃗3,kΨk(Ξx j,k−1+Ξ

T
x j,k−1)ΨT

k ,

j = 1,2 i , j
Ξ1,0 = Ξ2,0 = P0

and , . Moreover, the initial value of the recursion
is set as .

Proof: From (10), one has
 

Ξi,k = E{[(Γk−1−δi,kKi,kΓ̄i,k−1)ϑ̃i,k−1−δi,kKi,kξi,k

−δi,k(γi,k − γ̄i,k)Ki,kΨkΓk−1xk−1+Σk−1wk−1

−δi,k(γ3,k − γ̄3,k)Ki,kΨk xk−1−δi,kγi,kKi,kΘkvk

+δi,kγ3,kKi,kΨkϑ̃ j,k−1−δi,kγi,kKi,kΨkΣk−1wk−1]

× [(Γk−1−δi,kKi,kΓ̄i,k−1)ϑ̃i,k−1−δi,kKi,kξi,k

−δi,k(γi,k − γ̄i,k)Ki,kΨkΓk−1xk−1+Σk−1wk−1

−δi,k(γ3,k − γ̄3,k)Ki,kΨk xk−1−δi,kγi,kKi,kΘkvk

+δi,kγ3,kKi,kΨkϑ̃ j,k−1−δi,kγi,kKi,kΨkΣk−1wk−1]T }. (15)

δ2i,k = δi,kFrom (7), it is obtained that . Noting that the chan-

nel  coefficients  and  the  noises  are  mutually  independent  and
auto-uncorrelated, one has
 

E{wkξ
T
m,k} = 0, E{wkvT

k } = 0, E{wkγn,k} = 0

E{ξm,kvT
k } = 0, E{ξm,kγn,k} = 0, E{vkγn,k} = 0 (16)

m = 1,2 n = 1,2,3for all  and . Moreover, we have
 

E{ϑ̃i,k−1ξ
T
i,k} = 0, E{ϑ̃i,k−1wT

k } = 0

E{ϑ̃i,k−1vT
k } = 0, E{xk−1ξ

T
i,k} = 0

E{xk−1wT
k } = 0, E{xk−1vT

k } = 0. (17)
Substituting (16) and (17) into (15), we directly obtain (14)

through some simple algebraic operations.
ϑ1,0 = ϑ2,0 = x̄0

Ξ1,0 = Ξ2,0 = P0

In  addition,  noting  that ,  we  easily  have
. ■

Ξi j,k Ξxi,k (i, j = 1,2, i , j)
Ξi,k

Ξi j,k Ξxi,k

From  Lemma  2,  it  is  obvious  that  the  cross-covariance
terms  and   are  essential  for  the
covariance .  In  what  follows,  the  cross-covariance  terms

 and  are given recursively.
Ξi j,k (i, j = 1,2, i , j)Lemma  3: The  cross-covariance   fol-

lows the following recursion:
 

Ξi j,k = (Γk−1−δi,kKi,kΓ̄i,k−1)Ξi j,k−1(Γk−1−δ j,k

×K j,kΓ̄ j,k−1)T +δ j,kγ̄3,k(Γk−1−δi,kKi,k

× Γ̄i,k−1)Ξi,k−1Ψ
T
k KT

j,k +δi,kγ̄3,kKi,kΨk

×Ξ j,k−1(Γk−1−δ j,kK j,kΓ̄ j,k−1)T

−δi,kγ̄i,kKi,kΨkΣk−1Wk−1Σ
T
k−1

−δ j,kγ̄ j,kΣk−1Wk−1Σ
T
k−1Ψ

T
k KT

j,k

+Σk−1Wk−1Σ
T
k−1 (18)

Ξi j,0 = P0where .
Proof: It follows from (10) that:

 

Ξi j,k = E{[(Γk−1−δi,kKi,kΓ̄i,k−1)ϑ̃i,k−1−δi,kKi,kξi,k

−δi,k(γi,k − γ̄i,k)Ki,kΨkΓk−1xk−1+Σk−1wk−1

−δi,k(γ3,k − γ̄3,k)Ki,kΨk xk−1−δi,kγi,kKi,kΘkvk

+δi,kγ3,kKi,kΨkϑ̃ j,k−1−δi,kγi,kKi,kΨk

×Σk−1wk−1][(Γk−1−δ j,kK j,kΓ̄ j,k−1)ϑ̃ j,k−1

−δ j,kK j,kξ j,k −δ j,k(γ j,k − γ̄ j,k)K j,kΨkΓk−1xk−1

+Σk−1wk−1−δ j,k(γ3,k − γ̄3,k)K j,kΨk xk−1

−δ j,kγ j,kK j,kΘkvk +δ j,kγ3,kK j,kΨkϑ̃i,k−1

−δ j,kγ j,kK j,kΨkΣk−1wk−1]T }. (19)
Recurring to (16) and (17), we further obtain

 

Ξi j,k = (Γk−1−δi,kKi,kΓ̄i,k−1)Ξi j,k−1(Γk−1−δ j,kK j,k

× Γ̄ j,k−1)T +δ j,kγ̄3,k(Γk−1−δi,kKi,kΓ̄i,k−1)

×Ξi,k−1Ψ
T
k KT

j,k +δi,kγ̄3,kKi,kΨkΞ j,k−1

× (Γk−1−δ j,kK j,kΓ̄ j,k−1)+Σk−1Wk−1Σ
T
k−1
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+δi,kδ j,kγ⃗3,kKi,kΨkΠk−1Ψ
T
k KT

j,k −δi,kδ j,k

× γ⃗3,kKi,kΨk(Ξxi,k−1+Ξ
T
x j,k−1)ΨT

k KT
j,k

+δi,kδ j,k(γ⃗3,k + γ̄
2
3,k)Ki,kΨkΞ

T
i j,kΨ

T
k KT

j,k

+δi,kδ j,kγ̄i,kγ̄ j,kKi,kΘkVkΘ
T
k KT

j,k +δi,kδ j,k

× γ̄i,kγ̄ j,kKi,kΨkΣk−1Wk−1Σ
T
k−1Ψ

T
k KT

j,k

−δi,kγ̄i,kKi,kΨkΣk−1Wk−1Σ
T
k−1

−δ j,kγ̄ j,kΣk−1Wk−1Σ
T
k−1Ψ

T
k KT

j,k. (20)

δi,kδ j,k = 0

ϑ1,0 = ϑ2,0 = x̄0 Ξi j,0 = P0

On the other hand, we know from (7) that . Then,
the  recursion  (18)  is  obtained  from  (20)  directly.  Moreover,
since , it is easy to deduce that . ■

Ξxi,k (i = 1,2)Then, we will show the derivation of the term  .
Ξxi,k (i = 1,2)Lemma 4: The expression of cross-covariance  

is given as
 

Ξxi,k = Γk−1Ξxi,k−1(Γk−1−δi,kKi,kΓ̄i,k−1)T

+δi,kγ̄3,kΓk−1Ξx j,k−1Ψ
T
k KT

i,k

−δi,kγ̄i,kΣk−1Wk−1Σ
T
k−1Ψ

T
k KT

i,k

+Σk−1Wk−1Σ
T
k−1 (21)

Ξxi,0 = P0where .
ϑi,0 = x̄0 Ξxi,0 =

P0
k > 0

Proof: By the initial  value ,  we easily have 
.  Through some simple mathematical  operations,  the equa-

tion (21) is achieved from (1), (10), (16) and (17) for all .
■

Ξi,k

Pk

So far,  the precise expression of  has been presented in
(15),  (18)  and  (21).  Next,  we  aim  to  compute  the  filtering
error covariance .

Px,k = E{x̃k xT
k } Pi,k = E{x̃kϑ̃

T
i,k} (i = 1,2) Px,k

Pi,k

Letting  and  , 
and  are given in the following lemmas.

Px,kLemma 5:  is determined by the following recursion:
 

Px,k = [Γk−1− (δ̄1,k + δ̄2,k)LkΨk]Px,k−1Γ
T
k−1

+Σk−1Wk−1Σk−1+ δ̄2,kLkΨkΞ
T
x1,k−1Γ

T
k−1

+ δ̄1,kLkΨkΞ
T
x2,k−1Γ

T
k−1 (22)

Ξxi,k (i = 1,2)
Px,0 = P0

where   is presented in (21). Moreover, the initial
value is .

x̂0 = x̄0 Px,0 = E{(x0− x̄0)xT
0 } = P0

k > 0

Proof: Since  the  initial  value  of  the  filter  (9)  is  set  as
, it is obvious that . Then, we

will show that (22) holds for all .
k > 0When , it is clear to see from (1) and (11) that

 

Px,k = E{[(Γk−1− (δ̄1,k + δ̄2,k)LkΨk)x̃k−1+Σk−1wk−1

− (δ2,k(γ4,k − γ̄4,k)+δ1,k(γ5,k − γ̄5,k))LkΨk xk−1

+LkΨk(δ2,kγ4,kϑ̃1,k−1+δ1,kγ5,kϑ̃2,k−1)

−δ2,kLkτ1,k −δ1,kLkτ2,k][Γk−1xk−1

+Σk−1wk−1]}. (23)

x̃k−1 wk−1 τm,k γn,k
(m = 1,2,n = 4,5)

Noting  that  is  uncorrelated  with ,  and 
, we directly obtain (22) from (23) by utiliz-

wk−1 τm,k γn,king  the  statistical  properties  of ,  and ,  which
proves the lemma. ■

Pi,k (i = 1,2)Lemma 6: The  cross-covariance  terms   satisfy
the following recursions:
 

Pi,k = (Γk−1− (δ̄i,k + δ̄ j,k)LkΨk)Pi,k−1(Γk−1−δi,kKi,k

× Γ̄i,k−1)T +δi,kγ̄3,k(Γk−1− (δ̄i,k + δ̄ j,k)LkΨk)

×P j,k−1Ψ
T
k KT

i,k + δ̄i,kγ̄3,kLkΨkΞ j,k−1Ψ
T
k KT

i,k

+Σk−1Wk−1Σ
T
k−1(I−δi,kγ̄i,kΨ

T
k KT

i,k)

+ δ̄ j,kLkΨkΞi,k−1(Γk−1−δi,kKi,kΓ̄i,k−1)T

+ δ̄i,kLkΨkΞ
T
i j,k−1(Γk−1−δi,kKi,kΓ̄i,k−1)T (24)

Ξi,k Ξi j,k (i = 1,2, i , j)
P1,0 = P2,0 = P0

where  and   are,  respectively,  given  in
(15) and (18). Moreover, .

Proof: From (10) and (11), one obtains
 

P1,k = E{[(Γk−1− (δ2,kγ̄4,k +δ1,kγ̄5,k)LkΨk)x̃k−1

− [δ2,k(γ4,k − γ̄4,k)+δ1,k(γ5,k − γ̄5,k)]

×LkΨk xk−1+δ2,kγ4,kLkΨkϑ̃1,k−1

+δ1,kγ5,kLkΨkϑ̃2,k−1−δ2,kLkτ1,k

−δ1,kLkτ2,k +Σk−1wk−1][(Γk−1−δ1,kK1,k

× Γ̄1,k−1)ϑ̃1,k−1−δ1,kK1,kξ1,k −δ1,k(γ1,k

− γ̄1,k)K1,kΨkΓk−1xk−1−δ1,k(γ3,k − γ̄3,k)

×K1,kΨk xk−1+Σk−1wk−1−δ1,kγ1,k

×K1,kΘkvk +δ1,kγ3,kK1,kΨkϑ̃2,k−1

−δ1,kγ1,kK1,kΨkΣk−1wk−1]}. (25)

ξ1,k vk
x̃k−1 ξ1,k vk

P1,k
P2,k

Noting the statistical properties of  and  again, we eas-
ily know that  is also uncorrelated with  and . Substi-
tuting  (16)  and  (17)  into  (25),  is  obtained  immediately.
Similarly, the term  can also be computed as (24). ■

PkLemma 7: The filtering error covariance  is determined by
the following recursion:
 

Pk = (Γk−1− (δ̄1,k + δ̄2,k)LkΨk)Pk−1(Γk−1

− (δ̄1,k + δ̄2,k)LkΨk)T +LkΨkℜkΨ
T
k LT

k

+ δ̄2,k(Γk−1P1,k−1Ψ
T
k LT

k +LkΨkPT
1,k−1Γ

T
k−1)

+ δ̄1,k(Γk−1P2,k−1Ψ
T
k LT

k +LkΨkPT
2,k−1Γ

T
k−1)

+Σk−1Wk−1Σ
T
k−1+Lk(δ2,kO1,k +δ1,kO2,k)LT

k (26)
where
 

ℜk = (δ2,kγ⃗4,k +δ1,kγ⃗5,k)Πk−1−δ2,kγ̄2
4,k(P1,k−1

+PT
1,k−1)−δ1,kγ̄2

5,k(P2,k−1+PT
2,k−1)

+δ2,k(γ⃗4,k + γ̄
2
4,k)Ξ1,k−1+δ1,k(γ⃗5,k + γ̄

2
5,k)

×Ξ2,k−1−δ2,kγ⃗4,k(Ξx1,k−1+Ξ
T
x1,k−1)

−δ1,kγ⃗5,k(Ξx2,k−1+Ξ
T
x2,k−1).

Proof: Noting (11), (16) and (17) again, we have 
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Pk = (Γk−1− (δ̄1,k + δ̄2,k)LkΨk)Pk−1(Γk−1

− (δ̄1,k + δ̄2,k)LkΨk)T +Σk−1Wk−1Σ
T
k−1

+ δ̄2,k(Γk−1− (δ̄1,k + δ̄2,k)LkΨk)T P1,k−1

×ΨT
k LT

k + δ̄2,kLkΨkPT
1,k−1(Γk−1− (δ̄1,k

+ δ̄2,k)LkΨk)T + δ̄1,kLkΨkPT
2,k−1(Γk−1

− (δ̄1,k + δ̄2,k)LkΨk)T + δ̄1,k(Γk−1

− (δ̄1,k + δ̄2,k)LkΨk)P2,k−1Ψ
T
k LT

k

+ (δ2,kγ⃗4,k +δ1,kγ⃗5,k)LkΨkΠk−1Ψ
T
k LT

k

−δ2,kγ⃗4,kLkΨk(Ξx1,k−1+Ξ
T
x1,k−1)ΨT

k LT
k

−δ1,kγ⃗5,kLkΨk(Ξx2,k−1+Ξ
T
x2,k−1)ΨT

k LT
k

+δ2,k(γ⃗4,k + γ̄
2
4,k)LkΨkΞ1,k−1Ψ

T
k LT

k

+δ1,k(γ⃗5,k + γ̄
2
5,k)LkΨkΞ2,k−1Ψ

T
k LT

k

+Lk(δ2,kO1,k +δ1,kO2,k)LT
k . (27)

δ1,kδ2,k = 0Since , one easily has
 

δ̄2,k(δ̄1,k + δ̄2,k) = δ2,kγ̄2
4,k

δ̄1,k(δ̄1,k + δ̄2,k) = δ1,kγ̄2
5,k. (28)

Furthermore,  (26)  is  immediately  obtained  from  (27)  and
(28). ■

Ξi,k (i = 1,2) Pk

So  far,  the  filtering  error  covariances  of  the  FFSR and  the
remote filter are recursively calculated through (14) and (26),
respectively. In the following theorems, the desired filter gain
matrices  are  simultaneously  designed  to  minimize  the  filter-
ing error covariances   and .

Ki,k (i = 1,2)Theorem 1: If the filter gain   is selected as
 

Ki,k =



(Γk−1(Ξi,k−1Γ̄
T
i,k−1− γ̄3,kΞi j,k−1Ψ

T
k )

+ γ̄i,kΣk−1Wk−1Σ
T
k−1Ψ

T
k )

× (Γ̄i,k−1Ξi,k−1Γ̄
T
i,k−1+ℵi,k)−1, δi,k = 1

0, δi,k = 0

(29)

Ξi,kthen  the  filtering  error  covariance  is  minimized  at  each
time instant.

Ξi,k

Proof: According to [40], the partial derivative of the trace
of  satisfies
 

∂tr{Ξi,k}
∂Ki,k

= −2δi,k(Γk−1−δi,kKi,kΓ̄i,k−1)Ξi,k−1Γ̄
T
i,k−1

+2δi,kγ̄3,kΓk−1Ξi j,k−1Ψ
T
k +2δi,kKi,kℵi,k

−2δi,kγ̄i,kΣk−1Wk−1Σ
T
k−1Ψ

T
k . (30)

δi,k = 0 ∂tr{Ξi,k}
∂Ki,k

Ki,k

Ki,k = 0 δi,k = 0

When , it  is seen from (30) that  is identically
equal to zero. So, the filter gain  can be chosen arbitrarily.
To  reduce  computational  burden  of  the  filtering  scheme,  we
set  for all .
δi,k = 1If , (30) can be written as 

∂tr{Ξi,k}
∂Ki,k

= −2(Γk−1−Ki,kΓ̄i,k−1)Ξi,k−1Γ̄
T
i,k−1

+2γ̄3,kΓk−1Ξi j,k−1Ψ
T
k +2Ki,kℵi,k

−2γ̄i,kΣk−1Wk−1Σ
T
k−1Ψ

T
k .

∂tr{Ξi,k}
∂Ki,k

= 0Letting , we find that
 

Ki,k = (γ̄i,kΣk−1Wk−1Σ
T
k−1Ψ

T
k − γ̄3,kΓk−1Ξi j,k−1Ψ

T
k

+Γk−1Ξi,k−1Γ̄
T
i,k−1)(Γ̄i,k−1Ξi,k−1Γ̄

T
i,k−1+ℵi,k)−1. ■

LkTheorem 2: If  is chosen as
 

Lk = PkO−1
k (31)

where
 

Ok = (δ̄1,k + δ̄2,k)2ΨkPk−1Ψ
T
k +ΨkℜkΨ

T
k

+δ2,kO1,k +δ1,kO2,k

Pk = (δ̄1,k + δ̄2,k)Γk−1Pk−1Ψ
T
k −Γk−1(δ̄2,kP1,k−1

+ δ̄1,kP2,k−1)ΨT
k

Pk
k ∈ N+.

then the filtering error covariance  is locally minimized for
all 

Pk Lk

Proof: Similarly to the proof of Theorem 1, taking the par-
tial derivative of the trace of  with respect to  and further
letting the partial derivative be zero, we have
 

∂tr{Pk}
∂Lk

= −2(Γk−1− (δ̄1,k + δ̄2,k)LkΨk)Pk−1

× (δ̄1,k + δ̄2,k)ΨT
k +2LkΨkℜkΨ

T
k

+2Γk−1(δ̄2,kP1,k−1+ δ̄1,kP2,k−1)ΨT
k

+2Lk(δ2,kO1,k +δ1,kO2,k)

= 2LkOk −2Pk = 0. (32)
Lk = PkO−1

kObviously, when ,  the filtering error covariance
achieves its minimal value. ■

By now, the filter error covariances of FFSR and the remote
filter  have  been  derived  and  further  minimized  by  quantita-
tively devising the filter gain matrices. The proposed filtering
method is summarized in Algorithm 1.

Algorithm 1 Recursive filtering algorithm

k = 0 [0,N]

x̄0 P0 Π0

Step 1: Set  and the time horizon . Give the initial values
 and . Then, obtain the matrix .

Ξi j,k Ξxi,k Pi,k

Px,k

Step 2: Compute  the  cross-covariance matrices , ,  and
 via (18), (21), (22) and (24), recursively.

Ki,k LkStep 3: Obtain filter  gain matrices  and  from (29) and (31).
Furthermore,  generate  the  optimal  state  estimates  through
filters (6) and (9).

Πk+1 Ξi,k+1 Pk+1Step 4: Compute matrices ,  and  from recursions (1),
(14) and (26), respectively.

k = k+1 k < N Step 2 Step 6Step 5: Set . If , return to , else go to .
Step 6: Stop.

Ξi,k Pk
yk

Remark  4: In  Algorithm  1,  the  filtering  error  covariances
 and  are derived via recursions (14) and (26), which are

unrelated to the measurement output . As a result, the filter
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Ki,k Lkgain matrices  and  can be calculated in advance. In this
case,  the  developed  filtering  algorithm  is  capable  of  online
computation and easy-to-implement.  

B.  Stability Analysis
In this section, the boundedness stability is strictly analyzed

for the proposed algorithms.
τ̄ w̄ f̄ µ̄ φ̄ ḡ

p̄0 τ w f µ φ o g p
0

v
Assumption 1: There exist positive scalars , , , , , ,
, , , , , , , ,  and  such that

 

τI ≤ ΓkΓ
T
k ≤ τ̄I, f I ≤ ΨkΨ

T
k ≤ f̄ I, vI ≤ ΘkVkΘ

T
k

wI ≤ ΣkWkΣ
T
k ≤ w̄I, p

0
I ≤ P0 ≤ p̄0I, oI ≤ Oi,kOT

i,k

µ ≤ |γ̄m,k | ≤ µ̄,g ≤Gi,k ≤ ḡ, φ ≤ γ⃗m,k ≤ φ̄
i = 1,2 m = 1,2,3,4,5for all  and .

Ξi,k (i = 1,2)
First,  we  will  analyze  the  boundedness  of  the  covariance

 .

m̄k

Theorem 3: Under the Assumption 1, if there exists a posi-
tive scalar  determined as follows:
 

m̄k =τ̄m̄k−1+ w̄ (33)

Ξi,k ≤ m̄kI ñ− 2µ̄2 f̄ (2τ̄+3)µ̄2

φ m̄k−1 >

0 Ξi,k ≥ mkI
then  we  have .  Moreover,  if 
, one obtains that , where

 

mk = ρk−1mk−1+ w̃

ρk−1 =

ñ−2µ̄2 f̄ (2τ̄+3) µ̄
2

φ m̄k−1

ñ+2µ̄2 f̄ (2τ̄+3)m̄k−1
τ

ñ = (µ2+φ)( f w+ v)+g

w̃ = ϱw̄, 0 < ϱ < 1

m̄0 = p̄0, m0 = p
0
. (34)

Ki,k
Ξi,k

Proof: When the filter gain matrix  is chosen as (29), the
covariance matrix  is written as follows:
 

Ξi,k = Γk−1Ξi,k−1Γ
T
k−1+Σk−1Wk−1Σ

T
k−1

−δi,k(Γk−1(Ξi,k−1Γ̄
T
i,k−1− γ̄3,kΞi j,k−1Ψ

T
k )

+ γ̄i,kΣk−1Wk−1Σ
T
k−1Ψ

T
k )(Γ̄i,k−1Ξi,k−1Γ̄

T
i,k−1

+ℵi,k)−1(Γk−1(Ξi,k−1Γ̄
T
i,k−1− γ̄3,kΞi j,k−1Ψ

T
k )

+ γ̄i,kΣk−1Wk−1Σ
T
k−1Ψ

T
k )T . (35)

Γ̄i,k−1Ξi,k−1Γ̄
T
i,k−1+ℵi,k

ℵi,k

For the term , it is easy to get from the
definition of  that
 

Γ̄i,k−1Ξi,k−1Γ̄
T
i,k−1+ℵi,k ≥Gi,k > 0. (36)

δi,k ∈ {0,1}Since ,  it  is  immediately  derived  from  (35)  and
(36) that
 

Ξi,k ≤Γk−1Ξi,k−1Γ
T
k−1+Σk−1Wk−1Σ

T
k−1. (37)

Ξi,k ≤ m̄kIFrom [41], we further conclude that .

Ξi,k ≥ mkI
Ξi,0 = P0 Ξi,0 ≥ m0I Ξi,k−1 ≥ mk−1I

Ξi,k ≥ mkI l > 0

Next, we utilize the mathematical induction method to show
that . First, it is easily obtained from Assumption 1
and  that .  Assuming  that ,
we will demonstrate that  for all .

Ξi,k−1 ≥ mk−1I Ξi,k−1Since ,  it  is  known  that  is  invertible.

Γ̃i,k−1 = Γ̄i,k−1− γ̄3,kΨkΞ
T
i j,k−1Ξ

−1
i,k−1 ς <

φ

µ̄2Letting  and ,  we
deduce from (35) and (36) that
 

Ξi,k ≥ (1+ς−1)Γk−1[Ξi,k−1−Ξi,k−1Γ̃
T
i,k−1(Γ̃i,k−1

×Ξi,k−1Γ̃
T
i,k−1+ ℵ̃i,k)−1Γ̃i,k−1Ξi,k−1]ΓT

k−1

−Γk−1Ξi,k−1Γ
T
k−1+Σk−1Wk−1Σ

T
k−1

− (1+ς)γ̄2
i,kΣk−1Wk−1Σ

T
k−1Ψ

T
k

× (Γ̄i,k−1Ξi,k−1Γ̄
T
i,k−1+ℵi,k)−1Ψk

×Σk−1Wk−1Σ
T
k−1 (38)

where
 

ℵ̃i,k = (γ⃗i,k + γ̄
2
i,k)ΨkΣk−1Wk−1Σ

T
k−1Ψ

T
k +Gi,k

+ γ⃗3,kΨkΠk−1Ψ
T
k + γ⃗i,kΨkΓk−1Πk−1Γ

T
k−1Ψ

T
k

+ (γ⃗3,k + γ̄
2
3,k)ΨkΞ j,k−1Ψ

T
k + (γ⃗i,k + γ̄

2
i,k)ΘkVkΘ

T
k

− γ⃗3,kΨk(Ξx j,k−1+Ξ
T
x j,k−1)ΨT

k − γ̄
2
3,kΨkΞ

T
i j,k−1

×Ξ−1
i,k−1Ξi j,k−1Ψ

T
k . (39)

Ξxi,k−1 Ξi j,k−1From the definitions of  and , it is obvious that
 

E


ϑ̃i,k

ϑ̃ j,k

 [ϑ̃i,k ϑ̃ j,k
] =
Ξi,k−1 Ξi j,k−1

ΞT
i j,k−1 Ξ j,k−1

 ≥ 0, (40)

which implies that
 

Ξ j,k−1−ΞT
i j,k−1Ξ

−1
i,k−1Ξi j,k−1 ≥ 0 (41)

and
 

Ξ−1
i,k−1Ξi j,k−1Ξ

T
i j,k−1Ξ

−1
i,k−1 ≤ m̄k−1Ξ

−1
i,k−1. (42)

Moreover, it is not difficult to know that
 

Ξx j,k−1+Ξ
T
x j,k−1 ≤ Πk−1+Ξ j,k−1. (43)

ℵ̃i,k ≥Gi,k > 0 ℵ̃i,k

Substituting  (40)−(43)  into  (39),  we  immediately  have
, which implies that  is invertible as well.

Meanwhile, we have
 

Σk−1Wk−1Σ
T
k−1− (1+ς)γ̄2

i,kΣk−1Wk−1Σ
T
k−1Ψ

T
k

× (Γ̄i,k−1Ξi,k−1Γ̄
T
i,k−1+ℵi,k)−1ΨkΣk−1Wk−1Σ

T
k−1

≥ (1− (1+ς)
γ̄2

i,k

γ⃗i,k + γ̄
2
i,k

)Σk−1Wk−1Σ
T
k−1. (44)

ς < φ/µ̄2 0 < ϱ < 1Since , we can find a scalar  such that
 

(1− (1+ς)
γ̄2

i,k

γ⃗i,k + γ̄
2
i,k

)Σk−1Wk−1Σ
T
k−1

≥ ϱΣk−1Wk−1Σ
T
k−1. (45)

According  to  the  matrix  inversion  lemma,  it  is  further
obtained from (38), (44) and (45) that
 

Ξi,k ≥ (1+
µ̄2

φ
)Γk−1(Ξ−1

i,k−1+ Γ̃
T
i,k−1ℵ̃

−1
i,k Γ̃i,k−1)−1ΓT

k−1

− µ̄
2

φ
Γk−1Ξi,k−1Γ

T
k−1+ϱΣk−1Wk−1Σ

T
k−1. (46)
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ℵ̃−1
i,k ≤

1
ñ I Γ̃T

i,k−1Γ̃i,k−1

Recurring  to  (39),  (41)  and  (43),  we  easily  get  that
. Moreover, the term  satisfies that

 

Γ̃T
i,k−1Γ̃i,k−1 ≤ 2(Γ̄T

i,k−1Γ̄i,k−1+ γ̄
2
3,kΞ

−1
i,k−1Ξi j,k−1

×ΨT
kΨkΞ

T
i j,k−1Ξ

−1
i,k−1)

≤ 4µ̄2( f̄ τ̄+ f̄ )I+2µ̄2 f̄ m̄k−1Ξ
−1
i,k−1. (47)

Thus, it is obtained from (46) and (47) that
 

Ξi,k ≥ mkI. (48)
mkI ≤ Ξi,k ≤ m̄kIConsequently, we obtain that . ■

Ξi,k

Furthermore, the uniform upper bound and lower bound are
provided for  in the following lemma.

τ̄ < 1 Ξi,k

Ξi,k ≤ m̄I m̄ = τ̄p̄0+
w̄

1−τ̄ ñ− 2µ̄2 f̄ (2τ̄+3)µ̄2

φ

× m̄ > 0 Ξi,k

Lemma 8: If ,  the  filtering  error  covariance  satis-
fies  with . Moreover, if 

, there exists a uniformly lower bound on , i.e.,
 

Ξi,k ≥ mI (49)
where
 

m = ρp
0
+

w̃
1−ρ

ρ =
ñ−2µ̄2 f̄ (2τ̄+3)m̄ µ̄

2

φ

ñ+2µ̄2 f̄ (2τ̄+3)m̄
τ.

Proof: By (33) and (34), one has
 

m̄k = τ̄m̄k−1+ w̄

= τ̄2m̄k−2+ τ̄v̄+ w̄

...

= τ̄km̄0+

k−1∑
i=0

τ̄iw̄. (50)

τ̄ < 1 Ξi,k ≤ m̄ISince , it is further yielded from (50) that .
m̄k ≤ m̄ ρ < τ̄ < 1

ρ ≤ ρk−1 < 1
On  the  other  hand,  noting  that  and ,  we

know that . Hence, it is deduced from (33) that
 

mk ≥ ρ
km0+

k−1∑
i=0

ρiw̃ ≥ m. (51)

■

Pk

Next,  the  upper  bound  and  lower  bound  are  both  provided
for the filtering error covariance .

p
k

(k = 0,1,2, . . .)
Theorem 4: Under Assumption 1, if there is a sequence 

 satisfying
 

p
k
= αk−1 p

k−1
+w (52)

where
 

αk−1 =
τo

o+4µ̄2 f̄ m̄k−1
(53)

Pk m̄k
p

k

then  the  filtering  error  covariance  is  bounded  by  and
, i.e.,

 

p
k
I ≤ Pk ≤ m̄kI. (54)

Proof: The  mathematical  induction  method  is  employed  to
prove the theorem.

p
0
I ≤ P0 ≤

m̄0I p
k−1

I ≤ Pk−1 ≤ m̄k−1I
p

k
I ≤ Pk−1 ≤ m̄kI

From  the  initial  values,  we  directly  obtain  that 
. Then, it is assumed that . we aim to

show .
LkWhen the filter gain matrix  is given as (31), the filtering

error covariance is further derived as
 

Pk = Γk−1Pk−1Γ
T
k−1+Σk−1Wk−1Σ

T
k−1−PkO−1

k P
T
k

≤ Γk−1Pk−1Γ
T
k−1+Σk−1Wk−1Σ

T
k−1. (55)

Thus, it is directly obtained that
 

Pk ≤ m̄kI. (56)

Ψ̃k = (δ̄1,k + δ̄2,k)Ψk − Ψk(δ̄2,kP1,k−1+ δ̄1,kP2,k−1)T×
P−1

k−1

Letting 
, we obtain from (55) that

 

Pk = Γk−1[Pk−1−Pk−1Ψ̃
T
k (Ψ̃kPk−1Ψ̃

T
k + ℜ̃k)−1

× Ψ̃kPk−1]ΓT
k−1+Σk−1Wk−1Σ

T
k−1 (57)

where
 

ℜ̃k = (δ2,kγ⃗4,k +δ1,kγ⃗5,k)ΨkΠk−1Ψ
T
k +δ2,k(γ⃗4,k + γ̄

2
4,k)

×ΨkΞ1,k−1Ψ
T
k +δ1,k(γ⃗5,k + γ̄

2
5,k)ΨkΞ2,k−1Ψ

T
k

−δ2,kγ⃗4,kΨk(Ξx1,k−1+Ξ
T
x1,k−1)ΨT

k

−δ1,kγ⃗5,kΨk(Ξx2,k−1+Ξ
T
x2,k−1)ΨT

k

−δ2,kγ̄2
4,kΨkPT

1,k−1P−1
k−1P1,k−1Ψ

T
k

−δ1,kγ̄2
5,kΨkPT

2,k−1P−1
k−1P2,k−1Ψ

T
k

+δ2,kO1,k +δ1,kO2,k. (58)
Following  the  same  methodology  in  (41)–(43),  we  further

have:
 

Ξx1,k−1+Ξ
T
x1,k−1 ≤ Πk−1+Ξ1,k−1

Ξx2,k−1+Ξ
T
x2,k−1 ≤ Πk−1+Ξ2,k−1 (59)

and
 

Ξ1,k−1−PT
1,k−1P−1

k−1P1,k−1 ≥ 0,

Ξ2,k−1−PT
2,k−1P−1

k−1P2,k−1 ≥ 0. (60)

ℜ̃k > 0Thus, it is known from (58)–(60) that  and therefore
is invertible.

Utilizing the matrix inversion lemma again, one easily gets
that
 

Pk = Γk−1(P−1
k−1+Ψ̃

T
k ℜ̃
−1
k Ψ̃k)−1ΓT

k−1

+Σk−1Wk−1Σ
T
k−1. (61)

δ1,kδ2,k = 0 ℜ̃k > δ2,kO1,k +δ1,kO2,k ≥ o
Ψ̃T

k Ψ̃k

Since , we have . Fur-
thermore, the term  satisfies
 

Ψ̃T
k Ψ̃k ≤ 2µ̄2 f̄ I +2µ̄2 f̄ p̄k−1P−1

k−1. (62)
In this case, it is further derived that

 

Pk ≥ (
τo

o+4µ̄2 f̄ m̄k−1
p

k−1
+w)I = p

k
I. (63)

Synthesizing (56) and (63), (54) is obtained immediately. ■
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pLemma 9: Give a scalar  as follows:
 

p = αp
0
+

w
1−α

α =
τo

o+4µ̄2 f̄ m̄
τ̄ < 1with . If , then we have

 

pI ≤ Pk ≤ m̄I. (64)
Proof: The proof  of  the  lemma is  directly  obtained by fol-

lowing  the  same  methodology  in  Lemma  8.  The  details  are
omitted here. ■

Ξi,k Pk

In this part, the uniform bounds have been provided for the
filtering  error  covariances  and .  In  what  follows,  a
three-order RLC circuit system will be adopted to display the
effectiveness of the proposed filtering method.  

IV.  Illustrative Example

In  this  section,  the  effectiveness  of  the  proposed  filtering
method  is  demonstrated  by  a  three-order  resistance-induc-
tance-capacitance (RLC) circuit system.

V(t) C1 C2
T1 T2

The considered RLC circuit  system consists of one voltage
source ( ), one inductor (L), two capacitors (  and ) and
two resistances (  and ).  According to [42],  the dynamics
of the three-order RLC circuit system is given as
 

C1V̇C1 (t) = − 1
R2

(VC1 (t)−VC2 (t))+
1

R1
u(t)

C2V̇C2 (t) =
1

R2
(VC1 (t)−VC2 (t))+ iL(t)

Li̇L(t) = VC2 (t)

VC1 (t) VC2 (t)
T1 T2 iL(t)

where  and  are,  respectively,  the  capacitance
voltages  of  resistances  and ,  and  is  the  inductor's
current.

VC1 (t) VC2 (t) iL(t)Selecting ,  and  as  the  state  variable,  we
further have
 

x(t) = Ax(t)+Bu(t) (65)
where
 

x(t) =


VC1 (t)
VC2 (t)
iL(t)

 , A =



− 1
R2C1

1
R2C1

0

1
R2C2

− 1
R2C2

− 1
C2

0
1
L

0


B =
[

1
R1C1

0 0
]T
.

u(t) u(t) = Kx(t)Moreover, the control input  is designed as .
Discretizing  (65)  and  further  considering  the  effects  of

stochastic  noises,  we  obtain  the  following  discrete-time
stochastic system
 

xk+1 = Γk xk +Σkwk

Γk = e(A+BK)qwhere  and q is the sampling period.
R1 = 4Ω R2 = 2Ω C1 =C2 = 1.2 F L = 0.5 H

q = 0.6 s K = [−1.5 1.638 1.810],
Letting , , , ,

 and  we have 

Γk =


0.6858 0.3364 0.0935
0.1790 0.7960 −0.4229
0.0120 0.1069 0.9732

 .
Furthermore, the other parameters are given as follows:

 

Σk = [0.6 0.5 0.3]T , Ψk = [2 1.8 2.5]

Wk = Vk =Gi,k = Oi,k = 4×10−6, i = 1,2

γ̄1,k = γ̄3,k = γ̄4,k = 0.9, γ̄2,k = γ̄5,k = 0.92

Θk = 0.6, γ⃗m,k = 0.01, m = 1,2,3,4,5

x̄0 = [0.3 0.2 −0.2]T , P0 = diag{0.05,0.02,0.03}.

xi
k

(i = 1,2,3) R1 R2

By utilizing the aforementioned parameters, the gain matri-
ces can be derived from Theorems 1 and 2. Based on the pro-
posed  recursive  filtering,  the  simulation  results  are  presented
in Figs.  2−5. Figs.  2−4 show  the  real  state  components 

 and  their  estimates  in ,  and  the  remote  filter
respectively.  Comparison  of  the  real  states  and  the  estimates
in Figs.  2−4 demonstrates  that  the  designed  filter  is  compe-
tent  in  estimating  the  states.  The  trace  of  the  filtering  error
covariance is depicted in Fig 5. It is concluded from Figs. 2−5
that,  the  system  state  is  accurately  estimated  with  a  desired
performance by employing the developed filtering method.  
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V.  Conclusions

This  paper  has  investigated  the  filtering  problem  for
stochastic  systems over  FFSR networks.  The signal  has  been
transmitted to the remote filter through FFSR networks. In the
FFSR,  two  relays  have  been  employed  to  forward  signals
alternatively with the FF scheme. First, novel filter structures
with switching parameters  have been designed for  FFSR and
stochastic systems to accommodate the switching characteris-
tics  and IRI  of  FFSR networks.  By means  of  the  mathemati-
cal  induction  method,  the  filtering  error  covariance  matrices
have been explicitly presented through a class of coupled Ric-
cati-like equations. Then, the desired filter gain matrices have
been quantitatively  derived by minimizing  the  trace  of  filter-
ing error covariances. Moreover, the performance analysis has
been conducted to show the boundedness of the filtering error
covariances.  Finally,  a  three-order  RLC  circuit  system  has
been adopted to display the usefulness of the proposed filter-
ing method over FFSR networks.
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